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Visual Abstract

Identified neurons and the networks they compose produce stereotypical, albeit individually unique, activity
across members of a species. We propose, for a motor circuit driven by a central pattern generator (CPG), that
the uniqueness derives mainly from differences in synaptic strength rather than from differences in intrinsic
membrane conductances. We studied a dataset of recordings from six leech (Hirudo sp.) heartbeat control
networks, containing complete spiking activity patterns from inhibitory premotor interneurons, motor output spike
patterns, and synaptic strength patterns to investigate the source of uniqueness. We used a conductance-based
multicompartmental motor neuron model to construct a bilateral motor circuit model, and controlled it by playing
recorded input spike trains from premotor interneurons to generate output inhibitory synaptic patterns similar to
experimental measurements. By generating different synaptic conductance parameter sets of this circuit model,
we found that relative premotor synaptic strengths impinging onto motor neurons must be different across
individuals to produce animal-specific output burst phasing. Obtaining unique outputs from each individual’s
circuit model did not require different intrinsic ionic conductance parameters. Furthermore, changing intrinsic

Significance Statement

Each member of a species is unique, down to its neurons. The ability to experimentally identify a specific
neuron across individuals allows investigating the neuron’s variability in spiking activity patterns and
therefore its function. Identified neuron types produce stereotypical, albeit individually unique, activity
patterns. Uniqueness of activity can be caused by variability observed in the intrinsic properties of neurons
and the synaptic connections of the circuit. Here, we propose that, for a rhythmic neuronal motor circuit, the
uniqueness derives mainly from differences in synaptic strength rather than from differences in intrinsic
membrane conductances. The neuron types that we studied are from the leech heartbeat system. However,
our results are general and can translate to other neuronal networks that control output phasing.
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conductances failed to compensate for modified synaptic strength patterns. Thus, the pattern of synaptic
strengths of motor neuron inputs is critical for the phasing of this motor circuit and can explain individual
differences. When intrinsic conductances were allowed to vary, they exhibited the same conductance correlations
across individuals, suggesting a motor neuron “type” required for proper network function. Our results are general
and may translate to other systems and neuronal networks that control output phasing.

Key words: animal to animal variability; hirudo medicinalis; intrinsic membrane properties; motor networks;
neuron simulation; synaptic variability

Introduction
Through their projections and synapses onto motor

neurons, central pattern generator (CPG) circuits control
motor output for a variety of rhythmic behaviors. Across
individuals of a species, motor circuits, both motor neu-
rons and CPG elements, show large variability, not only in
intrinsic neuronal parameters (Bucher et al., 2005), but
also in circuit synaptic parameters (Goaillard et al., 2009).
Given this animal-to-animal variability, how do motor cir-
cuits produce functional, albeit individually unique, output
patterns across animals (Norris et al., 2007a; Goaillard
et al., 2009; Williams et al., 2013)?

This question has been largely addressed, not with
experimental animals coming from controlled back-
grounds, but with those collected from their natural hab-
itats (Goaillard et al., 2009), which have multiple factors
that can contribute to biological variability. These genet-
ically unique individuals must adapt to developmental and
environmental variability presumably by applying some
rules (e.g., homeostatic or developmental) to achieve
functional output. We are interested in explaining how
such rules act at the neuronal and circuit level to achieve
their unique functional network output. In particular, what
are the relative contributions of synaptic and intrinsic
parameters in the production of unique functional output
across animals?

Central pattern generating networks of invertebrates
have provided some of the best evidence showing func-
tional output with underlying variability of intrinsic and
synaptic conductances (Prinz et al., 2004; Goaillard et al.,
2009; Ransdell et al., 2013; Marder et al., 2015; Doloc-
Mihu and Calabrese, 2016). In CPGs, the firing phase of
component neurons is considered a critical aspect of a
functional motor pattern, and phase varies considerably,

albeit within functional limits, across animals as shown in
the stomatogastric (STG) nervous system (STNS) and in
the leech heartbeat system (Wenning et al., 2004a,b;
Bucher et al., 2005; Norris et al., 2006, 2007b). For leech
heartbeat, each animal arrives at a unique solution to
produce a functional heartbeat motor pattern based on
phase differences in the premotor pattern and synaptic
strength patterns from the CPG premotor interneurons to
motor neurons (Norris et al., 2011; Wright and Calabrese,
2011b).

Previous large-scale modeling simulations in other sys-
tems, which included both synaptic and intrinsic channel
variations, generated databases of different conductance
parameter configurations, but these were compared to
population averages rather than data collected from indi-
viduals (Prinz et al., 2004). Databases of simplified com-
puter models were also constructed to explain variable
phasing observed in a multianimal dataset (Williams et al.,
2013). In this article, we focus on the coordination of heart
motor neurons (HEs) that each receive their inputs from
inhibitory premotor heart interneurons (HNs). While all
input-output spiking phases and synaptic strengths were
recorded, intrinsic conductances in these individuals
could not be measured simultaneously. We use computer
models to match neuronal profiles (i.e., specific biological
instances of network spike phasing and synaptic param-
eters) to reverse engineer motor neuron intrinsic proper-
ties, such as in the case for single animals (Lamb and
Calabrese, 2013), but extend this methodology to multiple
individuals.

Premotor and motor phasing and synaptic inputs to
leech heartbeat motor neurons were experimentally char-
acterized from a set of six individuals (Norris et al., 2007a,
b; Wright and Calabrese, 2011b). The bilateral motor cir-
cuit was reconstructed by using the same parameterized
conductance-based multicompartmental motor neuron
model as in Lamb and Calabrese (2013). We optimized
sets of model instances (with varying parameter values) of
the model neuronal circuit using a multiobjective evolu-
tionary algorithm (MOEA) within the observed natural vari-
ability to produce each individual leech’s unique motor
output and assessed the relative contribution of intrinsic
ionic conductances versus synaptic parameters. We
started by keeping synaptic strengths at the measured
average values for the individual and allowing only varia-
tion of the intrinsic ionic conductances and bilateral elec-
trical coupling between motor neuron pairs. We found that
functional models were difficult to find and that they were
not successful when tested with the premotor inputs and
expected motor output from other individuals in our set.
However, allowing also the synaptic strength parameters
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for an individual to vary within the error of our measure-
ments for that individual led to much higher success rate
for our motor neuron model searches. Moreover, such
motor neuron models were highly successful when chal-
lenged with premotor parameters (synaptic strengths al-
lowed to vary within the measurements’ error) from other
individuals. Thus, synaptic strength parameters appear
more critical than intrinsic membrane parameters in the
expression of animal-to-animal variation in motor output
in the leech heartbeat system.

