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Abstract

The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small
hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results
from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of
phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively
charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary
phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma
membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents.
Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for
the unique composition and characteristics of African trypanosome plasma membranes.
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Introduction

Eukaryotic pathogens of the genus Trypanosoma cause deadly

disease in humans and livestock. Human African trypanosomiasis,

or sleeping sickness, is caused by two subspecies, Trypanosoma brucei

rhodesiense, causing an acute disease, or Trypanosoma brucei gambiense,

causing a chronic infection [1]. Nagana, an economically de-

bilitating wasting disease in African cattle is caused by Trypanosoma

brucei brucei and other species including Trypanosoma vivax and

Trypanosoma congolense [2]. Trypanosoma vivax infection in cattle has

also been established in South America [3]. African trypanosomes

exhibit several life stages including a bloodstream form (BSF) in

the circulation of the mammalian host, a procyclic form (PCF) in

the midgut of the tsetse fly vector and a metacyclic form that is

injected during fly-feeding and initiates infection [4].

Drug development is difficult for a number of reasons, both

biological and economic, and resistance is also a major problem [5].

Higher primates are innately immune to veterinary pathogenic

African trypanosomes due to circulating trypanolytic factors [6,7].

However African trypanosomes have evolved a variety of mechan-

isms to evade innate and acquired immunity. The best-understood

mechanism is successive expression of antigenically distinct glycer-

ophosphotidylinositol-anchored (GPI-) variant surface glycopro-

teins (VSG) [8]. Another strategy is clearance of surface bound host

defense factors. The most striking example of this is the hydrody-

namic flow-mediated lateral sorting of Ig-bound-VSG to the

flagellar pocket, an invagination at the posterior of the cell that is

the sole site for endocytosis [9].

Previously we demonstrated that both veterinary and human

pathogenic BSF T. brucei are uniquely susceptible to killing by two

small hydrophobic peptides (SHP), SHP-1 and -2 [10]. Specificity

of SHP is mediated by a high degree of fluidity in the plasma

membrane of BSF cells [10]. These peptides do not bind, and thus

do not kill, PCF T. brucei, which has a more rigid plasma

membrane. Human cells, including erythrocytes, are refractory to

SHP concentrations orders of magnitude higher than necessary to

kill BSF T. brucei [10].

Here we report that trypanocidal SHP uniquely cause an

increase in the rigidity of the interfacial region of the plasma

membrane that is consistent with dramatic motility constriction

and subsequent cell death. We present an explanation, based upon

sequence analysis and the orientation and structure of lipid

associated SHP, for these biophysical consequences.

Results

Susceptibility to SHP is Independent of VSG and
Common to African Trypanosomes

An immediately apparent difference between the plasma

membranes of BSF and PCF African trypanosomes is the lack of

a dense coat of VSG in the insect stage cells. We tested metacyclic

T. b. brucei, which do express a VSG coat, for susceptibility to SHP-
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1 and found no killing activity (Fig. 1a). These data indicate that

susceptibility is not due to specificity of SHP for VSG. Next we

determined whether other African trypanosomes are sensitive to

SHP. Bloodstream developmental forms of T. vivax and T.

congolense are susceptible to killing by SHP-1 at concentrations

similar to BSF T. brucei (Fig. 1b), indicating that SHP susceptibility

is a characteristic of both human and veterinary pathogenic

African trypanosomes.

