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An increasing number of protein complex structures are determined by cryo-electron
microscopy (cryo-EM). When individual protein structures have been determined and are
available, an important task in structure modeling is to fit the individual structures into the
density map. Here, we designed a method that fits the atomic structures of proteins in
cryo-EM maps of medium to low resolutions using Markov random fields, which allows
probabilistic evaluation of fitted models. The accuracy of our method, MarkovFit,
performed better than existing methods on datasets of 31 simulated cryo-EM maps of
resolution 10�A, nine experimentally determined cryo-EMmaps of resolution less than 4�A,
and 28 experimentally determined cryo-EM maps of resolution 6 to 20 �A.
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1 INTRODUCTION

Proteins are vital components of living cells. Among experimental technologies that are used to
determine protein structures, cryogenic-electron microscopy (cryo-EM) has been used in an
increasing number of cases as it has notable advantages, including its suitability for determining
large macromolecular structures (Kuhlbrandt, 2014; Cheng, 2018; Renaud et al., 2018). The use of
Cryo-EM was boosted by the advanced technology of improvements in direct detectors and image
processing algorithms (Bai et al., 2015; Nogales, 2016; Wu and Lander, 2020).

To interpret determined cryo-EM maps, computational methods for modeling macromolecule
structures play a crucial role (Esquivel-Rodriguez and Kihara, 2013; Alnabati and Kihara, 2019;
Malhotra et al., 2019). If a map is determined at a relatively high resolution of up to about 3–4 Å,
protein structures can be directly modeled from the density (Terashi and Kihara, 2018; Terwilliger
et al., 2018; Terashi et al., 2020). For maps of medium to low resolution (~4–10 Å and even lower
resolution), the density usually does not have sufficient information for de novo full-atom modeling.
However, protein secondary structures can be captured (Maddhuri Venkata Subramaniya et al.,
2019;Wang et al., 2021) and known structures of individual proteins can be fitted to the density maps
(Han et al., 2021).

Structure fitting methods have a long history of over two decades, partly because they have been
the only option for structure interpretation in the early days when high-resolution maps were not
obtained. Methods developed include EMfit (Rossmann et al., 2001), ADP_EM (Garzon et al., 2007),
colores (Chacon and Wriggers, 2002), HADDOCK (van Zundert et al., 2015), gmfit (Kawabata,
2008), EMLZerD (Esquivel-Rodriguez and Kihara, 2012), and BCL EM-Fit (Woetzel et al., 2011). As
the structure of proteins in the map can be slightly different from those available in an isolated
condition, some methods focus more on considering the flexibility of proteins (Tama et al., 2004;
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Velazquez-Muriel et al., 2006; Velazquez-Muriel and Carazo,
2007; Trabuco et al., 2008; Wang and Schroder, 2012; Lopez-
Blanco and Chacon, 2013). To assess the goodness of fit of a
structure in a density map, conventionally, the cross-correlation
coefficient (CCC) has been used. Several other metrics were also
developed, such as core-weighted CCC (Wu et al., 2003),
Laplacian-filtered CCC (Vasishtan and Topf, 2011; Joseph
et al., 2017), mutual information (Joseph et al., 2017), overlap,
and evolutionary information of interface residues (Joseph et al.,
2016), and match of density gradient (Han et al., 2021).

Among all the structure fitting methods developed, there are
only a few methods developed for multiple chain fitting.
γ-TEMPy (Pandurangan et al., 2015) identifies the position of
subunits in a cryo-EM map using a vector quantization
algorithm, then uses a genetic algorithm to generate different
docking conformations and evaluates them using a mutual
information score and an atom clash penalty score. Gmfit
(Kawabata, 2008; 2018) uses Gaussian mixture models (GMM)
to represent subunits and a cryo-EM map. A method developed
by Bonomi et al. uses GMMs to represent a cryo-EM map and
atomic subunits (Bonomi et al., 2019). Different conformations of
subunit interactions are sampled with Replica Exchange Monte
Carlo and scored with a Bayesian weighing score which encodes
the map density and prior knowledge of domain connectivity.
EMLZerD (Esquivel-Rodriguez and Kihara, 2012) constructs a
pool of multi-subunit docking models using Multi-LZerD
(Esquivel-Rodriguez et al., 2012) and selects ones that have a
consistent overall surface shape with the density map using 3D
Zernike Descriptors (Kihara et al., 2011). HADDOCK-EM (van
Zundert et al., 2015) is another docking-based method that uses
additional sources of information such as mutagenesis and cross-
link data for docking.

