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Chronic kidney disease (CKD) is a global public health problem that shortens lifespan

primarily by increasing the risk of cardiovascular diseases. Trimethylamine-N-oxide

(TMAO), a gut microbiota-derived toxin produced by metabolizing high-choline or

carnitine foods, is associatedwith cardiovascular events in patientswithCKD. Although

the deleterious effect of TMAOonCKD-induced cardiac injury has been confirmedby

various researches, the mechanisms remain unclear. Here, we tested the hypothesis

that TMAO aggravates CKD-induced cardiac injury and explores the potential

mechanism. CD1 mice underwent 5/6 nephrectomy to induce CKD, and then fed

with a diet supplemented with choline (1.2% total) for 8weeks. Serum TMAO levels

wereelevated inCKDmicecomparedwithSHAMgroup, andhigherTMAOlevelswere

found incholine-supplementedCKDmicecomparedwithCKDgroup.Dietarycholine

aggravatedCKD-inducedcardiacdysfunction, and reducingTMAOlevelsviamedicinal

charcoal tablets improved cardiac dysfunction. RNA-seq analysis revealed that dietary

choline affected cardiac angiogenesis in CKDmice. Reduced cardiac capillary density

and expressions of angiogenesis-related geneswereobserved in choline-treatedCKD

mice. Furthermore, dietary choline inhibited cardiac Hif-1α protein level in CKDmice,

and Hif-1α stabilizer FG-4592 could improve cardiac angiogenesis and dysfunction in

CKD mice on a high-choline diet. In conclusion, these data indicate that dietary

choline, via gut microbe-generated TMAO, inhibits cardiac angiogenesis by reducing

Hif-1α protein level, ultimately aggravates cardiac dysfunction in CKD mice.
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Introduction

Chronic kidney disease (CKD) is a global public health

problem with a high burden of morbidity and mortality, and

cardiovascular disease (CVD) is the major cause of mortality in

patients with CKD (London, 2003; Tonelli et al., 2006; GBD

Chronic Kidney Disease Collaboration, 2020). Uremic

cardiomyopathy (UC), the major phenotype of fatal cardiac

disease in patients with end stage renal disease, characterized

by left ventricular hypertrophy, cardiac fibrosis, capillary

rarefaction, and both systolic and diastolic dysfunction (Wang

et al., 2017; Wang and Shapiro, 2019), is associated with sudden

cardiac death and recurrent heart failure in CKD patients

(Zoccali, 2010; Green et al., 2011; Collins et al., 2015).

Therefore, there is an urgent need to understand the

mechanisms and identify effective therapeutic targets of UC

for improving the prognosis of CKD patients.

Numerous clinical and experimental studies document that

the pathogenesis of UC is complex (Hung et al., 2015; Hung et al.,

2017; Wang et al., 2017; Wang and Shapiro, 2019; Bi et al., 2020).

Among them, insufficient angiogenesis plays an important role

(Semple et al., 2011;Wang and Shapiro, 2019). Angiogenesis is an

essential event involved in ischemic heart disease, which

promotes the growth of new capillary blood vessels and

restores the blood flow of ischemic tissue (Tabibiazar and

Rockson, 2001), and is regulated by secreted angiogenic

growth factors such as vascular endothelial growth factor-A

(VEGFA) and angiopoietin-1 (Angpt1), etc. (Breier et al.,

1997). It has been shown that capillary growth failed to keep

pace with cardiomyocyte hypertrophy, resulting in decreased

density in experimental and clinical studies of CKD (Amann

et al., 1992; Amann et al., 1998). However, the pathogenesis of

inadequate capillary adaptation in UC is unclear.

A growing body of evidence has linked the cardiovascular

risk of CKD to an accumulation of uremic toxins (UTs) that

occurs with progression of CKD (Liabeuf et al., 2010; Stubbs

et al., 2016; Hung et al., 2017). Microbiota toxins, such as indoxyl

sulfate (IS) and p-cresyl sulfate (PCS), are well-known to

contribute to several cardiovascular pathologies, including

accelerated atherosclerosis (Zhang et al., 2018; Nakano et al.,

2019) and hyperthrombotic state (Yang et al., 2017). Elevated

indolic solutes levels are thought to involved in suppression of

endothelial cell survival and migration, which are critical for

angiogenesis process (Dou et al., 2004; Hung et al., 2016). In

recent years, trimethylamine-N-oxide (TMAO), another gut-

derived uremic toxin, has been extensively studied. It is

produced by gut flora via metabolizing food containing

choline, lecithin, betaine, and carnitine (Subramaniam and

Fletcher, 2018). TMAO is predominantly excreted by the

kidney, so it is significantly elevated in patients with CKD

(Tang et al., 2015a). In the past several years, an association

of elevated levels of systemic TMAO with various human

diseases, including cardiovascular diseases (Tang et al., 2013;

Tang et al., 2015b; Troseid et al., 2015; Suzuki et al., 2017; Li et al.,

2018; Nie et al., 2018; Hsu et al., 2022) and kidney diseases (Fang

et al., 2021; Lai et al., 2022) has been reported. Many studies have

revealed that TMAO promotes vascular inflammation, induces

atherosclerosis, as well as enhances platelet hyperreactivity and

thrombosis risk (Hartiala et al., 2014; Seldin et al., 2016; Zhu

et al., 2016). It has been demonstrated that decreasing plasma

TMAO levels by targeting choline TMA lyase, can attenuate

atherosclerosis and thrombosis (Wang et al., 2015; Roberts et al.,

2018). Although some clinical studies have shown that elevated

TMAO levels is a risk factor of cardiovascular events (Tang et al.,

2013; Stubbs et al., 2016; Shafi et al., 2017; Fu et al., 2021), it is

largely unclear whether TMAO directly promotes the

progression of CKD-induced cardiac injury.

In the present study, we investigated the role of TMAO on

CKD-induced cardiac dysfunction and the underlying

mechanism. In addition, we explored whether targeting

TMAO or its related mechanisms can improve CKD-induced

cardiac dysfunction.