Materials and Methods
Electrophysiology and spike-triggered averaging
(STA) of synaptic currents

Electrophysiological recordings were obtained from
previously published data (Norris et al., 2011). Recordings
were made in isolated nerve cords of Hirudo sp. extracel-
lularly from premotor HN interneurons and in voltage-
clamp from ipsilateral segmental HE motor neurons.
Norris et al. (2011) described 12 preparations that have
complete recordings of input spiking pattern (premotor
interneurons), output spiking pattern (motor neurons) and
synaptic strengths in two motor neurons of all four pre-
motor interneurons in both peristaltic and synchronous
coordinations (see beginning of Results section for their
definitions). They showed statistically that the synaptic
strengths of these preparations were representative of a
sample involving many more preparations of less com-
plete data from previous studies (Norris et al., 2006,
2007a,b). Of these 12, six were perfect in the sense that
there were no changes in period between the recordings
of the two coordinations so that data from one side could
be reflected to give a bilateral pattern; this was very
important for making a bilateral pattern for the modeling
done here. The pattern of interneuron activity and motor
neuron activity of these six is representative of the 12 and
enabled very detailed modeling and dynamic clamp stud-
ies that ultimately led to this study (Wright and Calabrese,
2011a,b; Lamb and Calabrese 2013). A recently published
meta-analysis of all the preparations (�100) is available in
a project database with all data available on Dryad
(https://datadryad.org/resource/doi:10.5061/dryad.
c0g0p/3; Wenning et al., 2018) enabling external validation
of the representativeness of this sample. We show here that
the premotor patterns and motor patterns in both coordina-
tions are representative of the much larger sample in the
project database (Extended Data Fig. 2-1).

Recorded electrophysiological activity traces were
analyzed using custom scripts written in the MATLAB com-
puting environment (MathWorks). These analysis scripts ex-
tracted bursting characteristics of recorded neurons (https://
github.com/RonCalabreseLab/Burst-Phase-Matlab-lib).
They were also applied to quantify characteristics of sim-
ulated neurons (see below). These characteristics were
used as the target metrics to evaluate whether model
neurons are similar to recorded ones. The analysis started
by finding beginning and ending spikes in each burst, their
median spikes (indicated with diamonds in figures) that is
used to compare phasing of bursts, within-burst spike
rate and amplitude. It also low-pass filtered the bursting

activity to extract the slow-wave envelope on which the
bursts rode. The height of this slow-wave envelope was
also one of the target metrics.

For assessing the strength and dynamics of synapses,
we have employed an offline spike-triggered averaging
(STA) method to analyze IPSCs caused by premotor HNs
that are recorded in voltage clamp from HEs, similar to a
previous method (Norris et al., 2007a). STA was used to
determine synaptic connectivity, strength, and dynamics
(short term synaptic plasticity) in both coordination
modes, but using data recorded from one side of each
preparation. Data from the two coordination modes were
combined to increase the signal-to-noise ratio in STA
because no significant differences were noted between
coordination modes in synaptic connectivity, strength, or
dynamics (Norris et al., 2007a).

Spike and IPSC detection/averaging were performed
off-line using custom MATLAB software (https://github.com/
RonCalabreseLab/HN-HE-synapses-STA). For most of
the duration of their bursts, the premotor interneurons
tend to fire at a quasi-constant rate, often resulting in
multiple peaks in the STA. The largest of these peaks was
selected in each trace for measurement of amplitude and
latency as before (Norris et al., 2007a). Data used in the
STA estimation can be accessed publicly (https://doi.org/
10.6084/m9.figshare.7963757).

We have improvements over the previously reported
STA method in several aspects: (1) we verified that proper
number of leading and trailing IPSCs are removed from
the STA in each burst; (2) we have an interactive feature to
exclude from averaging IPSCs that are near post-synaptic
spikes, which escape from voltage clamp because of poor
space clamp of the spike initiation zone; (3) we provide
analysis of within-animal variability of the STA and its
comparison to the average (Fig. 1C); (4) finally, we use an
improved method to align the current offset between
traces from different bursts. Previous methods reported
align traces to have zero current offset at their value
that corresponded to the presynaptic spike trigger time
of the selected HN. However, the trace could shift up or
down considerably with this method based on the co-
incidental existence of IPSCs from other HNs during
this time. Instead of this method, we used a bandpass
filter (5–3000 Hz) to remove low-frequency current off-
sets from traces independent of their value at the spike
trigger time. This method reduced the offset visibly and
quantitatively allowing more accurate averaging.

MOEA optimization of a conductance-based
ensemble model of HE motor neurons

To simulate HE motor neurons, we used a previously-
published multicompartmental conductance-based model
(Lamb and Calabrese, 2013; model files available on the
ModelDB repository, https://senselab.med.yale.edu/ModelDB/
ShowModel.cshtml?model�153355). Each motor neuron
in this model is composed of seven compartments: a
soma, three serially-connected primary neurite compart-
ments, a secondary neurite compartment (passive only)
branching from the primary neurite, a synaptic compart-
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ment connected to the secondary neurite, and an axon
serially-connected to the end of the primary neurite. Each
of these included combinations of intrinsic ionic channels
specified in Table 1. The ensemble model of the heartbeat
motor neuron circuit contains bilateral pairs of these mo-
tor neuron models coupled together electrically with a
conductance (gsynE) at their respective synaptic compart-
ments. Two pairs of model neurons are simulated for
leech segments 8 and 12. Different segmental HE motor
neurons receive their corresponding recorded HN inputs.
We modified this model (https://github.com/RonCalabrese
Lab/HE-model) to allow varying passive parameters inde-
pendently across different compartments, added variable
global and individual synaptic multipliers, and allowed
user specification of different HN interneuron input pat-
terns recorded from different leeches in our data set
(https://doi.org/10.6084/m9.figshare.7963733). We fo-
cused our investigations on one model instance from
Lamb and Calabrese (2013), whose maximal conductance
parameters are shown in Table 2.