Trypanocidal Activity Requires a C-terminal Positive
Charge

Trypanocidal SHP are derived from apolipoproteins and

exhibit the characteristics of secretory signal peptides, i.e. size

(18–22 amino acids), a central hydrophobic region and a C-

terminal putative signal peptidase cleavage site defined by

specific amino acid patterns [10]. Although these peptides share

physical features, the primary sequences are entirely different

(Fig. 1c). We tested a third, distinct SHP (23) for trypanocidal

activity, also derived from an apolipoprotein [11] and possessing

similar features as SHP-1 and -2 (Fig. 1c). Despite possessing the

same general physical characteristics and binding to BSF T. brucei

(Methods File S1, Figure S1), no trypanocidal activity was

detected (Fig. 1d). Comparison of the three sequences revealed

that an arginine at position -5 relative to the C-terminus is

common to trypanocidal SHP-1 and -2, but is absent in SHP-3

(Fig. 1c). Substitution of an arginine for the leucine in this

position of SHP-3 (SHP-3DR, Fig. 1c) confers trypanocidal

activity (Fig. 1d). Replacement of the leucine with glutamate in

SHP-3 (SHP-3DE, Fig. 1c) does not (Fig. 1d). Trypanocidal

activity is conferred simply by a positive charge at the C-

terminus, indicated by the trypanocidal activity of an SHP-3

variant in which the -5 leucine is replaced by lysine (SHP-3DK,

Fig. 1d). Trypanocidal SHP-2 has a positive charge at both the

N- and C-terminus, SHP-1 has a single positive charge at the C-

terminus; thus we tested whether charge location is important by

swapping the C-terminal arginine with the N-terminal aspartate

of SHP-1 (SHP-1-swap, Fig. 1c). Rearranging these residues

resulted in a loss of trypanocidal activity (Fig. 1d).

Trypanocidal SHP Rigidify the Interior and Interfacial
Region of the Plasma Membrane

Trypanocidal SHP act at the plasma membrane but do not

induce osmotic swelling or bursting [10]. Therefore we reasoned

that any effect upon the BSF trypanosome must not result in a loss

Figure 1. Small hydrophobic peptide mediated killing of African trypanosomes. (a) The metacyclic developmental form (the
developmental stage injected during a tsetse fly bite) of T. b. brucei was assayed for susceptibility to SHP-1 in 2 h in vitro killing assays (green X,
metacyclic; orange &, BSF). (b) The veterinary pathogenic African trypanosomes, T. vivax (red &, SHP-1; red-open%, DMSO) and T. congolense (blue
m, SHP-1; blue-open n, DMSO), were assayed for susceptibility to SHP-1 in 2 h in vitro killing assays. (c) The sequences of trypanolytic and non-
trypanolytic SHP are shown from N- to C-terminus and aligned to the C-terminus in order to emphasize the identity of the amino acid at position -5
relative to the putative signal peptidase cleavage site. Positively charged amino acids are in red, negatively charged amino acids are in green and
non-polar amino acids are underlined. (d) The SHP listed in (c) were tested against BSF T. b. brucei in 2 h killing assays (blue N, SHP-1; red &, SHP-3;
green m, SHP-3DR; purple &, SHP-3DK; orange m, SHP-3DE; black N, SHP-1swap). Colors correspond to the peptide names in (c).
doi:10.1371/journal.pone.0044384.g001
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of plasma membrane integrity. We investigated the rigidity of BSF

T. brucei membranes, a property that can change without loss of

membrane integrity, utilizing two anisotropic probes, diphenyl-

hexatriene (DPH) that reports on the interior of the acyl chain

region, and trimethylammonium-diphenylhexatriene (TMA-DPH)

that is anchored at the membrane interface. Addition of either

trypanocidal or non-trypanocidal SHP to BSF T. brucei results in

increased rigidity of the interior of the plasma membrane (Fig. 2a).

However only the trypanocidal SHP, SHP-1, -2, -3DR and -3DK

increased the interfacial rigidity (Fig. 2b). These data indicate that

rigidification of the interfacial region is likely involved in killing

BSF trypanosomes.

Trypanocidal SHP have Biophysical and Physiological
Consequences

Treatment of BSF African trypanosomes with SHP results in

multiple physiological alterations. Addition of SHP-1 to BSF

trypanosomes, which were subsequently immobilized in gelatin,

decreases the fraction of laterally mobile surface exposed VSG

(Fig. 2c). This effect may be directly due to increased

membrane rigidity, or indirectly due to a decrease in the

mobility of membrane spanning proteins and potential interac-

tions with the VSG. Another physiological consequence, that

may or may not be related to membrane rigidification, is SHP-

induced changes in cell motility. Previously we reported that

SHP-1 causes an initial hyperactivation followed by constricted

motility and death [10]. Non-trypanocidal SHP-3 does cause

some hyperactivation of BSF T. b. brucei (Movie S1 displays an

untreated cell for comparison, Movie S2 presents a representa-

tive cell exhibiting SHP-3 induced hyperactivation), however

subsequent constriction does not occur (Fig. 2d). Trypanocidal

SHP-1 [10] and SHP-3DR (Movie S3, S4) induce both

hyperactivation and subsequent constriction (Fig. 2d). Con-

stricted motility may result in reduced hydrodynamic forces

acting upon surface proteins.