Materials and methods

Animals

According to the previous literature (Kennedy et al., 2008;

Leelahavanichkul et al., 2010), we selected CD1 mice as the

experimental animals. Male CD1 mice were purchased from the

Vital River Laboratories, Beijing, China. All mice were housed in

a specific pathogen-free condition with 12/12 h light/dark cycle

and free access to food and water. All animal experiments were

reviewed and approved by the Ethics Committee for Animal

Experiments of the Southern Medical University.

Protocol

To evaluate the role of TMAO in CKD-induced cardiac

injury, we fed CD1 mice with supplementary 1.2% choline in

diet for 8 weeks to raise their serum TMAO levels according to

previous literature (Organ et al., 2016; Shuai et al., 2020).

CD1 mice were randomly divided into three groups as follows

(n = 6 per group): SHAM group, CKD group and CKD +

Choline group. CKD mice were subjected to five-sixths

nephrectomy (5/6 Nx) as described previously (Gschwend

et al., 2002). After the operation, SHAM and CKD mice were

given a standard chow diet (TP 3001M, Trophic Animal Feed

High-Tech Co. Ltd., Jiangsu, China), and CKD + Choline mice

were fed with the same diet supplemented with choline (1.2%

total). At 8 weeks after treatment, cardiac function was

evaluated by echocardiograms, then all mice were sacrificed

and serum, heart, and kidney tissues were collected for various

analyses.
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In addition, in order to observe the role of medicinal

charcoal tablets (MCT) on cardiac injury in CKD mice

treated with dietary choline, we performed another animal

experiment by treating mice with MCT for 8 weeks (n = 6 per

group). Mice were randomly divided into two groups as

follows: CKD + Choline group and CKD + Choline + C

group. The CKD + Choline group was treated as before,

and CKD + Choline + C group were fed with the same diet

supplemented with choline (1.2% total) and 4% MCT

(Changtian Pharmaceutical Co., Ltd., Hebei, China).

Afterwards, to assess the role of FG-4592 on cardiac injury in

CKD mice treated with dietary choline, mice were randomly

divided into four groups as follows: SHAM group, CKD group,

CKD + Choline group and CKD + Choline + FG-4592

group. The first three groups were treated as before, and CKD

+ Choline + FG-4592 group were administered to dietary choline

(1.2% total) and intraperitoneal injection of FG-4592 (Selleck

Chemicals, S1007). The FG-4592 was dissolved in DMSO at the

concentration of 50 mg/ml and further diluted in PBS to 1 mg/

ml. Themice were treated by intraperitoneal injection three times

per week with 10 mg/kg/day FG-4592 for 3 weeks in CKD +

Choline + FG-4592 group at 5 weeks after the operation. At

8 weeks after 5/6 Nx, cardiac function was evaluated by

echocardiograms, then mice were sacrificed and serum, and

heart tissues were collected for various analyses.

Echocardiography

Cardiac function was assessed by Doppler echocardiography

(VisualSonics Vevo2100 Imaging system, Toronto, Ontario,

Canada) with a 21-MHz transducer (MS400) before mice

were sacrificed. Mice were mildly anesthetized by inhaling

3.0% isoflurane and oxygen at rate of 1 L/min. Images were

standardized to the short axis view at the LV mid-papillary level.

Assessment of renal function

Serum creatinine (Scr) and blood urea nitrogen (BUN)

concentration were measured by an automated chemistry

analyzer (AU480; Beckman Coulter, Brea, CA,

United States).

Quantification of trimethylamine-N-oxide
levels

Serum concentrations of TMAO were quantified by stable

isotope dilution liquid chromatography tandem mass

spectrometry (6460 Series Triple Quadrupole LC/MS;

Agilent, CA, United States) as described previously (Wang

et al., 2014).

Histology and immunohistochemistry
staining

Paraffin-embedded kidney sections (4 μm) were subjected to

hematoxylin and eosin (H&E) and Masson trichrome staining

according to standard protocols. Tubular injury was graded with

H&E-stained sections ranging from 0 to 4 according to the degree

of tubular necrosis, dilatation, or cell swelling: 0, less than 5%; 1,

5–25%; 2, 25–50%; 3, 50–75%; and 4, over 75% (Lai et al., 2022).

At least 10 randomly chosen fields in the cortex region under the

microscope (×200) were evaluated for each animal in a blinded

manner, and an average score was calculated.

Interstitial fibrosis was assessed using Image-Pro Plus 6.0

(Media Cybernetics, Silver Spring, MD, United States) on

Masson trichrome stained sections. Ten visual fields (×400) were

randomly selected for each animal and evaluated by a background

subtraction method. Quantification is presented as the ratio of

optical density of positive staining compared to the entire spectrum.

Immunohistochemistry staining was performed on 6 μm

heart sections. After antigen retrieval, sections were incubated

with the primary antibodies against CD31 (Cell Signaling

Technology, Beverly, MA, United States). Images were taken

by an Olympus BX51 microscope (Olympus, Tokyo, Japan).

Endothelial cells were considered as capillaries, as previous

described (Lu et al., 2017). We counted CD31-positive areas

about ten random fields (×400) per section, and then calculated

the mean number of micro vessels per field (capillary density).

Real-time PCR

Total RNA from heart tissues was extracted using TRIzol

reagent according to the manufacturer’s instructions (Invitrogen).