Here, we developed a new method, named MarkovFit, which
performs simultaneous-rigid fitting of atomic protein subunits
into medium- to low-resolution cryo-EM maps. The method
starts by using FFT to search the conformational space for
potential positions of subunits and computes scores that
quantify the goodness-of-fit between each subunit and the
cryo-EM map and the interactions between the subunits.
Subsequently, subunits and their physical interactions are
represented using a Markov random field (MRF) graph
(Besag, 1971). MRF nodes exchange information using a belief
propagation algorithm, and the best conformations are extracted
using a max-heap tree. Lastly, the top final conformations
undergo structural refinement. Taking advantage of MRF,
MarkovFit evaluates the fit of individual subunits to the map
and subunit interactions efficiently in an integrated fashion. We
first benchmarked MarkovFit in comparison with γ-TEMPy on
the dataset they used, which includes 10 simulated EMmaps. The
average root-mean-square distance (RMSD) of MarkovFit was
2.58 Å for the best model among the top 10-scored models and
3.27 Å for the top-scored model, while those of γ-TEMPy were
9.22 Å and 15.32 Å for the best model among the top 10-scored
and the top-scored models, respectively. We further compared
with Bonomi’s method on their simulated dataset of 19 protein
complexes, where MarkovFit had an average RMSD of 2.74 Å and
3.55 Å for the best models among the top 10-scored and

top-scored models, respectively, while Bonomi’s method had
average RMSDs of 4.86 Å and 5.27 Å for the best models
among the top 10-scored and top-scored models, respectively.

We benchmarked MarkovFit on a dataset of nine high-
resolution experimentally determined maps in which each
subunit was shifted and rotated randomly. The average RMSD
was 1.85 Å for the best model among the top 10, which was the
same for the top-scored models. We further benchmarked
MarkovFit on a dataset consisting of 28 experimental maps of
medium to low resolution. The experimental dataset has two
versions. In the first version, each subunit was shifted and rotated
randomly, while the initial orientation was used in the second
version. For the randomly transformed experimental dataset, the
average RMSD values were 8.14 Å and 13.91 Å for the best model
among the top 10 and top-scored models, respectively. For the
non-transformed experimental dataset, the average RMSD values
were 6.08 Å and 9.95 Å for the best model among the top 10 and
top-scored models, respectively. The source code of MarkovFit
was made freely available at https://github.com/kiharalab/
MarkovFit.

2 MATERIALS AND METHODS

2.1 Overview of MarkovFit Algorithm
The purpose of MarkovFit is to fit the atomic structures of
subunits of a protein complex to a cryo-EM density map so
that subunits align well with the map and subunits establish
proper physical interactions. As illustrated in Figure 1, the
method performs 6D exhaustive searching of the translational
and orientational sampling space in the cryo-EMmap to compute
the candidate positions of each subunit. To accelerate the
sampling of the translational space, we used fast Fourier
transform (FFT) with a shifting interval of one voxel of the
map (it is usually less than 2 Å). To sample the orientational space
efficiently, we used a set of quaternions which covers the whole
orientation space by 7,416 orientations (Karney, 2007). For each
rotation, the search process shifts the rotated subunit structure
with the interval and calculates a score at each position,
quantifying the goodness of fit of a subunit into the cryo-EM
map, which is the sum of cross-correlation and overlap.

The cross-correlation coefficient (CCC) is computed as
follows for experimental maps:

CCC � ∑XiYi���������∑X2
i

����∑Y2
i

√√ , (1)

whereXi and Yi correspond to the density values of voxel i in the
experimental map X of a protein complex and the simulated map
Y of the subunit, respectively. For simulated maps, we used the
Pearson’s cross-correlation coefficient (PCCC):

PCCC � ∑(Xi − �X)(Yi − �Y)����������∑(Xi − �X)2√ ����������∑(Yi − �Y)2√ . (2)

Here, �X and �Y are the average density values of the two maps. In
the case of simulated maps, using the normalized density with
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PCCC turned out to be more suitable because it can consider
regions’ surfaces more effectively without focusing on dense cores
in EM maps.

The overlap (OV) score measures the fraction of overlapping
voxels between two maps, X and Y:

OV � X ∩ Y

Y
. (3)

Any pose that has an overlap <50% with the EM map was
excluded. The 50% overlap was chosen arbitrarily as we thought a
pose less than 50% overlap would be safe to remove from the
consideration. A careful optimization of this cutoff may be able to
further improve the accuracy or efficiency of the algorithm. The
shifted position of the highest score is selected per rotation.
Resulted poses are clustered to remove positions within a
predetermined distance (8 Å) from each other, and then they
are sorted by the combined score. Then, up to the top 100 poses
are selected for each subunit.

Next, for each pair of subunits, interactions are evaluated by a
docking score that combines scoring terms, which are a Van der
Waals potential, electrostatic interaction, hydrogen and disulfide
bonds, solvation, and atom clashes, which we have used for
evaluating protein-protein docking (Esquivel-Rodriguez et al.,
2012).