Lamb and Calabrese (2013) had previously used a
MOEA approach to optimizing model circuit parameters
to find motor patterns that match recordings from a single
animal (5/19B). Model outputs were quantified based on
measurements of activity waveforms (Table 3). Target
ranges from each animal’s target values indicate accept-
able metric values during ensemble model fits. We used
the same target ranges in this study to maintain consis-
tency and produce comparable results. We have ex-
tended this schema to fit model outputs to targets from
multiple animals. Target ranges selected can be com-
pared in the table to SDs in peristaltic (peri) and synchro-
nous (sync) coordination mode measurements from HE(8)
and HE(12) motor neurons averaged over data recorded
from six leeches. Duty cycle and phase metric target
ranges were less than one SD over the data set. Fre-
quency had an especially relaxed target range. We ig-
nored the absolute phase metrics and instead used the
motor phase progression metric. Motor phase progression
depends on the absolute phases of motor neurons because
it is the phase difference of HE(8) and HE(12). In total, there
were 18 metrics that the optimization algorithm maintained
within the target ranges. The analysis was performed using
custom MATLAB scripts (https://github.com/RonCalabrese
Lab/HE-model-analysis-matlab).

Multiobjective optimization algorithms have been suc-
cessfully used for conductance model parameter optimi-
zation before (Druckmann et al., 2007). The basic idea is
to find solutions that optimize each objective separately,
instead of previous methods that weigh together different
objectives to optimize a summed metric. Optimizing the
summed metric may give good solutions in one metric
while doing worse in others. The user can specify impor-
tance of some metrics by weighing them stronger if
known in advance. However, this may skew results in
favor of a few metrics. Multiobjective methods behave
much more fairly, where solutions are evaluated for their
goodness by checking all objectives. Therefore, they are
more appropriate for matching biological features, which
are all important to match. These methods have become

the standard in ambitious neuronal modeling projects
(Markram et al., 2015), by accumulating many new ad-
vancements (for review, see Druckmann, 2013). One of
the most commonly employed MOEA algorithms is the
non-dominated sorting genetic algorithm (NSGA-II; Deb
et al., 2002). However, this algorithm is known to be
unsuitable for problems with more than three objectives
(Zou et al., 2008), which makes it a suboptimal choice for
our optimization task with 18 output metric objectives.
Lamb and Calabrese (2013) have employed a custom
modification of NSGA-II that partially eliminated this
handicap, the elitist non-dominating vector evaluated ge-
netic algorithm (endVEGA), which was written in the C��
programming language and used a roulette wheel to
choose more of the lower-value objective metrics irre-
spective of their number (Milanova et al., 2006; Smolinski
et al., 2007). Since an easily customizable implementation
of this algorithm was not publicly available, we adopted a
custom open-source MATLAB toolbox called GODLIKE (http://
www.mathworks.com/matlabcentral/fileexchange/24838-
godlike-a-robust-single—multi-objective-optimizer). We have
customized and improved GODLIKE by allowing parallel
processing on multithreaded hardware. GODLIKE offered
four multiobjective optimization algorithms that can be
combined together, and included an NSGA-II implemen-
tation. As expected, it failed to converge in our 18-
dimensional objective function space, because it could
always find solutions where some metric was better,
which could not be dominated by any other population
member. For example, it could find a model instance that
has a perfect match to the target spiking frequency, while
several other metrics remained outside of target range.
We stopped this overzealous single-objective fitting by
preventing the optimization of metrics below a threshold,
in particular the limits of our target range for each metric.
A fuzzy truncation function on the squared metric value
(Extended Data Fig. 3-1A) allowed us to place a lower
bound on metric errors equal to the target range value,
such that they cannot be improved further. Therefore, the
algorithm focuses on improving the remaining metrics
(Extended Data Fig. 3-1B). In practice, this method did not
dramatically improve the quality of solutions found, but it
did improve the speed of convergence and the number of
evaluations to reach good quality (low target metric error)
solutions (Extended Data Fig. 3-1C,D). That is, many more
low maximal absolute error (MAE) solutions were found
with same number of evaluations. Control of simulations,
comparison and sorting of metrics, and plotting were
achieved using the Pandora toolbox (Günay et al., 2009;
RRID: SCR_001831) for MATLAB. Figures in this article
can be generated using the public resources for the
source code (https://github.com/RonCalabreseLab/HE-
model-animals-figures) and the associated simulation
data (https://doi.org/10.6084/m9.figshare.7963748).

Statistics
Synaptic strengths measured from living animals and

computer simulations were compared using the Kruskal–
Wallis test. Being a non-parametric test, Kruskal–Wallis
does not assume samples follow a specific distribution. It
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tests the null hypothesis that medians between the two
distributions are equivalent. We chose this test as it is
more stringent than a one-way ANOVA test, which
assumes the underlying distributions are normal. The
distributions of the living and simulated synaptic values
were shown in detail in a supplementary figure (Ex-

tended Data Fig. 6-2). The Kruskal–Wallis test was
applied using the implementation found in MATLAB
(MathWorks) named “kruskalwallis.”

Correlations between intrinsic P and K2 conduc-
tances were tested using multiple linear regression in
MATLAB (MathWorks) with the “regress” command. R2

A

B

C

D

Figure 1. Experimental data from multiple animals show large variability in interneuron phase, output phase, and synaptic strengths.
A, Representative ipsilateral connectivity schematic and extracellular traces from preparation 5/27B in peristaltic coordination
showing premotor heart interneuron (HN) neurons in segments 3, 4, 6, and 7, with projections to heart motor neurons (HEs) in
segments 8 and 12. Phase difference in the premotor inhibitory synaptic input (pm��) from heart interneuron HN(x) to HE(y) results
in a motor phase progression (m��x,y). B, Phases of both HNs and HEs vary across preparations. C, STAs of relative synaptic
strengths of HN(3) and HN(7) to HE(8) synapses in preparation 5/27B showing the mean (black lines) and SD (gray areas). Red stars
show the points between which amplitudes are measured. These two synaptic currents correspond to the red stars in panel D. D, HN
to HE relative synaptic strengths (mean � SD) from six individual animals show variability in their synaptic strengths and disparity
between inputs and their ordering of magnitudes.