Superscript III First-Strand Synthesis SuperMix (Invitrogen) was

used for reverse transcription of 1 μg of total RNA. PCR was

performed using SYBR Green Master Mix (Applied Biosystems)

and the Applied Biosystems 7500 fast Real-time PCR system. The

expression levels of mRNAs were calculated after normalizing with

GAPDH by the comparative CT method (2−ΔΔCt). The primer

sequences used in the experiments were described as follows:

Mouse ANP: forward, 5′-ACCTGCTAGACCACCTGGAG-
3′; reverse, 5′-CCTTGGCTGTTATCT TCGGTACCGG-3′;
Mouse BNP: forward, 5′-GAGGTCACTCCTATCCTCTGG-3′;
reverse, 5′- GCCATTTCCTCCGACTTTTCTC -3′; Mouse β-
MHC: forward, 5′- TGGATTCTCAAACGTGTCTAGTGA -3′;
reverse, 5′-GCATTCTCCTGCTGT TTCCTT-3′; Mouse α-
MHC: forward,5′- GCCCAGTACCTCCGA AAGTC -3′;
reverse, 5′- ATCAGGCACGAAGC ACTCC -3′; Mouse

SERCA2: forward, 5′- AGATGGTCCTGGCAGATGAC -3′;
reverse, 5′- GTCCAGGTCTGGAGGATTGA -3′;

Mouse VEGFA: forward, 5′- GGAGTCTGTGCTCTGGGA
TT -3′; reverse, 5′- AGAACCAACCTCCTCAAACCG -3′;
Mouse VEGFR2: forward, 5′- TTTGGCAAATACAAC
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CCTTCAGA -3′; reverse, 5′- GCTCCAGTATCATTTCCAACC
A -3′; Mouse Angpt1: forward, 5′- ATCCCGACTTGAAATACA
ACTGC -3′; reverse, 5′- CTGGATGATGAATGTCTGACG

AG -3′;
Mouse Tie2: forward, 5′- CTAAATTTGACTTGGCAACCG

A -3′; reverse, 5′- TCTGCTGATCACTTGTTGTTTG -3′; Mouse

Slit2: forward, 5′- GGCAGACACTGTCCCTATCG -3′; reverse,
5′- ATCTATCTTCGTGATCCTCGTGA -3′; Mouse Robo1:

forward, 5′- AACGGGAGAGTGAAGTCGC -3′; reverse, 5′-
TCTTTCCTCCATCGA ACTGTAGG -3′; Mouse GAPDH:

forward, 5′- TGACCTCAACTACATGGTCTACA -3′; reverse,
5′- CTTCCCATTCTCGGCCTTG -3′.

Western blot analysis

Heart tissues were lysed in lysis buffer for 30 min on ice.

Western blot analysis was performed following procedure as

described previously. The following primary antibodies were

used: anti-SERCA2 (Abcam, Cambridge, United Kingdom), anti-

CD31 (Cell Signaling Technology, Beverly, MA, United States), anti-

Hif-1α (Proteintech, Rosemont, United States) and anti-GAPDH

(Proteintech, Rosemont, United States).

RNA sequencing and bioinformatic
analysis

Transcriptome analysis was performed by Gene Denovo

Biotechnology Co. (Guangzhou, China). Briefly, total RNAs of

the heart tissue in CKD or CKD + Choline mice were extracted

using the RNAiso Plus Reagent (TaKaRa, Mountain View, CA,

United States). Then, mRNA was enriched by Oligo (dT) beads

fragmented into short fragments and reverse-transcribed with

random primers. The cDNA fragments were purified, end

repaired, poly (A) added, and ligated to sequencing adapters. The

ligation products were size-selected, PCR-amplified, and sequenced.

Raw reads were filtered, mapped to the reference genome,

reconstructed to transcripts, and annotated. The gene expression

level was quantified and differently expressed genes were analyzed

using edgeR (version 3.12.1) (http://www.r-project.org/). Principal

component analysis (PCA) was performed with R package gmodels

in this experience. Genes with a fold change> 0 and p value < 0.

05 were considered significant differentially expressed genes. Finally,

we used the toppgene online analysis tool (https://toppgene.cchmc.

org/) to perform enrichment analysis of differential genes inmultiple

databases, including GO, pathway and other databases.

Statistical analysis

Data were expressed as mean ± SD. Results were analyzed for

statistical variance using independent Student’s t-tests or one-

way ANOVA analysis where appropriate. A two-sided p value <
0.05 was considered to be statistically significant (SPSS software,

version 18.0; SPSS, Inc., IL).

Results

Dietary choline (1.2%) exacerbates cardiac
dilatation and dysfunction after 5/6 Nx in
CD1 mice

To investigate the role of TMAO in CKD-induced cardiac

injury, we generated CKD mice by conducting 5/6 Nx in male

CD1 mice. After the operation, 5/6 Nx mice were then randomly

divided into two groups and given either a standard chow diet (0.1%

choline) or the same diet supplemented with 1.2% choline for

8 weeks (Figure 1A). As shown in Figures 1B,C, compared with

SHAMmice, serum creatinine (Scr) and blood urea nitrogen (BUN)

were both significantly elevated in the CKD group, while dietary

choline did not increase the levels of Scr and BUN. HE and Masson

trichrome staining showed renal tubular necrosis, protein casts,

inflammatory cell infiltration as well as renal interstitial fibrosis in

the CKD mice. However, these histopathological changes were not

further aggravated by dietary choline (Supplementary Figure

S1A–C). Next, serum levels of TMAO were measured. As

expected, serum levels of TMAO were significantly increased in

CKDmice compared with those of the SHAM group, while those of

CKD + Choline group were prominently higher than those of the

CKD group (Figure 1D). Taken together, these data indicate that

1.2% dietary choline can further increase the levels of TMAO in the

CKD mice, but could not accelerate CKD progression.