Figure 2. Membrane rigidity changes and physiological consequences of SHP. The rigidity of the interior (a) or interfacial (b) region of the
plasma membrane of BSF T. b. brucei treated with increasing concentrations of SHP-1 (blue N), SHP-2 (grey X), SHP-3 (red &), SHP-3DR (green m),
SHP-3DK (purple m), SHP-3DE (orange-open n), SHP-1swap (black-open #) or solvent alone (DMSO, black 6) was determined by measuring the
fluorescence depolarization of DPH or TMA-DPH respectively. (c) FRAP analysis of the mobile fraction of BSF T. b. brucei VSG in the presence (red &)
or absence (black &) of 8 mM SHP-1. (d) Live BSF T. b. brucei treated with equivolume DMSO (grey), 40 mM SHP-1 (blue), SHP-3 (red) or SHP-3DR
(green) were visualized by DIC microscopy and scored for normal, hyperactivated and constricted motility as well as death at the indicated timepoints
(see Movies S1, S2, S3 and S4 for examples of the normal, hyperactivated and constricted motilities respectively).
doi:10.1371/journal.pone.0044384.g002
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Trypanocidal SHP Exhibit Shallow Penetration and Orient
Perpendicular to the Plane of the Membrane

In order to understand why trypanocidal and non-trypanocidal

SHP have different effects on the BSF plasma membrane, we

determined the orientation of SHP-1 and -3 in lipid bilayers by

parallax analysis [12]. Tryptophans were substituted at positions 1,

8 and 18 (N- to C-terminus, native tryptophan located at position

12) in SHP-1 and positions 1, 13 and 20 in SHP-3 (N- to C-

terminus, native tryptophan located at position 5) (Table S1).

These placements were chosen, and native tryptophan residues

were replaced with glycine, in order to retain the hydrophobic

profile of the original peptides. All of the substituted SHP-1

peptides show equivalent killing activity as well as membrane

interaction (Methods File S1, Figure S2a, b). We determined the

insertion depth of SHP tryptophans by ratiometric analysis of the

quenching efficiency of liposomes containing 10 mol % bromi-

nated lipid at a shallow (6,7) and deep (9,10) position of the acyl

chains. Trypanocidal SHP-1 penetrates shallowly into the

hydrocarbon region and adopts a U-shaped conformation (Fig. 3a,

Table S1). The two terminal tryptophans, positions 1 and 18, are

located approximately 1.1 and 2.0 Å from the membrane interface

respectively. The tryptophans at positions 8 and 12 are located

approximately 7.8 and 5.1 Å from the interface respectively.

Therefore, rather than aligning with the phospholipid acyl chains,

SHP-1 inserts into the exterior leaflet parallel to the plane of the

bilayer and proximal to the phospholipid headgroups. These data

are consistent with an orientation that has been observed for the

LamB signal peptide [13,14]. Non-trypanocidal SHP-3 and the

tryptophan variants also exhibit membrane interaction (Figure

S2c). Parallax analysis of SHP-3 indicates a tilted orientation with

the C-terminus penetrating deeper into the bilayer, an orientation

that has also been suggested for the LamB signal peptide (Fig. 3a,

Table S1) [13]. The N-terminal tryptophan was inefficiently

quenched, suggesting that it does not intercalate into the

hydrocarbon region. The native tryptophan, position 5, inserts

approximately 1.6 Å deep. The tryptophan at position 13 is

located approximately 4.7 Å deep and the C-terminal tryptophan

penetrates most deeply, to approximately 11.2 Å. This orientation

precludes interaction of the C-terminus with the lipid headgroups.

Trypanocidal SHP Adopt a-helical Structures with
Positively Charged Patches at Both Termini

Circular dichroism spectroscopy reveals different structures for

soluble and lipid-associated SHP-1. In the solution spectrum, the

peak at 195 nm, crossover at approximately 205 nm and

minimum at 218 nm are characteristic of a b-sheet conformation

(Fig. 3b) [15]. In the presence of lipid, the peak at 193 nm and

minimum at 208 nm suggest that SHP-1 adopts an a-helical

structure (Fig. 3b) [15], again consistent with the secondary

structure of the LamB signal peptide [16]. The structural analysis

and parallax data are consistent with a predicted structure from

molecular dynamics simulations, in which SHP-1 adopts a helix-

break-helix, a motif reported for lipid associated PhoE signal

peptide [17]. The free amino-group at the N-terminus and the C-

terminal arginine form positively charged patches at both termini

and the interior region forms a hydrophobic bulge (Fig. 3c).