Table 1. Intrinsic ion channels and electrical coupling components in model and their maximal conductance parameter’s
ceiling value

Name Channel g (S/m2)
Na Fast sodium 3500
P Persistent sodium 9.5
CaS Slow calcium 0.5
K1/K2 Delayed-rectifier potassium 25 (soma), 375 (neurites), 500 (axon)
KA A-type potassium 50 (neurites), 750 (axon)
KCa Calcium-dependent potassium 50
synE Synaptic coupling 10 [nS]

MOEA algorithm optimized parameters between 2% and 100% of these values at 2% increments.
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and p statistics were reported from the output of this
command.

Results
Experimental data from multiple animals vary in
interneuron phase, output phase, and synaptic
strengths

The leech heartbeat is a bilateral system, where blood is
pumped by rear-to-front peristalsis on one side (heart
tube) and nearly synchronously on the other side (heart
tube). This activity pattern of two distinct coordinations,
peristaltic and synchronous, switches sides periodically
every few minutes to ensure that blood circulates equally
on the two sides. The same bilaterally paired premotor
interneurons and motor neurons produce both coordina-
tions, and in particular only the relative timing of interneu-
rons and motor neurons changes between the two
coordinations (Fig. 1A; Norris et al., 2007a,b, 2011). It has
recently been shown that there are significant side-to-side
differences in phasing of activity for each coordination
and in underlying synaptic strengths but on a given side,
motor output is very similar across repetitions of a coor-
dination (Wenning et al., 2018).

We focus on the coordination of motor neurons (HEs) in
segments 8 and 12 that each receive all of their inputs
from the same four inhibitory premotor interneurons (HNs)
in segments 3, 4, 6, and 7. When one side is in peristaltic
coordination, bursting spike patterns of premotor interneu-

rons [HN(3)–HN(7)] show a rear-to-front phase progression
(Fig. 1A). Bursting phase of premotor interneurons is highly
variable across animals and controls the phasing of
motor neuron [HE(8) and HE(12)] output spiking pat-
terns (Norris et al., 2007a). In some animals (e.g., in
5/19B), even premotor phase ordering may be different
(Fig. 1B), but the general trend of rear to front progression
is always observed. Variability in premotor input phasing
is also reflected by varying motor phases of HE(8) and
HE(12) in each animal, but the premotor phase difference
(pm��) always sets an upper limit on the forward motor
phase progression (m��; see Wright and Calabrese,
2011b). This creates the rear-to-front peristaltic wave
constricting heart muscle that is critical for pumping
blood and therefore the survival of the leech. Function-
ality of this feature, despite differing input patterns,
depends on the strengths of synapses connecting the
interneurons to motor neurons, which also varied
across animals.

Previously, Norris et al. (2007a) estimated and reported
synaptic strengths using a STA method. Here, we are also
reporting within-animal variability of synaptic strengths
(Fig. 1C) using an improved STA method (see Materials
and Methods). Synaptic strengths were normalized per
animal to have a meaningful comparison across ani-
mals and preparations. When looking across animals,
relative strengths were, not only highly variable, but
also ordered inconsistently by their magnitudes (Fig.
1D). Motor neuron HE(8) had a more even distribution of
relative synaptic strengths across all four inputs com-
pared to HE(12) that had small versus large strengths.
Across animals, the strongest input to HE(8) alternated
between HN(4) and HN(6). Inputs to HE(12) were more
consistent across animals, HN(6) and HN(7) being al-
ways the strongest; however, their ratios still varied
greatly. Other than these rules, synaptic strength pat-
terns seemed to be unique for each animal despite the
criticality of their function.

Functional metrics of the heartbeat circuit such as
the motor phase progression are also variable

Functional output metrics of the heartbeat circuit also
showed variability across animals in both coordinations
(Fig. 2; for a comparison of these distributions to the
larger project dataset, see Extended Data Fig. 2-1). These
metrics were previously described in detail (Lamb and

Table 2. Maximal conductance parameter as percentages of
ceiling values for selected model #47 from set C of Lamb and
Calabrese (2013)

Conductance %
Soma K1 8
Soma K2 92
Neurite K1 56
Neurite K2 4
Neurite KA 32
Neurite P 18
Neurite CaS 72
Neurite KCa 4
synE 22
Axon Na 76
Axon K1 4
Axon K2 96
Axon KA 80

Table 3. Target ranges (leftmost column) used for optimizing all model circuit metrics (Lamb and Calabrese, 2013)

Target HE(8) HE(12)
Metric range Peri, mean � SD Sync, mean � SD Peri, mean � SD Sync, mean � SD

Duty cycle 0.10 0.61 � 0.18 0.60 � 0.12 0.62 � 0.17 0.64 � 0.17
Spike frequency (Hz) 7 6.73 � 0.93 6.94 � 1.03 7.33 � 1.63 7.25 � 1.49
Phase (burst median) 0.03 0.49 � 0.07 0.00 � 0.06 0.37 � 0.08 0.05 � 0.07
Slow wave height (mV) 5 10 10 10 10
Spike height (mV) 7.50 15 15 15 15
Motor phase progression 0.06 0.11 � 0.04 �0.04 � 0.03

These ranges provided the limits around each animal’s target values for fitting ensemble models. Phase and duty cycle are displayed in normalized units.
Metrics of slow wave height and spike height were used to ensure models were physiologic and were estimated from recordings. Target ranges are com-
pared to mean and SD of the measurements across six animals for HE(8) and HE(12) in the columns to the right for peristaltic (peri) and synchronous (sync)
coordination modes. Motor phase progression is calculated using phase of both motor neurons, so it was displayed only once under HE(8).
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Calabrese, 2013), and include duty cycle, firing rate, slow
wave amplitude, and spike rate. The most important out-
put metric of a functional heartbeat is the peristaltic motor
phase progression (m��), which was calculated here as
the phase difference from motor neuron HE(8) to HE(12)
and exhibited substantial animal-to-animal variability.
Variability also existed in the synchronous coordination,
but the phase differences were much smaller. Bursting
duty cycle and firing rate of the motor neurons were
similarly variable across animals. Each animal having dif-
ferent input phase progression, synaptic strengths, and
output phase progression, raises the question whether
output variability is caused by inputs only, or intrinsic ionic
conductances must also differ from animal to animal.
Another CPG circuit, the STNS also exhibits similarly
stereotypical but variable neuronal output activity in the
same neuronal types across individual crustaceans (Bu-
cher et al., 2005), while underlying channel conductances
and gene expression patterns vary significantly (Marder
and Goaillard, 2006; Schulz et al., 2006). The two to
four-fold difference found in maximal conductance mag-
nitudes has been suggested to cause the observed
population variability in neuronal activity. Variable un-
derlying conductances in neuronal types was also ob-
served in mammalian Purkinje cells (Swensen and
Bean, 2005). We can investigate how changes in inputs
and ionic conductances contribute to explaining the
outputs in the leech by using a computer model of the
heartbeat motor circuit.