Then, cardiac structure and function in mice were assessed

by echocardiography at 8 weeks post-surgery. Representative

echocardiograms were shown in Figure 1E. Compared with

SHAM mice, CKD mice displayed left ventricular (LV)

dilatation, as evidenced by significantly increased LV end-

systolic diameter (LVESD) and LV end-diastolic diameter

(LVEDD). CKD mice also showed LV dysfunction, as

confirmed by significantly decreased LV ejection fraction

(LVEF) and LV fractional shortening (LVFS), and increased

LV end-systolic volume (LVESV) and LV end-diastolic

volume (LVEDV). Mice that received 1.2% dietary choline

exhibited markedly worse cardiac function in almost all

parameters measured when compared with the CKD mice. An

accelerated progression of cardiac dilatation, as proved by

remarkably increased LVESD, were observed in the CKD +

Choline group; LVEDD were trending toward an increase in

the CKD +Choline group versusCKD group. In addition, we also

observed worse LV dysfunction, as revealed by significantly

decreased LVEF and LVFS, and increased LVESV in the CKD

+ Choline group (Figures 1F–K). Collectively, these data clearly

demonstrate a detrimental effect of supplemental dietary choline

on LV structure and function in CKD model.
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Dietary choline (1.2%) promotes changes
in markers of cardiac hypertrophy and
inhibits cardiac sarcoplasmic reticulum
Ca2+-ATPase 2 expression

To further verify the effects of dietary choline in cardiac

injury, we evaluated the mRNA expressions of atrial natriuretic

peptide (ANP), brain natriuretic peptide (BNP), β-myosin heavy

chain (β-MHC) and α-myosin heavy chain (α-MHC), which

were the markers for cardiac hypertrophy (Molkentin et al.,

1998). Compared with the SHAM group, ANP and β-MHC

mRNA levels were significantly increased and α-MHC mRNA

levels were significantly decreased in the CKD group; the

increasing trend of BNP mRNA levels was also observed in

the CKD group, despite no statistically difference. Meanwhile, we

found that dietary choline significantly augmented the

expressions of ANP, BNP, β-MHC, and significantly reduced

α-MHC mRNA levels in comparison with CKD group (Figures

2A–D). Collectively, these data demonstrate a deleterious effect

of dietary choline on cardiac hypertrophy.

FIGURE 1
Dietary choline (1.2%) exacerbates cardiac dilation and dysfunction after 5/6 nephrectomy (5/6 Nx) in CD1 mice when compared with a control
diet. (A) Schematic design of CKD animal model (5/6 Nx) and treatments (B) The serum level of TMAO. (C) The serum level of serum creatinine (Scr).
(D) The serum level of blood urea nitrogen (BUN). (E) Representative M-mode echocardiograms for each group. (F–K) Echocardiographic
quantification of left ventricular ejection fraction (LVEF %), LV fractional shortening (LVFS %), LV end-systolic volume (LVESV; in μL), LV end-
diastolic volume (LVEDV; in μL), LV end-systolic diameter (LVESD; in mm), and LV end-diastolic diameter (LVEDD; in mm). The data are presented as
the mean ± SD. *p < 0.05 and **p < 0.01 vs. SHAM group; #p < 0.05 and ##p < 0.01 vs. CKD group. n = 6 in each group.
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Previous study showed that sarcoplasmic reticulum Ca2+-

ATPase 2 (SERCA2) was down-regulated during pathological

hypertrophy and heart failure, as the failing myocardium exhibits

defective Ca2+ handling (Hasenfuss et al., 1994; Molkentin et al.,

1998). To further evaluate the influence of dietary choline on

cardiac function, we detected the expression of SERCA2 in mice

cardiac muscle. As presented in Figures 2E–G, the protein and

mRNA levels of SERCA2 were trending toward a decrease in the

CKD group versus SHAM group, despite no statistically

difference. Furthermore, 1.2% dietary choline significantly

reduced the expressions of SERCA2 when compared with

SHAM and CKD groups, indicating that dietary choline may

affect the calcium processing of cardiomyocytes by inhibiting the

expressions of SERCA2. In summary, these data support that

high dietary choline aggravate LV hypertrophy and heart failure

in the CKD mice.

Medicinal charcoal tablets reduce
trimethylamine-N-oxide, and improve
cardiac dilatation and dysfunction in 5/
6Nx mice on a high-choline diet

Medicinal charcoal tablets (MCT) are widely used in CKD

patients to absorb gut uremic solutes. To determine whether

reducing TMAO can improve the cardiac dysfunction in CKD

FIGURE 2
Dietary choline (1.2%) promotes changes in markers of cardiac hypertrophy and inhibits cardiac SERCA2 expression after 5/6 Nx in CD1 mice
when compared with a control diet. (A–D) The mRNA levels of ANP, BNP, β-MHC, and α-MHC were measured by real-time PCR. (E) The protein
levels of SERCA2 were measured by western blotting. (F) Graphic representation of relative abundance of SERCA2 normalized to GAPDH. (G) The
mRNA levels of SERCA2 were measured by real-time PCR. The data are presented as the mean ± SD. *p < 0.05 and **p < 0.01 vs. SHAM group;
#p < 0.05 and ##p < 0.01 vs. CKD group. n = 6 in each group.
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mice, MCT were given orally to treat choline-supplemented

mice. The complete experimental protocol for the studies was

depicted in Figure 3A. As expected, we found that MCT-treated

mice displayed reduced levels of TMAO when compared with

CKD + Choline group, despite did not improve their renal

function (Figures 3B–D). Then, cardiac structure and function

in mice were assessed by echocardiography at 8 weeks post-

surgery, and representative echocardiograms were shown in

Figure 3E. It was revealed that MCT treatment exerted

protective effects on cardiac dilatation and dysfunction, as

indicated by increased LVEF and LVFS, and significant

decrease in LVESD, LVEDD, LVESV, and LVEDV in mice

treated with MCT compared with those without (Figures

3F–K). In addition, by MCT treatment, hypertrophic genes

including ANP, BNP, and β-MHC mRNA levels were

remarkably decreased, while α-MHC mRNA levels were

elevated (Figures 4A–D). Furthermore, the protein and mRNA

levels of the SERCA2 were remarkably increased in the MCT-

treated mice when compared with the CKD + Choline group

(Figures 4E–G). Taken together, MCT treatment has protective

effect on heart function by improving LV structure and

downregulating cardiac hypertrophic genes in choline-

supplemented CKD mice.