Discussion

Changes in membrane rigidity as measured by fluorescence

anisotropy have been shown to correlate with alterations in

cellular physiology and biochemistry. Temperature induced

rigidification of platelet membranes results in a concomitant

decrease in fluid phase endocytosis [18]. Additionally in the type 1

diabetic disease state platelets exhibit an increase in the rigidity of

the interior of the plasma membrane that results in a decrease in

Na+/K+-ATPase activity [19]. In the case of BSF African

trypanosomes, we have correlated increased membrane rigidity

with changes in cell motility, the diffusion of rate of surface

proteins and ultimately cell death. Therefore, membrane rigidi-

fication may be trypanocidal by interfering with a variety of

activities such as, but not limited to, lateral surface protein

diffusion, ion channel function and/or the diffusion of small

molecule nutrients into the BSF cell. It has been shown that

increasing the rigidity of trypanosome membranes results in

a redistribution of proteins normally localized to the flagellar

membrane [20], posing the possibility that signaling pathways may

be affected. Therefore trypanocidal SHP may have pleiotropic

effects.

Figure 3. Orientation and structure of SHP in lipid bilayers. (a) The depth of peptide penetration into the hydrocarbon region of model
liposomes was determined via parallax analysis. Assuming a hydrocarbon bilayer thickness of 29 Å, the depths of tryptophans spanning SHP-1 (blueN) and SHP-3 (red &) are plotted against a background of the outer leaflet of a POPC bilayer. (b) Circular dichroism spectroscopy of SHP-1 in
aqueous buffer (green N) and in the presence of egg phosphatidylcholine liposomes (blue N). (c) Molecular dynamic modeling of SHP-1 in a lipid
environment. The backbone trace (top) illustrates a predominantly a-helical structure with disordered termini and an internal disordered region.
Surface potential representations (N to C terminal, middle; C to N terminal, bottom) indicate positively charged patches (blue) formed by the N-
terminal amino acid and the arginine at position 14. Non-polar and negatively charged regions are shown in white and red, respectively.
doi:10.1371/journal.pone.0044384.g003
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In addition to directly killing BSF trypanosomes, SHP induce

physiological changes that may attenuate the parasites’ ability to

evade host immune effectors. The diffusion of VSG is altered in

trypanosomes treated with SHP-1. The decrease in the number of

mobile surface VSG may be due to increased membrane rigidity

conferring greater drag upon the myristate anchors. Alternatively,

or in addition to, increased membrane rigidity may hinder VSG

diffusion through decreasing the mobility of membrane spanning

proteins that subsequently interfere with the lateral surface flow of

VSG. In either case hindering the flow of VSG to the flagellar

pocket would likely delay the clearance of host defense molecules

thereby promoting cell killing. Additionally, constricting the

motility of BSF trypanosomes may effectively decrease hydrody-

namic flow over the surface of the cell, a force necessary for

maintaining directionality and movement of VSG to the anterior

of the trypanosome [9], also delaying the clearance of VSG.

Employing agents that increase the rigidity of the plasma

membrane in pharmaceutical applications may therefore augment

the host immune response to trypanosome infection.

The orientation of trypanocidal SHP in lipid bilayers differs

from non- trypanocidal SHP in that both termini are proximal to

the membrane interface. This orientation can be attributed to

a positively charged residue at the -5 position relative to the C-

terminus that is lacking in non- trypanocidal SHP. Swapping

a negatively charged residue for the C-terminal arginine (SHP-

1swap) will result in a similar hydrophobic profile and thus

presumably induce the same orientation in lipid bilayers, however

this change renders the SHP incapable of rigidifying the

membrane interface and therefore non- trypanocidal. These data

indicate a direct role for a C-terminal positively charged residue

(arginine or lysine) in increasing interfacial rigidity and trypano-

some killing. Incorporating the requirement for a positive charge

at the C-terminus and the hydrophobic bulge revealed by

molecular dynamic modeling, we suggest a mechanism in which

trypanocidal SHP are anchored in the membrane hydrocarbon

region by the internal hydrophobic stretch and the positively

charged patches at each termini coordinate negatively charged

phosphates of the lipid headgroups. This model provides

a plausible explanation for the increase in interfacial membrane

rigidity by trypanocidal but not non- trypanocidal SHP.