No model instance produced functional output using
the measured synaptic weight averages

Previously, Lamb and Calabrese (2013) constructed a
conductance-based multicompartmental model of the
heart motor neurons (HEs). This is an ensemble model
that simulates both sides of the animal because bilateral
HE motor neurons are electrically coupled. Premotor input
phase and synaptic strength recorded from one side (for
both activity coordinations) in experiments were used as
inputs to both sides of the model circuit. Synaptic
strengths were previously measured by STA experimen-
tally for each HE motor neuron independently (Wright and
Calabrese, 2011b). Not knowing how strengths of differ-
ent HE synapses compare to each other across animals,
experimental strengths were interpreted in relative terms.
Here, relative synaptic strengths to each HE were scaled
by a global scaling parameter (�) to generate absolute
strengths to be used in simulations (Fig. 3A). The model
could then be simulated by playing back inputs from
model synaptic currents triggered by recorded HN spike
patterns, aiming to recreate HE output phasing that
matched recorded animal’s synaptic profiles. This simu-
lation method allows us to explain how the measured
properties of the circuit come together to generate motor
output and whether it can reproduce observed functional
metrics such as burst phase.

Using this method, Lamb and Calabrese (2013) were
able to simulate a small motor phase progression target
preparation 5/19B (Fig. 1B, left-facing triangles) by using

Figure 2. Metric targets for peristaltic (peri) and synchronous (sync) coordinations also varied across six individual leeches. Animal
target (5/19B) used for tuning original model (Lamb and Calabrese, 2013) had a relatively small motor phase progression compared
to another target (5/22B) of interest (right). These six animals constitute a representative sample from a larger project database.
Comparisons of metric distribution between our sample and the project database is shown in Extended Data Figure 2-1.
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A

B

C

Figure 3. Multicompartmental conductance model of heart motor neuron circuit simulated with synaptic multipliers. A, A global
multiplier (�) is required for scaling relative synaptic current measurements from individual HE motor neurons. B, Lamb and Calabrese
(2013) evolved a population of 431 model instances with different intrinsic conductance parameters sets that successfully produced
a motor phase progression for animal 5/19B (with target m�� � 0.081) within target range of 0.06 (for details of method, see Extended
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measured inputs to the model (Fig. 3B). However, the
model failed to reproduce larger phase progression tar-
gets, such as from 5/22B (Fig. 1B, diamonds), using its
corresponding inputs (Fig. 3B; compare phase progres-
sion values in Fig. 2). Theoretically, the model could
achieve large motor phase progression when we artifi-
cially maximized output phase progression by strength-
ening earliest (in phase) and latest synaptic inputs to
HE(12) and HE(8), respectively (Extended Data Fig. 3-2A).
Using this method, we confirmed that the output motor
phase progression is always limited by, and follows, the
input premotor phase progression (Extended Data Fig.
3-2B). However, while the model could match larger mo-
tor phase progression values, it was unable to keep other
functional metrics within target range for any combination
of values for the two synaptic scaling parameters (�) of
HE(8) and HE(12), respectively (Extended Data Fig. 3-2C).

Furthermore, searching across all maximal conduc-
tances (for ionic currents and bilateral electrical coupling
between HEs) and HE synaptic scaling parameters of the
model failed to find any solutions within all metric target
ranges for preparation 5/22B (Extended Data Fig. 3-3).
Since intrinsic ionic conductances could not compensate
for the model’s shortcomings, we turned back to modify-
ing recorded relative synaptic weights from their average
values measured by STA.

Slightly adjusted synaptic weights result in
functional models without changing intrinsic ionic
conductances

By preserving the same intrinsic ionic maximal conduc-
tance magnitudes in the model instance and allowing
synaptic strengths to slightly vary from their measured
averages, we were able to find functional models for
target 5/22B (Fig. 4) and 5/20B (Fig. 5). To achieve this, we
defined synaptic multiplier parameters from each HN in-
put to an HE motor neuron (Fig. 4A) and allowed them to
vary only within �1 SD of the recorded synaptic strength
averages (Fig. 1D). The synaptic strengths found in the
top functional models were within �1 SD of the measured
averages for preparation 5/22B (Fig. 4B). The simulated
models were able to produce the target phase progres-
sion of the individual animal with no other electrophysio-
logical anomalies (Fig. 4C). The measured functional
metrics were all within target ranges as well (Fig. 4D). If we
had used the original measured synaptic strength aver-
ages, the metrics would be outside of this range for the
synchronous duty cycle of HE(12) and much lower than

the target of the peristaltic motor phase progression (Fig.
4E). To show another example, we were able to find
synaptic strengths (Fig. 5A) and functional output metrics
(Fig. 5C) within �1 SD of the measured targets for prep-
aration 5/20B that produced proper bursting patterns (Fig.
5B). These two examples gave us confidence for search-
ing nearby synaptic strengths to those measured in the
rest of the animals.