Dietary choline (1.2%) does not cause
cardiac dilatation and dysfunction in
normal CD1 mice

To test whether supplementary dietary choline could directly

impair cardiac function in normal mice, we fed normal CD1mice

with a standard chow diet (0.1% choline) or high choline diet

FIGURE 3
Medicinal charcoal tablets reduces TMAO, and improves cardiac dilation and dysfunction in 5/6Nx mice on a high-choline diet. (A) Schematic
design of CKD animal model (5/6 Nx) and treatments. (B) The serum level of TMAO. (C) The serum level of Scr. (D) The serum level of BUN. (E)
Representative M-mode echocardiograms for each group (F–K) Echocardiographic quantification of LVEF, LVFS, LVESV, LVESV, LVESD, and LVEDD.
The data are presented as the mean ± SD. *p < 0.05 vs. CKD + Choline group. n = 6 in each group.
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(1.2% choline). The complete experimental protocol for the

studies was depicted in Supplementary Figure S2A. After

8 weeks, we observed significant increases in TMAO levels in

the choline-supplemented mice when compared with control

mice (12.31 ± 5.56 μmol/L vs. 2.50 ± 0.74 μmol/L)

(Supplementary Figure S2B). However, 1.2% dietary choline

did not raise the levels of Scr and BUN or cause renal

histopathological impairment compared with control mice

(Supplementary Figure S2C–G). Then, cardiac structure and

function in mice were assessed by echocardiography, which

showed no differences in LVEF, LVFS, LVESD, LVEDD,

LVESV, and LVEDV between control and choline-

supplemented mice (Supplementary Figure S3A–G).

Furthermore, the expressions of ANP, BNP, β-MHC, α-MHC

or SERCA2 (Supplementary Figure S3H–N) in the heart tissue

stayed no change in the two groups. These data suggest that 1.2%

dietary choline does not promote cardiac dilatation and

dysfunction in normal CD1 mice.

RNA-sequencing analysis revealed that
dietary choline (1.2%) affected cardiac
angiogenesis in 5/6Nx mice

To explore the mechanism by which TMAO exacerbates

cardiac dysfunction in CKD model, the transcriptomes of CKD

FIGURE 4
Medicinal charcoal tablets inhibit the changes of cardiac hypertrophy markers and SERCA2 expression in 5/6 Nx mice on a high-choline diet.
(A-D) The mRNA levels of ANP, BNP, β-MHC, and α-MHC were measured by real-time PCR. (E) The protein levels of SERCA2 were measured by
western blotting. (F)Graphic representation of relative abundance of SERCA2 normalized to GAPDH. (G) ThemRNA levels of SERCA2weremeasured
by real-time PCR. The data are presented as the mean ± SD. *p < 0.05 and **p < 0.01 vs. CKD + Choline group. n = 6 in each group.
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FIGURE 5
RNA-sequencing analysis revealed that dietary choline (1.2%) affected cardiac angiogenesis in 5/6Nx mice (A) PCA results suggested good
separation between the three groups. (B) Volcano plot of differentially expressed genes. X axis: log2(FC); Y axis: -log10 P. Red represents upregulated
genes, and blue represents downregulated genes. (C)GOenrichment analysis of the differentially expressed genes betweenCKD andCKD+Choline
group (D) Pathway analysis the differentially expressed genes according to the MSigDB (E) Pathway analysis the differentially expressed genes
according to the Panther program. (F–K) The mRNA levels of VEGF, Angpt1, Slit2, VEGFR2, Tie2 and Robo1 were measured by real-time PCR. The
data are presented as the mean ± SD. *p < 0.05 and **p < 0.01 vs. SHAM group; #p < 0.05 and ##p < 0.01 vs. CKD group. &p < 0.05 and &&p < 0.01 vs.
CKD + Choline group. n = 6 in each group.
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and CKD + Choline groups were examined using RNA-

sequencing. Principal component analysis (PCA) plots

demonstrated good separation between the two data groups

(Figure 5A). 1927 genes were differentially expressed

(838 downregulated and 1089 upregulated) in the heart tissue

of CKD + Choline mice compared with CKD mice (Figure 5B).

Further GO biological process analysis showed that TMAO-

regulated genes were mainly involved in blood vessel

development, vasculature development, muscle system process,

and blood vessel morphogenesis, etc. (Figure 5C). MSigDB

program indicated that VEGF-VEGFR2 signaling pathway was

the most significantly influenced pathway (Figure 5D). In

addition, the Panther program revealed the enriched pathways

of the differentially expressed genes between CKD and CKD +

Choline groups, including apoptosis signaling pathway, integrin

signaling pathway, angiogenesis, etc. (Figure 5E). We then

confirmed the changes of key genes in angiogenesis in mice

treated with or without dietary choline by real-time PCR. Our

results suggested that 1.2% dietary choline significantly reduced

the mRNA expressions of VEGF, VEGFR2, Angpt1, Tie2, Slit2,

and Robo1 compared with SHAM and CKD groups (Figures

5F–K). Taken together, TMAO can aggravate cardiac dilatation

and dysfunction in CKD mice mainly via regulating genes

involved in angiogenesis.

Dietary choline (1.2%) inhibits cardiac
angiogenesis in 5/6Nx mice

As angiogenesis-related genes were found to be down-

regulated in choline-supplemented CKD mice, we further

examined the effect of TMAO on capillary density of heart

tissues by CD31 immunohistochemical staining. As shown in

Figures 6A–D, 1.2% dietary choline significantly reduced the

capillary density and CD31 protein level compared with

SHAM and CKD groups, although the difference between

CKD and SHAM group failed to achieve statistical

significance. Meanwhile, 1.2% dietary choline didn’t make

differences in capillary density and CD31 levels in normal

CD1mice (Supplementary Figure S5A–D). These data support

that dietary choline inhibits cardiac angiogenesis in the

CKD mice.