The specificity of SHP for BSF African trypanosomes reveals

a phenotype that may be taken advantage of for the development

of pharmaceutical agents. Drugs that target the fluidity of the

plasma membrane may offer a means of circumventing the rapid

onset of resistance exhibited by these pathogens. Compensating for

a phenotype that is the result of a system of gene products would

require multiple viable mutations rather than a single mutation

within a targeted enzyme or transporter. Additionally SHP may be

valuable tools to investigate the molecular basis of membrane

fluidity.

Materials and Methods

Peptides and Lipids
All peptides were purchased from Bio-Synthesis, Inc. (Lewis-

ville, TX). All lipids were purchased from Avanti Polar Lipids

(Alabaster, AL). These include phosphatidylcholine from egg

(8450051) and 1-palmitoyl-2-(6,7-dibromo)stearoyl-sn-glycero-3-

phosphocholine (850480) and 1-palmitoyl-2-(9,10-dibromo)stear-

oyl-sn-glycero-3-phosphocholine (850481).

Trypanosome Killing Assays
Light microscopy based trypanosome killing assays were

performed as previously described in detail [6,10,21,22]. Meta-

cyclic Trypanosoma brucei brucei strain STIB247 were obtained from

dissection of the salivary glands of infected tsetse flies. Newly

hatched Glossina morsitans morsitans (24–48 h post eclosion) were fed

two defibrinated horse blood meals containing 26106 mL-1

trypanosomes on two separate days. Flies were then maintained

at 25uC in 75 % relative humidity and fed maintenance blood

meals three times per week. Following day 20–30, flies were

harvested and salivary glands were dissected out and placed into

HMI 9 media containing 10 % fetal bovine serum for 30 minutes.

Metacyclic cells were expelled into the media by the residual

peristalsis of the salivary glands. Cells were collected via

centrifugation and maintained in HMI 9 media with 20 % fetal

bovine serum at 37uC in 5 % CO2 until use. Killing assays were

conducted with 16104 cells/mL in HMI 9 media containing 10 %

fetal bovine serum. Live cells were scored via hemocytometer after

2 h incubation. Trypanosoma vivax strain ILRAD V34 and

Trypanosoma congolense strain IL3000 were grown from stabilites in

donor ICR mouse (Harlan, United Kingdom). Parasites were

harvested from mice by terminal exsanguination and subsequent

differential centrifugation of the blood with an equal volume of

HMI 9 media to form a buffy coat layer. Cells were maintained in

HMI 9 with 20 % fetal bovine serum at 37uC in 5 % CO2 until

use. Killing assays were performed with 16107 cells/mL in HMI 9

media with 20 % bovine serum. Cells were incubated at 37uC for

2 h and live cells were scored visually via hemocytometer. All

assays were conducted in at least duplicate, and data points are the

averages with standard deviations.

Anisotropy Assays
The plasma membrane rigidity of live T. b. brucei was determined

by measuring the fluorescence depolarization of diphenyl-1,3,5-

hexatriene p-toluenesulfonate (DPH) or 1-(4-trimethylammonium-

phenyl)-6-diphenyl-1,3,5- hexatriene p-toluenesulfonate (TMA-

DPH; Invitrogen T204). Cells were washed 3 times with and

resuspended in phosphate buffered saline at a density of 36106 cells/

mL. The anisotropic probes were added to a final concentration of

0.5 mM and allowed to intercalate into the cell membrane for 1 h in

the dark. Anisotropic values were acquired via the software function

of a PerkinElmer Life Sciences LS55 spectrofluorometer. Samples

were excited at 358 nm, and emission was read at 430 nm, with 10-

nm excitation and emission slit widths. Temperature was main-

tained at 37uC by means of the PerkinElmer LS55 Biokinetics

accessory. Data were corrected for light scattering with an unlabeled

sample of cells, and anisotropy was calculated according to the

equation r = (IVV - GIVH)/(IVV + 2GIVH), where r is the anisotropy

value, IVV is the emission intensity acquired with the excitation- and

emission-polarizing filters set vertically, G is the instrument

correction factor, and IVH is the emission intensity acquired with

the excitation-polarizing filter set vertically and the emission-

polarizing filter set horizontally. Data points shown are the average

of triplicate measurements with standard deviations.