Exploring all possible combinations of the subunits is a time-
consuming process. To explore the search space efficiently, we use
pairwise Markov random field (MRF) in MarkovFit. An MRF is a
non-directional probabilistic graphical model where nodes
represent poses of subunits in the EM map and edges
represent interactions between subunits. A complex
conformation is evaluated by the sum of node potentials over
single random variables, representing the different conformations
of each subunit, and edge potentials over pairs of variables:

P(X1, . . . , XN) � 1
Z

∏
i∈N

Φ(Xi)∏i,j∈E
Ψ(Xi, Xj), (4)

FIGURE 1 |Workflow of MarkovFit. The method starts by searching the conformational space for potential positions of each subunit and computes scores which
quantify the goodness-of-fit between each subunit and the cryo-EM map, and the interactions between the subunits. The right panel shows some candidate poses of
subunits A, B, E, and K, which are A1, A2, B1, B2, E1, E2, K1, and K2. Subsequently, subunits and their interactions are represented using a Markov random field (MRF)
graph. MRF nodes exchange information using a belief propagation algorithm. The graph at the bottom of the right panel shows single nodes, each representing the
candidate poses of a subunit, and interaction/pairwise nodes, each representing the interactions between candidate poses of a pair of subunits. The last step is
extracting the top conformations using a max-heap tree.
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where N is the number of subunits, Xi is a pose of subunit i, Φ is
the node potential, which considers the goodness-of-fit of each
subunit in the pose, Ψ is an edge potential, which considers the
interaction of subunits, E represents all combinations of the
subunits, and Z is the partition function used for normalization.

To avoid numerical issues that might arise from
multiplications, we adopted a log-linear model for the scoring
function:

argmaxX ∝ exp
⎡⎢⎢⎢⎢⎢⎢⎢⎣ −∑N

i�1wccf cc(Xi) −∑N

i�1wovf ov(Xi)

−∑(i,j)∈E wphfph(Xi, Xj) −∑(i,j)∈E wclf cl(Xi, Xj)⎤⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where CC is cross-correlation, OV is overlap, Ph is the physics-
based docking score, CL is the clash score, and w is the weight
assigned for each score.

The four weights were briefly optimized on five experimental
maps, EMDB-ID 0366, 1970, 3340, 2526, and 8475, as follows:
First, we tried an equal weight, 1.0 for all the four weights, fcc, fov,
fph, and fcl. Then, we compared the RMSD of the models with a
weight combination of 0.5, 1.0, 1.0, and 1.0, for the four weights,
respectively. Furthermore, we used fcc = 0.5, with exhaustive
combinations of 0.8, 0.9, and 1.0 for fov, fph, and fcl,
respectively; and finally chose to use fcc = 0.5, fov = 0.9, fph =

1.0, and fcl = 0.8 throughout the study. We did not perform
extensive optimization because the results were the same for most
of the combinations on these five maps.

We apply Maximum a Posteriori (MAP) inference to find
values of random variables, i.e., subunit conformations that
maximize the score (Eq. 5). The MAP inference is applied
using max-sum belief propagation (Koller and Friedman,
2009), which is a message-passing algorithm. To apply max-
sum belief propagation, we first generate a cluster graph from the
MRF graph to transfer information between nodes. A cluster
graph has subunit/single clusters (nodes) representing poses of
subunits relative to the EM map and pairwise/interaction nodes
representing interactions between subunits. There is an edge
between single and pairwise nodes if the pairwise node
includes the subunit (the diagram on the right in Figure 1).
The max-sum belief propagation method works by assigning
initial beliefs to all nodes and then sending messages in two
phases (Figure 2). The initial beliefs for single nodes and pairwise
nodes are the weighted sums of the goodness-of-fit scores of
candidate poses for single nodes and the weighted sums of
interaction scores between candidate poses of pairs of single
nodes for pairwise nodes. After computing the beliefs of
candidate poses, each single node sends its beliefs to all
connected pairwise nodes. Subsequently, pairwise nodes send
messages back to their neighboring single nodes. A message from
a pairwise node (i, j) to a single node i is the maximum of the sum
of the belief of the pairwise interaction and the message received

FIGURE 2 |Overview of theMax-SumBelief Propagation Algorithm. The algorithm has four main steps. 1, it initializes the beliefs of subunit/single clusters (nodes) to
be the sum of the weighted goodness-of-fit scores of their candidate poses, and the beliefs of interaction/pairwise clusters (nodes) to be the sum of the weighted
pairwise scores between the poses of every pair of subunits. 2, subunit clusters (nodes) send their initial beliefs to their connected pairwise clusters (nodes). 3, pairwise
clusters (nodes) send messages to their connected subunit clusters (nodes) containing the sum of the pairwise initial beliefs and the subunit messages they
received from subunit clusters (nodes), excluding the receiving cluster (node) messages. 4, subunit clusters (nodes) add pairwise beliefs to their initial beliefs. This
algorithm corresponds to the right-bottom graph in Figure 1, which is called a cluster graph. A node in the cluster graph is also called a cluster, and thus we used the
term cluster and nodes interchangeably.
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from single nodes. Thus, for each pose of subunit i, the pairwise
node (i, j) sends its pairwise belief with the pose of subunit i and
the belief of subunit j’s pose that maximizes the sum of the beliefs.
Single nodes add received messages to their beliefs. From the final
beliefs of single nodes, we can extract the top-scoring pose. We
check if subunits do not have a significant amount of atom clashes
overall in the complex.