FIGURE 6
Dietary choline (1.2%) inhibits cardiac angiogenesis in 5/6Nx mice on a high-choline diet. (A) Representative micrographs of
immunohistochemistry staining of CD31 in the heart. Scale bar = 50 μm. (B) Graphical representation of capillary density analysis. (C) The protein
levels of CD31 were measured by western blotting. (D)Graphic representation of relative abundance of CD31 normalized to GAPDH. (E) The protein
levels of Hif-1αwere measured by western blotting. (F) Graphic representation of relative abundance of Hif-1α normalized to GAPDH. The data
are presented as the mean ± SD. *p < 0.05 and **p < 0.01 vs. SHAM group; #p < 0.05 and ##p < 0.01 vs.CKD group. &p < 0.05 and &&p < 0.01 vs.CKD +
Choline group. n = 6 in each group.
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Dietary choline (1.2%) decreased the
protein level of Hif-1α in 5/6Nx mice

Hif-1α is well-known to promote angiogenesis by regulating

various angiogenesis-related genes, including VEGF (Forsythe

et al., 1996), Angpt1 (Kelly et al., 2003) and Slit2 (Fang et al.,

2017). Our above results showed that high choline diet could

inhibit the mRNA expressions of these angiogenesis-related

factors, so we speculated that high choline diet may inhibit

the expression of angiogenesis-related genes by modulating

the level of Hif-1α. Therefore, we examined the protein level

of Hif-1α in the heart. The result revealed that the protein level of

FIGURE 7
FG-4592 increases the expression of cardiac Hif-1α, and improves cardiac angiogenesis in 5/6Nx mice on a high-choline diet. (A) Schematic
design of CKD animal model (5/6 Nx) and treatments. (B) The protein levels of Hif-1αweremeasured by western blotting. (C)Graphic representation
of relative abundance of Hif-1α normalized to GAPDH. (D) Representativemicrographs of immunohistochemistry staining of CD31 in the heart. Scale
bar = 50 μm. (E) Graphical representation of capillary density analysis. (F) The protein levels of CD31 were measured by western blotting. (G)
Graphic representation of relative abundance of CD31 normalized to GAPDH. (H–M) The mRNA levels of VEGF, Angpt1, Slit2, VEGFR2, Tie2 and
Robo1 were measured by real-time PCR. The data are presented as the mean ± SD. *p < 0.05 and **p < 0.01 vs. SHAM group; #p < 0.05 and ##p <
0.01 vs. CKD group. &p < 0.05 and &&p < 0.01 vs. CKD + Choline group n = 6 in each group.
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Hif-1α was trending toward a decrease in the CKD group versus

SHAM group, despite there was no statistically difference.

However, 1.2% dietary choline significantly reduced the

protein level of Hif-1α when compared with SHAM and CKD

groups, respectively (Figures 6E,F). These results suggest that

TMAO may suppress cardiac angiogenesis by down-regulating

HIF-1α.

The Hif-1α stabilizer FG-4592 increases
the expression of cardiac Hif-1α, and
improves cardiac angiogenesis in 5/6Nx
mice on a high-choline diet

To evaluate whether elevating Hif-1α improves cardiac

angiogenesis in 5/6Nx mice fed by high-choline diet, we

treated them with FG-4592, a stabilizer of Hif-1α, which has

been used to treat renal anemia in CKD patients (Voit and

Sankaran, 2020; Hu et al., 2021). From 5 weeks after surgery,

CKD +Choline group was sub-divided into two groups, receiving

intraperitoneal injection of FG-4592 (10 mg/kg) or PBS every

day. The complete experimental protocol for the studies was

depicted in Figure 7A. Western blot confirmed that FG-4592

treatment prominently upregulated the protein level of Hif-1α
when compared with CKD + Choline group (Figures 7B,C). Then

we detected indicators of anemia including hemoglobin (Hb), red

blood cell (RBC) count, and hematocrit (Hct). Consistent with

previous study, FG-4592 ameliorated anemia caused by renal

dysfunction in the CKD mice (Supplementary Figure S5A–C).

Next, we explored the effect of FG-4592 on capillary density by

CD31 immunohistochemical staining. The reduction of CD31-

positive endothelial capillaries in CKD + Choline group was

reversed by FG-4592 treatment (Figures 7D,E). In addition, FG-

4592 treatment restored angiogenesis related genes including

VEGF, VEGFR2, Angpt1, Tie2, Slit2, and Robo expression in the

heart (Figures 7H–M). Collectively, these data demonstrate that

FG-4592 elevates cardiac Hif-1α protein level and improves

cardiac angiogenesis in 5/6Nx mice fed with high-choline diet.

FG-4592 does not reduce trimethylamine-
N-oxide, but improves cardiac dilatation
and dysfunction in 5/6Nx mice on a high-
choline diet

As cardiac angiogenesis is closely related to heart function,

we evaluate the effect of FG-4592 treatment on cardiac function

in the CKD mice by echocardiography (Figure 8D). The results

revealed that FG-4592 rescued the reduction of LVEF and LVFS

as well as the elevation of LVESD, LVEDD, LVESV, and LVEDV

in CKD + Choline group (Figures 8E–J), indicating that FG-4592

attenuates cardiac dilatation and dysfunction caused by CKD and

choline-supplement. Then, real-time PCR analysis showed that

ANP and β-MHC mRNA levels were remarkably decreased and

α-MHC mRNA levels were increased in the FG-4592-treated

mice when compared with the CKD + Choline group (Figures

9A,C,D). Although a trend toward decrease in BNP mRNA level

was observed in the FG-4592-treated mice, this difference failed

to achieve statistical significance (Figure 9B). The levels of the

SERCA2 were also prominently increased in the FG-4592-treated

mice compared with CKD + Choline group (Figures 9E–G). In

addition, our data showed that FG-4592 treatment improved

cardiac function without affecting TMAO levels or improving

renal function (Figures 8A–C). In summary, these findings

indicate that Hif-1α stabilizer FG-4592 attenuates dietary

choline-induced cardiac dilatation and dysfunction in the

setting of CKD, via improving cardiac angiogenesis.