Adjusting synaptic strengths resulted in functional
models for all six preparations

We repeated the procedure for the remaining four prep-
arations and obtained functional models by finding new
synaptic strengths within �1 SD of measured averages
(Fig. 6). The best motor phase progression errors obtained
were �0.6 of its target range across all preparations and
largest error was associated with different metrics in each
one (Table 4). Bursting activity was also regular across all
preparations (Extended Data Fig. 6-1). When compared
across six animals, we found no significant difference
between relative synaptic strength distributions of mea-
sured averages versus topmost models (Kruskal–Wallis, p
� 0.05; Fig. 6A). Furthermore, the model synaptic weights
followed the same relative pattern (same distribution)
across eight inputs as in living HE neurons (for synaptic
strengths found for individual animals, see Extended Data
Fig. 6-2). To explain the significance of the synaptic
weight pattern, we used the synaptic strength index (SSI)
defined by Wright and Calabrese (2011b). The SSI metric
calculates the sum of preferences of HN(4) to HE(8) and of
HN(7) to HE(12) in a single animal by using

SSI �
wHN4¡HE8

wHN4¡HE12
�

wHN7¡HE12

wHN7¡HE8

where w are relative synaptic strengths. When we applied
this equation to both measured and model synaptic
strengths for all preparations, we found that model SSI
values increased for preparations with larger phase pro-
gression, while measured SSI values remained almost flat
(Fig. 6B; see Discussion). Despite this discrepancy and
having reproduced the observed peristaltic phase pro-
gression values in the model without sacrificing any other
functional metric, we turned to the question of whether
intrinsic ionic conductances also contributes to individual
variability across animals. Surprisingly, all the results we
presented so far (except Extended Data Fig. 3-3) were
obtained with the same combination of ionic conduc-

continued
Data Fig. 3-1). Sample model instance (#47) shows bursting patterns where diamonds mark the middle spike of the bursts and the
gray triangle connecting the traces of HE(8) to HE(12) indicate the motor phase progression. Peristaltic and synchronous coordination
modes are indicated with magenta and blue traces throughout this article. The horizontal sequence of dots atop traces aligned with
HN interneuron labels indicate their firing times, while the dots’ thicknesses indicate the relative strength between the HN input onto
the corresponding HE motor neuron. C, When �-scaled (�HE8 � 0.73 and �HE12 � 0.75) HN firing patterns of a different animal (5/22B,
with target m�� � 0.105 � 0.06) were simulated as input in the HE circuit model, it resulted in a smaller m�� � 0.008, which failed
to reproduce the increased target value. Extended Data Figure 3-2 gives more details about the impact of the � factors on the activity
characteristics. Furthermore, searching across all maximal conductances (of intrinsic ionic currents and bilateral electrical coupling
between HEs) and HE synaptic scaling parameters of the model failed to find any solutions within one target range for all metrics for
preparation 5/22B (Extended Data Fig. 3-3).
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tances in the model. This suggests that synaptic strengths
dominate the phasing of the output and ionic conduc-
tances need not vary across animals. Next, we investi-
gated which combinations of ionic conductances resulted
in functional models while keeping the newly found syn-
aptic strengths constant.

Intrinsic conductances vary smoothly around
synaptic solutions found

So far, we have tested all animal targets with models
that employed the same one configuration of intrinsic
conductances. To test the impact of intrinsic conduc-
tance deviation from this configuration in the heart motor
neuron output across animals, we varied intrinsic conduc-
tances without allowing changes in synaptic strengths
from the newly found values. As expected, we found
ensembles of model solutions for each of the animals

(Table 5). For each animal, we evaluated at least 5000
model instances in randomized MOEA searches. Model
instances within target range (“good” models) were just a
small percentage of the total number of instances evalu-
ated, varying between 1% and 13%. This reinforced the
understanding that intrinsic conductances are important
for producing functional network activity. However, we
wanted to assess the scale of this importance and
whether intrinsic conductances must vary across animals.
Therefore, we asked whether there are other fixed sets of
intrinsic conductances that can produce model instances
that function across animals. We selected animal 5/22B,
which was the most difficult phase target to achieve and
which had the lowest ratio of good models. We tested
each of its 122 good model instances against other animal
targets by setting synaptic strengths to the previously
found values for that animal and keeping them constant.

A

B C

D E

Figure 4. Target 5/22B solution was found by manipulating individual synaptic weights, while keeping the same intrinsic maximal
conductance magnitudes of the model instance. A, Individual synaptic multipliers (�) allow adjusting strengths around recorded
averages. B, For input dataset 5/22B, we found 2088 model instances with synaptic weights that are �1 within-animal SD of target
weights while keeping all other functional metrics also within recorded target ranges. C, Bursting activity of models did not show any
abnormalities (example model at rank #4 is shown). D, Metrics of same model compared to target. Error bars show �1 SD across all
the targets. Since synchronous phase progression was small and always within target range, we only show peristaltic progression.
E, Same model instance with unmodified target synaptic weights was unable to achieve target values. Figure shows best possible
metrics achieved by the model when the global synaptic multipliers were scaled to �HE8 � 0.7961 and �HE12 � 0.7674.
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At least some of these instances produced network ac-
tivity patterns within target ranges for all animals (Table 6,
best MAE varied between 0.51 and 0.70). And �50% of
these instances worked in all other animals except target
5/27B (only 28% of 5/22B good model instances were
also good for target 5/27B). Having found several intrinsic
conductance sets that work across animals supported
our view of their secondary role in individual variation of
network activity.

Next, we looked at correlation properties across intrin-
sic conductances in the good sets of model instances that
we had found for each animal independently (Table 5).
Hudson and Prinz (2010) had suggested that ionic con-
ductance ratios may represent neuronal type and must
remain constant across individuals of a population. Here,
we provide support for this hypothesis by finding a similar
positive correlation pattern across six preparations (Fig. 7)
for one of the known ionic conductance pairs (delayed-

A

B C

Figure 5. Adjusted synapses for target 5/20B for the model instance that has the same intrinsic maximal conductance magnitudes
as in Figure 4. A, Relative synapse strengths (mean � SD) recorded from preparation 5/20B (green bars) compared to 3717 models
(mean � SD, white bars) found after performing 10,000 MOEA model evaluations. Traces (B) and relevant metrics (C) of the third
highest ranking model.