Our goal is to find the top K docking conformations (in this work
K = 10). To extract the top 10 conformations efficiently, we used a
max-heap tree, an efficient algorithm for finding maximum values
(Cormen et al., 2009) (Supplementary Figure S1).

Representing the fitting problem using MRF reduces the
computational time. The brute force method of fitting
subunits into a density map would be to enumerate all
possible combinations of poses of all individual subunits. The
advantage of MRF is that information/scores of the various
conformations are exchanged in two phases: from single nodes
to pairwise nodes, and then from pairwise nodes to single nodes.
Thus, instead of an exhaustive search, docking conformations are
considered for every pair of subunits to decide the most plausible
pose of the individual subunits. After subunits receive all the
information about the other subunits and interactions, extracting

top conformations is performed using an efficient max-heap tree,
which has a constant time for selecting the top-scoring
conformation and subsequent conformations in a log time.

2.2 Evaluation Metrics
We evaluated the resultant final docked conformations in terms
of the root-mean-square deviation (RMSD) from the native
structure and the Assembly Placement Score (APS). The
RMSD is computed between the Cα atoms of the modeled
structure and the reference structure. If a structure has
identical subunits, the minimum RMSD among permutations
is considered. The APS measures the average distance and angle
deviation needed to superimpose each subunit of the resultant
model into the reference structure, weighted by the number of
residues of each subunit.

3 RESULTS

3.1 Structure Fitting Results
We benchmarked the performance of MarkovFit on three
datasets: a set of 31 simulated EM maps; a set of nine high-

TABLE 1 | Modeling accuracy in the simulated dataset.

PDB ID No. subunits Best model by RMSD among top 10 Top-scored model

Rank RMSD (�A) APS (�A, °) RMSD (�A) APS (�A, °)

1CS4 3 1 1.44 (0.1, 6.48) 1.44 (0.1, 6.48)
1VCB 3 1 1.63 (0.25, 6.6) 1.63 (0.25, 6.6)
2DQJ 3 1 1.01 (0.14, 6.7) 1.01 (0.14, 6.7)
1GPQ 4 1 1.27 (0.16, 5.29) 1.27 (0.15, 5.34)
2BBK 4 4 1.23 (0.17, 5.76) 1.41 (0.19, 5.08)
2BO9 4 1 1.71 (0.05, 7.01) 1.71 (0.05, 7.01)
2GC7 4 1 1.08 (0.04, 3.32) 1.08 (0.04, 3.32)
3GPR 4 1 1.65 (0.06, 7.37) 1.65 (0.06, 7.37)
3UIP 4 1 1.36 (0.02, 6.12) 1.36 (0.02, 6.12)
3VH5 4 1 1.49 (0.1, 5.39) 1.49 (0.1, 5.39)
4HUQ 4 4 10.60 (0.18, 24.73) 15.45 (0.33, 50.25)
4WQO 4 1 1.52 (0.44, 5.85) 1.52 (0.44, 5.85)
4WY4 4 3 36.29 (0.84, 104.61) 37.50 (5.34, 91.82)
5FN5 4 6 9.41 (0.06, 16.72) 12.06 (1.27, 19.01)
6VK0 4 1 2.02 (0.11, 5.46) 2.02 (0.11, 5.46)
6ZMS 4 2 22.33 (8.0, 54.4) 22.63 (7.03, 59.17)
7BTY 4 1 1.69 (0.12, 6.55) 1.69 (0.12, 6.55)
7KPX 4 1 2.58 (0.95, 5.39) 2.58 (0.95, 5.39)
4AQ9 5 1 1.91 (0.82, 6.35) 1.91 (0.82, 6.35)
6E14 5 1 2.27 (0.04, 6.08) 2.27 (0.04, 6.08)
6FCZ 5 1 2.17 (0.21, 8.44) 2.17 (0.21, 8.44)
6OWO 5 2 6.25 (0.42, 14.25) 6.48 (0.25, 18.59)
6RD6 5 6 23.33 (4.28, 29.93) 29.28 (2.11, 50.58)
6SGX 5 1 2.17 (0.11, 5.13) 2.17 (0.11, 5.13)
1MDA 6 2 1.43 (0.12, 5.31) 5.85 (0.01, 15.65)
6ND1 6 1 5.00 (0.09, 11.51) 5.00 (0.09, 11.51)
6O22 6 1 7.38 (0.46, 19.99) 7.38 (0.46, 19.99)
7JTI 6 1 2.23 (0.08, 6.78) 2.23 (0.08, 6.78)
1K8K 7 6 5.61 (0.43, 6.07) 11.69 (0.14, 19.99)
1TYQ 7 1 1.99 (0.38, 5.57) 1.99 (0.38, 5.57)
6EHR 7 1 1.70 (0.23, 6.44) 1.70 (0.23, 6.44)