Discussion

Accumulating studies have shown strong associations

between TMAO and adverse cardiovascular risks in non-CKD

(Tang et al., 2013; Tang et al., 2015b; Troseid et al., 2015; Nie

et al., 2018) and CKD patients (Kim et al., 2016; Shafi et al., 2017;

Fu et al., 2021). Several in vivo studies also revealed that either

choline- or TMAO-supplemented diets led to adverse cardiac

dysfunction in a mouse model of myocardial infarction (Yang

et al., 2019) or transverse aortic constriction (TAC) (Organ et al.,

2016). Unlike cardiac infarction, the mechanisms of CKD-related

cardiac dysfunction are more complex, involving in anemia,

hypertension, hemodynamic overload, mineral-bone disease,

as well as damage of numerous uremic toxins (Garikapati

et al., 2021). However, few studies to date have examined the

role of TMAO in the progression of CKD-induced cardiac

dysfunction. In this study, we fed CKD mice with high-

choline diet to further increase their serum concentration of

TMAO (89.78 ± 31.57 μmol/L) to mimic the situation of CKD

patients (Shafi et al., 2017). We found that dietary choline

aggravated cardiac dysfunction in CKD mice, which could be

markedly improved by reducing TMAO levels via MCT

treatment. This result provides evidence that TMAO is

responsible for CKD-induced cardiac dysfunction. However,

we do not exclude the possibility that various mechanisms

such as hypertension, volume overload, oxidative stress,

secondary hyperparathyroidism and other gut microbiota

toxins such as IS and PCS are also involved in the

pathogenesis of CKD-related heart diseases. It is noteworthy

that MCT does not only decrease TMAO but also clear other

enteric toxins such as IS and PCS (data not shown). Even so, our

data support that MCT treatment exerts cardioprotective effects

at least partially through decreasing TMAO level.

It is well-known that impairment of kidney can accelerate the

progression of cardiac dysfunction (Shamseddin and Parfrey,

2009). In the current study, dietary choline did not worsen renal

function in CKD mice. Additionally, MCT ameliorated cardiac
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dysfunction without affecting renal function, indicating that the

effect of TMAO on aggravating cardiac dysfunction is not

dependent on the deterioration of renal injury in CKD mice.

However, previous study reported that dietary choline or TMAO

caused renal tubulointerstitial fibrosis in normal C57BL/6J mice

(Tang et al., 2015a). This discrepancy may be explained by

differences in the initial state of the kidneys when receiving

dietary choline. Indeed, although dietary choline for 8 weeks did

not exacerbate kidney damage in normal CD1 mice, when we

extended dietary choline administration to 12 weeks, modest

tubular damage and increased BUN level were found (data

not shown).

Several studies have reported the mechanisms by which

TMAO promotes CVD including promoting foam cell

formation (Wang et al., 2011), vascular inflammation (Seldin

et al., 2016), and platelet activation (Zhu et al., 2016). In this

study, we conducted RNA-seq to explore the mechanism by

which TMAO promotes cardiac injury in CKD mice. GO

enrichment analysis revealed that TMAO-regulated genes are

mainly involved in blood vessel development, vasculature

development and blood vessel morphogenesis. MSigDB

program further indicated that VEGF-VEGFR2 signaling

pathway was the most significantly influenced pathway.

Consistently, reduced cardiac vascular density and decreased

expression of angiogenesis-related genes, including VEGF,

VEGFR2, Angpt1, Tie2, Slit2, and Robo1, were observed in

cardiac tissue in CKD mice fed with a high-choline diet. In

support of our finding, the inhibitory effects of TMAO on

endothelial cell proliferation, migration, and tube formation

have been observed by in vitro studies (Ma et al., 2017; Ke

et al., 2018). In addition, recent studies have demonstrated that

TMAO impairs perfusion recovery and reduces capillary density

after hindlimb ischemia (Chen et al., 2020; Liu et al., 2021).

Collectively, these data support a role of TMAO in interfering

with angiogenesis.

Extensive evidence have confirmed the protective effect of

HIF-1α on the heart, including promoting capillaries

restoration, improving Ca2+ handling and inhibiting

FIGURE 8
FG-4592 does not alter the level of TMAO, but improves cardiac dilation and dysfunction in 5/6 Nx mice on a high-choline diet. (A) The serum
level of TMAO. (B) The serum level of Scr. (C) The serum level of BUN. (D) Representative M-mode echocardiograms for each group. (E–J)
Echocardiographic quantification of LVEF, LVFS, LVESV, LVESV, LVESD, and LVEDD. The data are presented as the mean ± SD. *p < 0.05 and **p <
0.01 vs. SHAM group; #p < 0.05 and ##p < 0.01 vs. CKD group. &p < 0.05 and &&p < 0.01 vs. CKD + Choline group n = 6 in each group.
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fibroblasts proliferation (Janbandhu et al., 2022). HIF-1α
plays a critical role in angiogenesis by activating

transcription of genes encoding angiogenic growth factors

including VEGF (Forsythe et al., 1996), Angpt1 (Kelly et al.,

2003) and Slit2 (Fang et al., 2017). Reduced Hif-1α protein is

one of the critical mechanisms that underlies exacerbated

myocardial hypoxia and accelerated myocardial damage

and dysfunction (Sano et al., 2007). Sano et al. (2007)

found that deletion of Hif-1α in cardiomyocytes resulted in

significant decrease in myocardial vascular density and

remarkable cardiac dysfunction in TAC mice, which

improved by elevating Hif-1α protein levels. Similarly, we

observed that dietary choline lowered cardiac Hif-1α protein

levels in CKD mice, and Hif-1α stabilizer FG-4592 improved

cardiac angiogenesis. These findings suggest that dietary

choline inhibits cardiac angiogenesis in CKD mice by

decreasing cardiac Hif-1α protein levels.