In-vivo Fluorescence Recovery after Photo Bleaching
(FRAP) Measurements

Bloodstream form T. b. brucei, strain 427, expressing VSG

MITat1.6 were cultivated in HMI 9 media with 10% fetal calf

serum. 16107 cells were washed three times with ice cold

trypanosome dilution buffer (TDB; 5 mM KCl, 80 mM NaCl,

1 mM MgSO4, 20 mM Na2HPO4, 2 mM NaH2PO4, 20 mM

glucose, pH 7.6). The cell density was adjusted to 16108 cells/mL

and labeling of surface proteins was achieved by incubation with

1 mM sulfo-NHS coupled Atto 488 fluorescent dye (ATTO-TEC

GmbH, Siegen) for 15 min on ice [23]. After incubation the cells

were washed three times with ice cold TDB to remove unbound

Novel Trypanocidal Peptides
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dye. Labeled T. b. brucei cells were incubated with 8 mM SHP-1 for

10 min at 37uC. The fluorescently labeled cells were mixed 1:3

with 10% Type-A gelatin from porcine skin (Sigma-Aldrich,

Steinheim) in PBS, pH 7.8, at 37uC. 4 mL of the cell gelatin

mixture was applied into a cover slide sandwich and mounted into

a temperature controlled sample holder. The sample holder was

cooled to 20uC until the cells were immobilized. Samples of SHP-1

treated and untreated MITat 1.6 wt cells were prepared identi-

cally. Line FRAP measurements were performed at a constant

temperature of 20uC. 10 pre-bleach and 100 post-bleach images

were recorded at 2fps. VSG mobile fractions were determined

according to Phair et al. (2004) [24] using double normalization.

The mobile fraction refers to the percentage of mobile VSG

molecules within the measured region. For example a mobile

fraction of 50 % means that half of the VSG molecules are mobile.

The relative frequency indicates the proportion of cells that exhibit

a given mobile fraction of VSG.

Trypanosome Motility
All images and videos were acquired with an Axio Observer Z1

equipped with an AxioCam MRm controlled by AxioVision 4.6

software. Videos were acquired with live cells at a density of 16107

cells/mL in HMI 9 media with 10 % fetal bovine serum,

incubated with 40 mM SHP at 37uC. Trypanosomes were

visualized at magnification 63 6 and videos were recorded with

100-ms acquisition times. The motility of BSF trypanosomes was

scored directly or from video playback. Trypanosome motility was

classified as normal, hyperactive or constricted as described

previously [10]. An example of a trypanosome scored as normal

is shown in Movie S1. Example hyperactive trypanosomes are

shown in Movies S2 and S3, while those exhibiting constricted

motility are exemplified by the representative trypanosome

presented in Movie S4. Data in figure 2D is shown as the average

of at least duplicate trials with standard deviations.

Parallax Analysis
The hydrocarbon penetration depth of tryptophans spaced

throughout synthetic peptides corresponding to SHP-1 or SHP-3

(Table S1) was determined by parallax analysis with brominated

phosphatidylcholine liposomes. Large unilamellar liposomes com-

posed of egg phosphatidylcholine and 10 mol % 1-palmitoyl-2-

(6,7-dibromo)stearoyl-sn-glycero-3-phosphocholine (shallow

quencher) or 1-palmitoyl-2-(9,10-dibromo)stearoyl-sn-glycero-3-

phosphocholine (deep quencher) were constructed by hydration

of a thin dry lipid film with phosphate buffered saline. Resulting

multilamellar liposomes were made unilameller via extrusion

through polycarbonate filters with 0.1 mm pores. Peptides

(500 nM) were incubated with 200 mg/ml liposomes in phosphate

buffered saline at 37uC for 22 h. Tryptophan fluorescence at

357 nm was measured from at least triplicate trials in the

PerkinElmer Life Sciences LS55 spectrofluorometer and an

excitation wavelength of 280 nm for SHP-1 and 290 nm for

SHP-2, 10 nm excitation and 9 nm emission slit widths. The

distance of tryptophans from the bilayer center (ZCF) is calculated

from the equation [12]:

ZCF~LC1z½-ln(F1=F2)=pC~L21
2�=2L21

Where LC1 is the distance from the center of the bilayer to the

shallow quencher, in this case 10.8 Å for 6,7-dibromo-PC [25], F1

is the intensity of tryptophan in the presence of the shallow

quencher and F2 is the tryptophan intensity in the presence of the

deep quencher, C is the mole fraction of quencher divided by the

area of individual phospholipid (70 Å2), and L21 is the difference in

the depth of the two quenchers (2.7 Å) [25]. The hydrocarbon

insertion depth of tryptophans is then given by one half the bilayer

thickness, 29 Å [25], minus ZCF.

Circular Dichroism
Spectra were recorded with a Jasco J-710 spectropolarimeter in

a 1 mm quartz cuvette. Measurements were performed with a final

concentration of 15 mM SHP-1 added from a stock of ethanol-

solubilized peptide (final ethanol concentration 7.5 %) in 10 mM

K2PO4, 50 mM Na2PO4, pH 7.5. Lipid associated peptide spectra

were recorded with the addition of 0.1 mm unilamellar egg

phosphatidylcholine liposomes at a peptide to lipid ration of 0.3.

Spectra were averaged from four scans and the appropriate buffer

scans were subtracted.

Molecular Modeling
The tertiary structure of SHP-1 in a lipid environment was

predicted using the web-based molecular dynamics simulation

software PEPstr (http://www.imtech.res.in/raghava/pepstr/)

[26]. The per-atom charge and radius were calculated by

converting the PDB file obtained from PEPstr into a PQR file

via the web-based PDB2PQR server (http://kryptonite.nbcr.net/

pdb2pqr/) [27]. Values were calculated using the PARSE

forcefield. The peptide was subsequently visualized with the

PyMOL Molecular Graphics System, Version 1.4 (Schrödinger,

LLC).

Supporting Information

Figure S1 SHP binding to BSF T. b. brucei. FITC-labeled

SHP-1 (blue – ) and SHP-3 (green – ) were assayed for binding to

BSF T. b. brucei via flow cytometry (no peptide, red – ) .

Trypanosomes were adjusted to 36106 cells/ml in HMI 9 media

with 10 % fetal bovine serum, 8 mM FITC-SHP-1 or FITC-SHP-

3 was added and 50,000 cells were immediately counted.

(DOC)

Figure S2 Trypanosome killing and membrane interac-
tion with SHP tryptophan variants. (a) Small hydrophobic

peptide-1 tryptophan variants (Table S1) SHP-1DW1 (orange X),

SHP-1DW8 (green &) and SHP-1DW18 (red m) were tested for

trypanocidal activity. (b) The ability of SHP-1 tryptophan

variants, 1 mM SHP-1DW1 (orange – ), 1 mM SHP-1DW8 (green

– ), 0.2 mM SHP-1 (blue – ) and 0.2 mM SHP-1DW18 (red – ), and

(c) SHP-3 tryptophan variants, 1 mM SHP-3DW1 (orange – ),

1 mM SHP-3 (blue – ), 1 mM SHP-3DW13 (red – ) and 4 mM

SHP-3DW20 (green – ), to interact with lipid bilayers was

determined by monitoring the release of entrapped calcein from

unilamellar egg phosphatidylcholine liposomes.

(DOC)

Table S1 Sequences and Quenching Data of SHP
Tryptophan Variants.

(DOC)

Methods File S1 Contains methods for supplementary
Figures S1 and S2.

(DOC)

Movie S1 Live, untreated BSF T. b. brucei exhibiting
normal motility and visualized with DCI video micros-
copy.

(MOV)
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Movie S2 Live BSF T. b. brucei visualized via DIC video
microscopy approximately 30 sec after addition of
40 mM SHP-3. Cells exhibit hyperactivated motility.

(MOV)

Movie S3 Live BSF T. b. brucei visualized via DIC video
microscopy approximately 30 sec after addition of
40 mM SHP-3DR. Cells exhibit hyperactivated motility.

(MOV)

Movie S4 Live BSF T. b. brucei visualized via DIC video
microscopy approximately 10 min after addition of
40 mM SHP-3DR. Cells exhibit constricted motility.

(MOV)
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