A B

Figure 6. Summary of model synaptic strengths found for all targets. Bursting activity was regular across all preparations (Extended
Data Fig. 6-1). A, Boxplots compare distributions of synaptic strengths of recorded (Exps.) versus best performing model (Models)
across all six animals. Extended Data Figure 6-2 shows synaptic strengths found for individual animals. B, Synaptic strength index
(SSI) compared across targets and mean � SE of top 10 models (black boxes).
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rectifier K2 and persistent sodium P current in the neurite
compartments) that was previously shown to be corre-
lated (Lamb and Calabrese, 2013). We looked for intrinsic
conductance correlations in the same data that we pre-
sented above (Tables 5, 6). We have found other intrinsic
conductance correlations in our dataset, but focused on
one conductance pair to perform comparisons across
animals.

Discussion
One of the principal questions in neuroscience is how

reliable functional neuronal output can be produced while
underlying neuronal and synaptic properties are variable
across members of a species (Hamood and Marder,
2014). CPG neuronal networks have provided excellent
opportunities to study this question (Marder and Calabr-
ese, 1996). Studies across animals focused on properties
such as constancy of phase (Hooper, 1997; Bucher et al.,

2005; Goaillard et al., 2009; Hamood et al., 2015), period
regulation (Kushinsky et al., 2019), and morphologic vari-
ability (Otopalik et al., 2017) in the pyloric and cardiac
motor patterns of the STG of crustaceans. Similar studies
have focused on swimming motor pattern in the lamprey
(Grillner, 1974) and on the crayfish swimmeret system
(Smarandache et al., 2009). In the leech heartbeat system,
the functional output is the phase difference between
motor neuron discharge (bursts) in different segments,
which control blood circulation through heart tubes.
Within functional limits, the phase of the activity patterns
of the premotor interneurons and motor neurons, and the
synaptic strengths between them, are variable across
individuals (Norris et al., 2011), the effects of which are not
well understood. Computer models give us the ability to
combine disparate experimental measurements to simu-
late circuit function, which can be used to explore these
interactions (Wright and Calabrese, 2011b). We set the
parameters of a heart motor neuron circuit model, con-
trolled by the heartbeat CPG, to data collected from a set
of six individuals. Our results showed that synaptic
strengths play a critical role in producing highly variable
animal-specific motor output burst phasing. This is not
surprising as the inhibitory synapses from premotor CPG
interneurons are responsible for shaping the phasing of
the output (Wright and Calabrese, 2011a,b). This is con-
sistent with other studies that look at the interplay be-
tween synapses and intrinsic conductances in living
neurons across animals (Williams et al., 2013; Anwar
et al., 2015; Lane et al., 2016) and across instances of
neuronal circuit models (Prinz et al., 2004; Doloc-Mihu
and Calabrese, 2011; Williams et al., 2013; Lane et al.,
2016). In particular, Lane et al. (2016) showed that, in the
crustacean cardiac ganglion, removing one intrinsic con-
ductance can be compensated by changes in another
intrinsic conductance and in strength of electrical cou-
pling. When we tested the opposite relation in our model,
modification of synaptic strengths could not be compen-
sated by changes in intrinsic membrane conductances.

In our neuronal network model, the values of synaptic
strengths measured (as averages in STA) previously did
not produce functional output, but we were able to find
nearby values within the error of the STA that did. Once
functional synaptic weights were found, ionic conduc-
tances could be varied to generate ensemble model sets.
Outside of these solution sets, models produce non-
functional output even with the functional synaptic
strengths. Thus, while synaptic strengths predominate in

Table 4. Synaptic multiplier search for all six preparations

Preparation
Target
m��

Best
m��

Error
m�� MAE caused by

5/19A 0.07 0.0591 �0.18 �0.58 in peri spike height for HE(12)
5/19B 0.08 0.0592 �0.36 �0.77 in sync duty cycle for HE(12)
5/20B 0.09 0.0788 �0.30 �0.66 in peri slow wave height for HE(12)
5/22B 0.07 0.0962 �0.15 �0.95 in peri slow wave height for HE(12)
5/26A 0.14 0.1619 �0.28 �0.76 in peri slow wave height for HE(8)
5/27B 0.17 0.1414 �0.59 �0.61 in sync slow wave height for HE(12)

Best m�� value and its error are from the best out of top five lowest MAE (MAE in any metric) models. All top models were within target range error for all
metrics. MAE column is for the top model.

Table 5. Results of model searches in intrinsic conductance
parameters

Target # Good rg (%) R2 p
5/19A 656 13.13 0.78 3.01 	 10�235

5/19B 347 6.94 0.53 2.99 	 10�62

5/20B 140 2.81 0.84 2.91 	 10�61

5/22B� 122 1.19 0.86 8.40 	 10�54

5/26A 199 3.99 0.81 2.20 	 10�75

5/27B 461 9.23 0.50 2.79 	 10�76

To avoid overfitting, searches were divided into separate batches, each
starting from random initial conditions. For each animal, five batches of
searches were executed with 1000 model instance evaluations in each. rg is
the ratio of good (functional) models to all evaluated models. �5/22B was
searched with five batches of 2000 evaluations. Linear regression was ap-
plied to check for correlation between K2 and P channel conductances, for
which statistics are presented (R2 and p values).

Table 6. Functional models (n � 122) from target animal
5/22B were simulated with synaptic strengths and input
patterns of other animals and checked for whether they were
within their target ranges

Target MAE range # Good Ratio (%)
5/19A 0.51–1.16 104 85
5/19B 0.70–1.76 62 50
5/20B 0.64–1.70 74 60
5/26A 0.60–1.34 101 82
5/27B 0.68–1.99 35 28

Range of metric MAE shows closeness of activity to target range (�1 ac-
cepted as good), “# Good” shows number of functional models, and ratio is
the percentage of good models out of 122.
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determining output phasing, membrane ionic conduc-
tances play an important role in tuning and translating that
synaptic input into functional coordinated neuronal out-
put. These results potentially apply to many other motor
networks where CPGs exert strong synaptic control over
motor neurons.

Why did using measured synaptic strengths fail to
generate functional circuit models?

Since both activity patterns and synaptic strengths
were recorded from the same individuals, it was surprising
to find that network model outputs did not match mea-
sured features when we used the measured STAs of the
strengths. There are several possible explanations for this
failure.