Before structure fitting, individual subunits were randomly rotated and shifted. RMSD for a model was computed relative to the entire complex of the PDB entry after superimposition. No.
subunits, the number of subunits in the complex. APS, Average Placement Score, shows the average deviation of subunits in terms of the shifted distance of the subunit center and the
rotation angle. Deviation and the angle values for a complex are weighted by the number of amino acids of subunits.
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resolution experimentally determined cryo-EMmaps; and a set of
28 experimentally determined cryo-EM maps of medium to low
resolution. All datasets are non-redundant, e.g., any protein pairs

from two maps have less than 25% global sequence identity
between each other.

The simulated EM maps of 31 protein complexes were
constructed as follows: From the Protein Data Bank (PDB)
(Berman et al., 2000), we selected entries that contain only
proteins and have two to seven subunits, which yielded
295 entries. Then, we applied the 25% sequence identity
cutoff, which resulted in 22 entries. Then, we added
9 complexes that were common in datasets used in the two
previous works (Pandurangan et al., 2015; Bonomi et al., 2019),
which we later compared against. EM maps of these complexes
were simulated using the epdb2mrc.py program of the
EMAN2 package (Tang et al., 2007) at 10 Å resolution and
with a voxel size of 1.0 Å.

The high-resolution experimental dataset includes nine cryo-
EM maps from EMDB and was selected as follows: We selected
EM maps that have associated PDB entries that have three to five
protein subunits and resolution less than 4 Å. Next, we applied
the 25% sequence identity cutoff. After that, we checked
experimental cryo-EM maps and their associated PDB entries
manually using UCSF Chimera (Pettersen et al., 2004) to ensure
they had sufficient overlap. The contour threshold used for this
dataset was 0.5 * the recommended contour level.

The medium to low resolution experimental dataset contains
28 cryo-EM maps from EMDB and was selected as follows: we
selected EM maps that have associated PDB entries containing
two to seven protein subunits and resolution ranges between
6 and 20 Å, which returned 58 EM maps. Next, we applied the
25% sequence identity cutoff, which resulted in 36 entries. Last,
experimental cryo-EMmaps and their associated PDB entries are
checkedmanually by UCSF Chimera to assure they have adequate
overlap. The contour threshold used was 0.5 times the
recommended contour level.

In addition to the simulated and experimental datasets, we
have three more datasets derived from them. In the new datasets,
protein subunits are randomly rotated and shifted from their
original positions. The purpose of the random transformations of
subunits is to objectively test the searchmethod.Without random

FIGURE 3 | Relationship between overalls RMSD of protein complex models and distance and angle deviation of subunits. The worst (largest) deviations among
subunits were plotted. Red circles, distance deviation; blue triangles, angle deviation. (A) The best model among the top 10-scoredmodels was considered. (B) The top-
scored models were considered.

FIGURE 4 | Structure fitting examples of simulated map targets. The
number of chains in a complex is shown in the parentheses. The middle panel
shows the best among the top 10-scored models, and the right panel shows
the top-scored models. Only one fitted structure was shown for
2GC7 and 1TYQ because the top-scored model was the best among the top
10-scored models. 2GCN, the human RhoC-GDP complex. 1TYQ, Arp2/
3 complex with bound ATP or ADP. 1K8K, bovine Arp2/3 complex. 4WY4, an
autophagic SNARE complex. 4HUQ, folate ECF transporter from
Lactobacillus brevis.
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transformation, the resulting accuracy was substantially high
(Supplementary Figure S2 shows the fitting accuracy of the
simulated and medium resolution experimental datasets).

3.1.1 Structure Fitting Results for Simulated Maps
Structure fitting results for the 31 simulated map datasets are
summarized in Table 1. To remove potential bias to the docked
poses of subunits in the PDB files, subunits were randomly
rotated and shifted before the fitting process by MarkovFit
was applied. In Table 1, two results are shown for each target.

On the left are the results of the lowest root-mean square
deviation (RMSD) model among the top 10 scored models.
On the right, we showed the top-scored model. The top-
scored model is the model that had the best score among the
models generated. This model does not always be the best in
quality in terms of RMSD among all the models generated
because often the score could not select the best quality model
among the pool. The best model among the top 10-scored models
is the best RMSD model among the 10 models selected by the
score. Since there are 10 choices to choose from, there is a higher

TABLE 2 | Modeling accuracy in the high-resolution experimental map dataset.

