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Benefit or burden - how do surgeons 
perceive AI?

It is inarguable that there is immense potential in artificial 
intelligence (AI) and its most prominent subfield: machine 
learning (ML). This applies to surgery as well as to medi-
cine in general, with healthcare being a highly data-gener-
ating and data-driven field. Experts in digital surgery [1] 
are convinced that emerging technologies can enhance pre-
operative planning, provide navigation assistance - similar 
to autonomous driving - by, e.g., highlighting the critical 
view of safety in the surgical field of minimally invasive 
procedures [2], assess surgical skills [3], and offer decision 
support, such as predicting intra- and postoperative compli-
cations [4] and personalizing therapy recommendations for 
complex patient cases.

Surgeons undergo extensive professional training, 
accompanied by high workload and stress levels. During 
years of collecting clinical experience, they gradually gain 
expertise regarding effective decision-making and manag-
ing situations with high demands on technical, cognitive, 
and communicative skills. This is especially important in 
the high-stakes environment of the operating room [5]. 
The potential integration of AI can thus justifiably evoke 
different reactions among the surgical community: doubt 
when it comes to a machine influencing what the correct 
patient diagnosis or treatment should be, e.g., in (surgical) 
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Abstract
Purpose  This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and 
their potential applications in surgery.
Methods  We briefly introduce explainability methods, including global and individual explanatory features, methods for 
imaging data and time series, as well as similarity classification, and unraveled rules and laws.
Results  Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance 
of transparency and interpretability in the outputs of applied models.
Conclusion  Transparency and interpretability are essential for the effective integration of AI models into clinical practice.
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oncology or the intensive care unit [6]; fear that at some 
point your technical qualities or ability of clinical reasoning 
will be replaced, e.g., in defining the critical view of safety 
in laparoscopic cholecystectomy [2]; or simply irritation 
because, e.g., automatic robot-assisted camera guidance 
may not precisely display the desired viewpoint.

The importance of eXplainable artificial 
intelligence (XAI)

Given the challenge of trust in AI systems and the limited 
concrete usage in healthcare, particularly in surgery [7], 
how can we foster the acceptance of ML methods and their 
integration into clinical practice? A major challenge is to 
make the ML models accessible to surgeons in such a way 
that the information is presented in a clear manner within 
an intuitive user interface, and their output being transpar-
ent and interpretable. Building trust and understanding is 
of utmost importance. As surgeons often find themselves 
in situations without much time to reconsider one’s actions 
or question recommendations, they need to be able to con-
fidently rely on newly introduced AI-based assistance sys-
tems. This does not necessarily mean that the predictions 
of underlying ML models must be perfectly accurate, but 
rather that the surgeon understands why a certain output is 
generated by providing human-interpretable information 
including uncertainties and ambiguities that are inherent to 
clinical decision-making anyway. However, this is a major 
methodological challenge because the multi-layer architec-
ture of neural networks used as ML models for high prob-
lem-complexity hardly allows humans to fully understand 
the models’ conclusions [8]. Researchers try to address 
this need by developing the field of ML model interpret-
ability defined as the extent to which an ML model can be 
made understandable to relevant human users [9]. The term 
eXplainable AI (XAI) can thus be summarized as tailored 
interpretability for different users. It can be employed in 
many ways depending on the type of input data, the applied 
ML algorithm, and of course the requirements and questions 
of the users themselves [10]. To establish a surgical under-
standing of the capabilities of computer science in provid-
ing XAI, we present an overview of various interpretability 
methods with potential applications in surgery (Fig. 1).

Global explanatory patient features

A ML model could predict the overall survival of patients 
undergoing different surgeries such as an esophagectomy 
based on preoperative, static patient data such as age, gen-
der, comorbidities, neoadjuvant therapy, or smoker status. 
However, surgeons might need to know which data play the 

most important role for this prediction to optimize further 
treatment pathways. The interpretability method of explan-
atory (patient) features points out these features and their 
contribution to the model’s prediction.

Individual explanatory patient features

However, the described global approach of outcome pre-
diction in clinical practice is often not sufficient when it 
comes to specific patient cases with questions arising such 
as: “What are the most important features for the survival 
prediction of this specific patient I’m going to operate on 
tomorrow?”. The surgeon needs to know which subset of 
features is relevant for each patient meaning individualized 
feature importance [11], e.g., to build a basis for an informa-
tive patient discussion with specific recommendations.

Explanatory features for imaging data

Image and video data are of particular importance in sur-
gery, e.g., for surgical planning using radiological data or 
the surgical video itself during minimally invasive pro-
cedures. When these images are analyzed by means of 
computer vision, feature importance can be applied in the 
context of XAI by highlighting the parts of the image/video 
that have the greatest influence on the output when changed, 
so-called integrated gradients [12]. When developing a 
model to assess completeness of lymphadenectomy in 
esophagectomy, it is crucial for the surgeon to know exactly 
on which structures or features the model bases its rating in 
certain areas. In general, XAI may be more approachable 
for imaging tasks, as the visual nature of predictions often 
aligns with human interpretability, facilitating the detection 
and assessment of potential biases in the algorithm.

Explanatory features taking time series into account

Especially in surgery with long and complex treatment 
pathways and the highly important surgical procedure itself, 
static features alone are insufficient for certain predictions. 
Interpretability approaches taking the temporal sequence of 
clinical processes into account [13] need to be addressed 
when, e.g., postoperative complications shall be predicted. 
Thereby, the risk estimation of developing anastomotic 
insufficiency after pancreatic surgery could be more effec-
tively explained by assessing dynamic data such as intra-
operative variation in heart rate and blood pressure of the 
patient during surgery, as well as the perioperative trends 
in laboratory values. Moreover, e.g., continuous monitor-
ing of blood levels might enable conclusions about total 
blood loss, potential complications like vascular injuries, 
and correlations with specific surgical phases and steps. By 

1 3

   53   Page 2 of 5



Langenbeck's Archives of Surgery          (2025) 410:53 

incorporating temporal data, clinicians gain a deeper under-
standing of physiological patterns and their relationship to 
surgical outcomes.

Similarity classification

In clinical practice, physicians learn a lot from compar-
ing different but similar patient cases to each other, e.g., to 
find out whether their proposed intervention for the current 
patient is consistent with treated patients in the past. The 
interpretability method of similarity classification could 
derive similar patient cases when surgeons, e.g., must 
decide whether the risk of post hepatectomy liver failure 
after extended hemihepatectomy does or does not outweigh 
the potential benefits. Even more important may be infor-
mation on the certainty a model has in its treatment rec-
ommendation for specific patients. XAI should thus further 
enable highlighting cases for which the model’s prediction 
is uncertain, supporting the surgeon’s right to be skeptical. 
Similarity classification could also help in this case, e.g., by 

being combined with individual explanatory patient features 
(see above). In this approach, similar patients and their most 
important features for the prediction for the actual patient 
are selected while showing if the model’s prediction for 
similar patients has been true or false [14]. Based on this, 
the surgeon has more information on whether to follow the 
model’s recommendation.

Unraveled rules and laws

When surgeons prepare themselves for future patients or 
revisit a specific patient case, “what if” scenarios often 
arise: “What if the tumor had not been so close to the aorta? 
What if the patient had been 5 years younger? Under these 
circumstances, might a different intervention have been rec-
ommended, or could the patient have avoided a postopera-
tive complication?”. These questions highlight the inherent 
complexity and variability in surgical decision-making. 
Scientists try to address these questions by uncovering 
previously unrevealed “rules” and “laws” in their models. 

Fig. 1  Methods and clinical applications for eXplainable artificial intelligence in surgery
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