Using average values from disparate measurements is
known to cause some errors if values come from concave
spatial distributions (Goldman et al., 2001; Golowasch
et al., 2002). The STA is a well-established method that
produces a single averaged value (in this case, synaptic
strength) and therefore is not subject to this problem (Ito,
2015). However, if individual EPSCs averaged in the STA
come from a bimodal distribution, the resulting averages
may be unphysiological. We had already improved the
accuracy and increased the signal-to-noise ratio of the
STA method employed here (see Materials and Methods),
although there could be remaining sources of variability in
terms of synaptic plasticity or baseline shifts that may be
causing pernicious errors in the measurements. A small
error in parameter values can unbalance a whole model
particularly in a situation like that here where it is the
relative strengths of inputs that is key; a misestimate in
one input can throw off the relative strengths.

Another explanation could be a missing feature in the
model, although this is unlikely based on previous scru-

tiny. The heart motor neuron circuit model is constructed
with a high level of biological detail based on physiologic
properties measured specifically from the leech. It con-
tains ten ionic currents characterized from voltage clamp
recordings; multiple electrical compartments to represent
important anatomic distinctions and spatial separation for
the axon, soma, and neurites; chemical synapses that
feature short-term plasticity, electrical coupling between
the heart motor neurons, and conduction delays for in-
tersegmental spikes arriving from premotor interneurons
(García et al., 2008; Wright and Calabrese, 2011b; Lamb
and Calabrese, 2013).

The same configuration of model intrinsic
conductances can create output patterns of multiple
animals when synaptic strengths are near measured
(STA) values

The same set of intrinsic ionic conductances used in an
instance of the HE motor neuron ensemble model was
able to reproduce the individually varying output phasing
measured from each of the six individual leeches. Usually,
activity in identified neuron types are stereotypical across
individuals, but with individual variation. This is in contrast
to observed 2- to 4-fold variability of intrinsic ionic con-
ductances found in neurons of one type across animals
(Bucher et al., 2005; Goaillard et al., 2009). In both of
these studies, animals were collected from a natural pop-
ulation that presumably contained significant biological
variability. Thus, it is not surprising to observe variability
also in neuronal properties, and it can be attributed to
environmental, genetic, or developmental factors. How-
ever, from a functional network output perspective, is it
necessary for these individuals to have different intrinsic
ionic conductance magnitudes? Could one transplant the
same neuron into another individual and expect to match

Figure 7. Linear regression fits (black lines) were similar across all preparations for functional models (burgundy dots) among a
background of 5000 evaluated maximal intrinsic ionic conductance combinations (yellow dots) between neurite K2 and P channel
conductances. Regression resulted in R2 � 0.5 for all preparations, shown in each panel’s title. All p values were �0.01 (Table 5).
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their individual functional output? Since we cannot an-
swer this question easily experimentally, the closest we
can get is through computer simulation.

In addition to showing that one set of intrinsic conduc-
tances can produce functional network activity across
animals, we also showed that one can find multiple such
intrinsic conductance configurations. To achieve this, we
evaluated thousands of models in the intrinsic conduc-
tance space. Only a small percentage of these models
produced functional models (Table 5). This confirmed that
intrinsic conductances are also important in generating
functional network output. We further showed that some
of these intrinsic conductance configurations can pro-
duce the observed output in multiple animals. Not all of
the configurations we selected from one animal produced
the observed (target) activity in all animals, possibly be-
cause they were selected randomly and not by specific
criteria. These results strongly suggest that one can find a
large number of model intrinsic conductance configura-
tions that can produce the individually unique functional
activity of multiple animals.

Achieving functional output despite observed variability
of neuronal intrinsic ionic conductances in wild-caught
animals, for example in neurons of the crab STNS, have
been attributed to co-regulation rules for maximal con-
ductances based on electrophysiological recordings
(Golowasch et al., 1999a,b) and mRNA counts (Schulz
et al., 2006, 2007). Co-regulated intrinsic conductances
found in neuron types thus often compensate for each other
and produce stereotypical activity patterns (Hamood et al.,
2015; Lane et al., 2016). Therefore, although intrinsic con-
ductances are variable, output produced is similar, which
supports our finding that a single type of neural activity
produced by the same set of intrinsic model parameters
could function in multiple animals as long as the relative
synaptic strengths are appropriate to the individual.
Within error limits, the relative synaptic strengths could
also vary in a large number of model solutions. By defini-
tion, relative synaptic strengths imply that, across neuro-
nal models, absolute values are linearly related. Therefore,
the synaptic strengths that we found using the model are
also correlated. Having already confirmed experimentally
some of these predictions (Norris et al., 2011), our model
results can be taken to further analyses.

In a computational modeling study of the crustacean
STG, Hudson and Prinz (2010) hypothesized that charac-
teristic neuronal types must have similar co-regulation
rules. However, this conclusion was reached by con-
structing ensemble neuronal models that match popula-
tion targets rather than data from individual animals.
Ensemble neuronal modeling creates a large set of neu-
ronal models that fit a certain output criterion and mine it
for biological questions (Prinz, 2010; Doloc-Mihu and
Calabrese, 2011; Günay, 2015). Here, we provide support
for the hypothesis of Hudson and Prinz (2010) by con-
structing ensemble model databases of the heartbeat
motor neuron circuit model across animals. Once we
established the new individually appropriate synaptic
strengths, we kept them constant and varied intrinsic
ionic conductances to find sets able to match each animal

target. In the resulting ensemble datasets, we showed
that some intrinsic ionic conductances exhibit similar co-
regulation rules across animals, supporting the earlier
prediction and suggesting a required motor neuron type
for functional motor output.

In summary, we find that synaptic strengths are critical
in creating the proper output phasing in a rhythmic motor
circuit. Rhythmic circuits are responsible for many types
of motor activity such as walking, chewing, breeding, and
breathing across many species and are critical for life
(Marder and Calabrese, 1996). The type of CPG motor
circuit that we studied here is similar to circuits in other
species and our results may extend beyond the leech.
Understanding parameters and limits of animal-to-animal
variability would help explain and compensate for artifacts
when consistent measurements are required in higher-
order animals such as rats (Falcone et al., 2018). Our
conclusion is that animals in the wild seem to cope with
neuronal and network variability by achieving custom so-
lutions to reach functional output. This is consistent with
other studies that show that observed individual variability
may not have a significant functional impact (Otopalik
et al., 2017). As a result, each individual may have unique
combination of synaptic parameters that enable signature
stereotypical behavior they express.
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