EMDB ID PDB ID No. subunits Res. (�A) Voxel size (�A) Best model by RMSD among top 10 Top-scored model

Rank RMSD (�A) APS (�A, °) RMSD (�A) APS (�A, °)

9108 6MEO 3 3.9 1.059 1 1.94 (0.42, 5.88) 1.94 (0.42, 5.88)
13508 7PM0 3 3.6 1.1 1 1.64 (0.18, 7.15) 1.64 (0.18, 7.15)
25368 7SP8 3 2.7 1.08 1 1.29 (0.32, 4.61) 1.29 (0.32, 4.61)
30093 6M5U 3 3.8 1.062 1 2.36 (0.17, 4.84) 2.36 (0.17, 4.84)
21897 6WTI 4 2.38 1.08 1 1.31 (7.78, 4.01) 1.31 (7.78, 4.01)
23827 7MGE 4 3.94 0.94 1 1.87 (0.17, 6.2) 1.87 (0.17, 6.2)
30614 7D8X 4 2.6 1.0825 1 1.96 (0.35, 4.86) 1.96 (0.35, 4.86)
22417 7JPO 5 3.2 1.07 1 2.54 (0.36, 6.17) 2.54 (0.36, 6.17)
25426 7STE 5 2.73 0.826 1 1.74 (0.21, 4.17) 1.74 (0.21, 4.17)

No. subunits, the number of subunits in the structure; Res., reported resolution of the maps; voxel size, the size of the grid voxels of the maps. As we showed in Table 1, two results are
shown: the best RMSD, model among the top 10-scored models and the top-scored models.

TABLE 3 | Modeling accuracy in the medium resolution experimental map dataset.

EMDB ID PDB ID No. subunits Res. (�A) Voxel size (�A) Best model by RMSD among top 10 Top-scored model

Rank RMSD (�A) APS (�A, °) RMSD (�A) APS (�A, °)

3658 5NL2 2 6.6 1.35 1 2.44 (0.34, 5.51) 2.44 (0.34, 5.51)
22647 7K2V 2 6.6 1.05 2 24.71 (19.9, 153.6) 25.29 (22.3, 160.53)
30324 7CA5 2 7.6 1.06 1 3.29 (0.99, 5.39) 3.29 (0.99, 5.39)
8673 5VH9 2 7.7 1.2 1 0.96 (0.24, 2.29) 0.96 (0.24, 2.29)
8898 6AR6 2 9 3 1 2.20 (0.79, 6.75) 2.20 (0.79, 6.75)
7327 6C13 2 11.33 1.72 2 2.24 (5.09, 12.82) 2.29 (2.09, 12.85)
5450 3J1Z 2 13 2.735 2 21.73 (5.73, 82.88) 32.33 (1.45, 85.73)
0366 6N88 3 6.2 1.43 9 6.55 (0.05, 10.61) 7.33 (0.13, 13.78)
3445 5M5N 3 9.3 2.2 2 18.60 (1.07, 64.62) 34.63 (3.87, 63.73)
1495 3CRF 3 17 1.591 3 3.09 (0.76, 23.91) 30.15 (41.1, 106.63)
3329 5FVM 4 6.1 1.33 1 2.77 (0.13, 5.84) 2.77 (0.13, 5.84)
6476 3JBR 4 6.1 1.32 2 14.90 (1.65, 18.55) 45.60 (7.99, 97.8)
2526 4CHV 4 7 0.975 4 2.32 (0.31, 6.94) 2.81 (0.14, 6.94)
8097 5IOU 4 7 1.07 1 3.67 (0.48, 8.49) 3.67 (0.48, 8.49)
3340 5FWP 4 7.2 1.315 10 13.19 (0.27, 18.03) 16.54 (2.43, 19.83)
8475 5U05 4 7.9 1.26 9 2.32 (0.1, 6.39) 2.55 (0.07, 6.39)
21617 6WCQ 4 8.5 2.28 5 17.24 (3.86, 17.47) 34.54 (15.22, 38.45)
8091 5IDF 4 10.31 1.76 1 4.36 (0.38, 6.58) 4.36 (0.38, 6.58)
6553 3JCH 5 7.06 1.352 3 2.84 (0.15, 5.16) 6.68 (0.65, 7.21)
3201 5FKU 5 8.34 1.76 1 1.78 (0.04, 4.79) 1.78 (0.04, 4.79)
10255 6SN9 5 9.8 1.065 5 1.94 (1.84, 5.22) 7.55 (2.05, 11.54)
2355 4BIJ 5 16 4.4 10 17.09 (4.58, 43.52) 36.61 (3.04, 88.15)
8796 5WCB 6 6 1.31 2 1.94 (0.2, 5.79) 2.09 (0.03, 6.04)
7066 6B7Z 6 6.5 1.073 3 2.47 (0.12, 6.61) 2.64 (0.04, 6.62)
3435 5G4G 6 7.8 1.45 1 2.35 (0.2, 5.59) 2.35 (0.2, 5.59)
3087 5A9K 6 19 1.6 8 24.76 (3.17, 104.07) 27.63 (15.7, 103.71)
1940 3ZW6 6 20 3.308 10 22.95 (3.96, 74.36) 25.36 (5.57, 98.17)
6671 5XF8 7 7.1 1.32 1 3.22 (0.16, 7.39) 3.22 (0.16, 7.39)