Previous study showed that Hif-1α+/− mice developed

more severe heart failure after TAC compared with wild

type mice, due to a decrease in SR Ca2+ content of

cardiomyocytes (Silter et al., 2010). Indeed, we also

detected the downregulation of SERCA2 expression in

cardiac tissue of mice fed with high choline diet. Besides,

our RNA-seq analyses revealed that high-choline diet

upregulated the apoptosis signaling pathway in cardiac

tissues. Indeed, we observed that dietary choline elevated

the protein expression of p53 in the myocardium of CKD

mice (data not shown). Previous study showed that

p53 participated in hypoxia-induced cardiomyocyte

apoptosis (Long et al., 1997). Since RNA-seq analysis

showed that blood vessel development, vasculature

development and blood vessel morphogenesis were the

most significantly influenced pathway by high choline diet,

we hypothesized that TMAO-induced vascular rarefaction

FIGURE 9
FG-4592 inhibits the changes of cardiac hypertrophy markers and SERCA2 expression in 5/6 Nx mice on a high-choline diet. (A–D) The mRNA
levels of ANP, BNP, β-MHC, and α-MHC were measured by real-time PCR. (E) The protein levels of SERCA2 were measured by western blotting. (F)
Graphic representation of relative abundance of SERCA2 normalized to GAPDH. (G) The mRNA levels of SERCA2 were measured by real-time PCR.
The data are presented as the mean ± SD. *p < 0.05 and **p < 0.01 vs. SHAM group; #p < 0.05 and ##p < 0.01 vs.CKD group; &p < 0.05 and &&p <
0.01 vs. CKD + Choline group. n = 6 in each group.
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initiates ischemic and hypoxic cardiomyocyte dysfunction

and apoptosis. It is noteworthy that although cardiac Hif-

1α protein levels in the CKD mice was not significantly

reduced compared with SHAM group, cardiac dysfunction

was observed in CKD mice. Indeed, besides insufficient

angiogenesis, other mechanisms such as hypertension,

volume overload, activation of the RAS system, and insulin

resistance are also involved in CKD-induced cardiac injury

(Wang and Shapiro, 2019).

So far, treatment of UC mainly focus on lipid-lowering, anti-

hypertension and anemia correction, which only modestly

improved cardiovascular outcomes (Garikapati et al., 2021).

Notably, our results demonstrated that FG-4592, a novel

approved clinical treatment of renal anemia, improved

angiogenesis and cardiac dysfunction in CKD mice. These

data suggest FG-4592 is beneficial to cardiac function in CKD

patients and this benefit does not solely come from correcting

anemia. Our data provided positive evidence for the clinical

application of FG-4592 in patients with UC. Currently, the

clinical trial that evaluating the potential effect of FG-4592 on

cardio-renal syndromes in CKD patients is under recruitment

(NCT05053893).

In summary, the present findings extend associations

between TMAO and cardiovascular risk in CKD patients,

by demonstrating a remarkable adverse effect of dietary

choline on CKD-induced cardiac dysfunction. Besides,

targeting TMAO might be a potential new therapeutic

approach for UC. Furthermore, FG-4592 might be a

promising drug for improving UC besides its role in

treating CKD anemia.
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SUPPLEMENTARY FIGURE S1
Dietary choline (1.2%) does not alter renal injury and fibrosis after 5/6 Nx in
CD1 mice. (A) Representative micrographs of H&E (top row, scale bar =
100 μm) and Masson Trichrome staining (bottom row, scale bar = 50 μm)
show the morphology of kidney. (B) Tubular injury score. (C) The fibrotic
region (blue stain) quantified as the percentage of the total area. The data are
presented as themean± SD. *p <0.05 and **p <0.01 vs. SHAMgroup;#p <
0.05 and ##p < 0.01 vs. CKD group. n = 6 in each group.

SUPPLEMENTARY FIGURE S2
Dietary choline (1.2%) increases the serum level of TMAO, but not alters
kidney morphology in CD1mice. (A) Schematic design of treatments. (B)
The serum level of TMAO. (C) The serum level of Scr. (D) The serum
level of BUN. (E) Representative micrographs of H&E (top row, scale bar =
100 μm) and Masson Trichrome staining (bottom row, scale bar =
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50 μm) show the morphology of kidney. (F) Tubular injury score. (G)
The fibrotic region (blue stain) quantified as the percentage of the total
area. The data are presented as the mean ± SD. *p <0.05 and **p <
0.01 vs. CON group. n = 6 in each group.

SUPPLEMENTARY FIGURE S3
Dietary choline (1.2%) does not affect cardiac function and
morphology in CD1 mice. (A) Representative M-mode
echocardiograms for each group. (B–G) Echocardiographic
quantification of LVEF, LVFS, LVESV, LVESV, LVESD, and LVEDD. (H)
Photomicrographs of left ventricular tissue sections stained with
hematoxylin and eosin (H&E). (I–L) The mRNA levels of β-MHC,
ANP, BNP, and SERCA2a were measured by real-time PCR. (M) The
protein levels of SERCA2 were measured by western blotting. (N)
Graphic representation of relative abundance of
SERCA2 normalized to GAPDH. The data are presented as the
mean ± SD. *p <0.05 and **p < 0.01 vs. CON group. n = 6 in each
group.

SUPPLEMENTARY FIGURE S4
Dietary choline (1.2%) does not affect cardiac capillary density in
CD1 mice. (A) Representative micrographs of
immunohistochemistry staining of CD31 in the heart. Scale bar =
50 μm. (B) Graphical representation of capillary density analysis. (C)
The protein levels of CD31 were measured by western blotting. (D)
Graphic representation of relative abundance of CD31 normalized
to GAPDH. The data are presented as the mean ± SD. n = 6 in each
group.

SUPPLEMENTARY FIGURE S5
FG-4592 elevates Hb, RBC and Hct in 5/6Nx mice on a high-choline diet.
(A–C)Hb (A), RBC (B) and Hct (C) were detected in blood collected from
mice at the end point of experiment. The data are presented as the
mean ± SD. *p <0.05 and **p < 0.01 vs. SHAM group; #p < 0.05 and##p <
0.01 vs.CKD group. &p < 0.05 and &&p < 0.01 vs.CKD+Choline group. n=
6 in each group. Hb, Hemoglobin; RBC, Red blood cell; Hct,
Hematocrit.
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