No. subunits, the number of subunits in the structure; Res., reported resolution of the maps; voxel size, the size of the grid voxels of the maps. Two results are shown: the best RMSD,
model among the top 10-scored models and the top-scored models.
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chance that the RMSD value of the best model among the top 10-
scored models is better than the top-scored model.

Overall, fitting was very successful in this simulated map
dataset. When the best model among the top 10-scored
models was considered, 22 out of 31 models (71.0%) had an
RMSD of less than 3.0 Å with an average RMSD of 1.69 Å. We
also reported the assembly placement score (APS) (Lasker et al.,
2009). APS for a complex model is the average distance and angle
deviation of subunits in the complex from the reference structure,
weighted by the number of amino acids of each subunit. Since
APS is weighted by the subunit size, misplacement of a small
subunit does not affect the score as much as that of a large
subunit. The average APS for the 22 models with a less than 3.0 Å
RMSD was 0.21 Å and 6.06° for the distance and the angle
deviation, respectively. There are five other targets which had
an RMSD of less than 10 Å. The average distance and angle
deviation of this group were 0.29 and 13.71, respectively. Thus,
for all these cases that had an RMSD less than 10 Å, subunits were
placed almost at the right place in the density map but often with
a relatively deviated angle, which elevated the overall RMSD.

Turning attention now to the top-scored model results (the
right column in Table 1), RMSDs were almost identical to the
results shown for the best model among the top 10-scored
models. Thus, the scoring function was very successful in
selecting the best model. Out of the 27 targets that have a less
than 10 Å RMSD model within the top 10-scored models, there
were only two targets, 5FN5 and 1MDA, where the RMSD of the
top-scored model dropped more than 2.0 Å from the best among
the top 10.

In Figure 3, we analyzed how the placement of individual
subunits affects the overall accuracy of the complex model. For
each target, the largest distance and angle deviations among
subunits were plotted relative to the overall RMSD of the
model. Obviously, both distance and angle deviations were
small when the overall RMSD was small enough, for example,
less than 3 Å, while above 3 Å RMSD, the angle deviation sharply
increased above 75°. Also, the distance deviation and RMSD.

We show five examples of structure fitting by MarkovFit in
Figure 4. The first two targets were successful examples of
MarkovFit. For these two targets, 2GC7 and 1TYQ, the best
(smallest RMSD) model was ranked at the top by the score, and
the RMSD was 1.08 Å and 1.99 Å, respectively. For the third
example, a seven-chain complex of actin-related protein (Arp) 2/
3 complex (1K8K), there was a 5.61 Å RMSD model ranked
within the top 10; however, it was not selected as the top-scored
model. The top-scored model had an RMSD of 11.69 Å. For this
target, the main difficulty was placing Chain F (dark blue) in the
correct position and orientation. In the top-scored model, Chain
F was placed around at the right position (1.62 Å) but with a large
rotation deviation of 151.81°. The best model among the top
10 models had an APS of (4.23 Å, 9.41°). The next example is the
autophagic SNARE complex (4WY4), which has a four-helix
bundle structure. This was a difficult target for structure fitting
because four helixes are hard to distinguish. In particular, two
subunits, Chain C (yellow) and Chain D (magenta), have large
rotation deviations of 178.7° and 172.0°, respectively, for the best
among the top 10-scored models, resulting in a large RMSD of
36.29 Å. In the top-scored model, Chain D was shifted by 24.0 Å,
which further increased the RMSD to 37.5 Å. For the last
example, the folate ECF transporter (4HUQ), the main
problem was Chain B (cyan). Although this chain was placed
almost in the right position (distance deviations of 0.04 Å and
0.49 Å in the best among the top 10-scored model and the top-
scored model, respectively), it had a large angle deviation (67.7°

and 157.5° in the best among the top 10-scored model and the
top-scored model, respectively), which made RMSD over 10 Å.

3.1.2 Structure Fitting Results for Experimental Maps
3.1.2.1 Fitting to High Resolution Maps
Although the main purpose of MarkovFit is to fit individual
subunits into medium resolution density maps, we first tested the
algorithm on higher resolution maps. For that, we generated a
dataset of nine experimental cryo-EM maps with a resolution of
less than 4 Å.

FIGURE 5 | Structure fitting accuracy relative to the map resolution. RMSD of the entire model structure of complexes is plotted. (A) the best RMSDmodel among
the top 10-scored models. (B) the top-scored models. Targets with different chain numbers are separately plotted.
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The results are summarized in Table 2. Table 2 shows two
results for each target. On the left, we showed the results of the
lowest RMSD model among the top 10 scored models. On the
right, we showed the results of the top-scored model. Fitting was
highly successful in this dataset. Looking at the lowest RMSD
model among the top 10-scored models, all nine models had an
RMSD of less than 3.0 Å with an average RMSD of 1.86 Å and
average APS of 1.11 Å and 5.32° for the distance and the angle
deviation, respectively. The results of the top-scored models are
identical to the lowest RMSD model among the top 10 scored
models, indicating that the scoring function was able to identify
the best model among the top 10 models.

3.1.2.2 Fitting to Medium Resolution Maps
Next, we tested MarkovFit on the 28 experimental map datasets
(Table 3). Here, again, we randomly rotated and shifted subunits

before applying the structure fitting process to avoid bias in the
initial poses of subunits in the PDB files. Similar to the simulated
map cases, the resulting accuracy was substantially higher if
random transformation was not applied (Supplementary
Figure S3).

Clearly, structure fitting was more difficult on this dataset
as compared with the previous simulated map dataset and the
high-resolution experimental dataset: when the lowest RMSD
model among the top 10-scored models was considered,
13 out of 28 models (46.4%) had an RMSD of less than
3.0 Å with an average RMSD of 2.20 Å. When counted on
the simulated map dataset (Table 1), the fraction was 71.0%.
There were six more targets with an RMSD of less than 10 Å,
which had an average RMSD of 4.03 Å. We tried to refine the
model structures with the Rosetta Relax protocol (Nivon et al.,
2013) and a rigid-body refinement (Esquivel-Rodriguez et al.,
2012) but did not observe meaningful improvement (data not
shown). The conformational change that the refinement
methods could make was not large. Thus, if a model’s
RMSD is large, it is often beyond what the refinement
methods can handle. Also, changes made by the refinement
methods were not always in the right direction and made the
structure worse.

The scoring function worked well on this dataset as well.
Looking at the top-scored model results, RMSD values were
identical or close to the best model among the top 10-scored
models, especially for targets where the best model among the top
10 has an RMSD less than 10 Å. Out of the 19 targets that have a
less than 10 Å RMSD model within the top 10-scores, the score
was able to select the lowest RMSD model as the top for 16 of
them (84.2%).

In Figure 5, we examined the correlation between the map
resolution and the model accuracy. There is no clear linear
correlation between the model RMSD and the map resolution
observed. But we can see that the structure fitting accuracy
substantially dropped when the map resolution was worse
than 10 Å. For example, considering the best among the top
10 models, when the map resolution is better than 10 Å, 16 out of
21maps (76.2%) had a model with an RMSD lower than 5 Å but it
drops to 42.9% (3 out of 7 maps) when maps with a resolution
worse than 10 Å are counted.

Five examples of structure fitting to experimental maps are
presented in Figure 6. MarkovFit worked well in the first two
targets, the E. coli replicative DNA polymerase complex in
DNA-free state (EMD-3201, PDB ID: 5FKU) and the Cdt1-
MCM2-7 complex in the AMPPNP state (EMD-6671, PDB ID:
5XF8). Near-native complex structure was successfully ranked
as the top score, which has an RMSD of 1.78 Å and 3.22 Å,
respectively. For the third example, a homo five-chain complex
of CorA from Thermotoga maritima in the absence of
magnesium, state II (EMD-6553, PDB ID: 3JCH), the best-
RMSD model among the top 10 models has an RMSD of
2.84 Å, but it was not selected as the top-scored model. The
top-scored model had an RMSD of 6.68 Å. This is a membrane
protein complex, and the large volume of the density in the
bottom half of the map is mostly from the nanodiscs, which
mimic the membrane environment. Among the top 10 models,

FIGURE 6 | Structure fitting examples of experimental map targets. The
number of chains in a complex is shown in the parentheses. The middle panel
shows the best among the top 10-scored models, and the right panel shows
the top-scored models. Only one fitted structure was shown for EMD-
3201 and EMD-6671 because the top scored model was the best among top
10-scored models. (EMD-3201, PDB ID: 5FKU), the E. coli replicative DNA
polymerase complex in DNA free state. (EMD-6671, PDB ID: 5XF8), the Cdt1-
MCM2-7 complex in the AMPPNP state. (EMD-6553, PDB ID: 3JCH), the
magnesium channel CorA in the magnesium-free asymmetric open state II.
(EMD-3445, PDB ID: 5M5N), microtubule-bound S. pombe kinesin-5 motor
domain in the AMPPNP state. (EMD: 3340, PDB ID: 5FWP), the Hsp90-
Cdc37-Cdk4 kinase complex.
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the best model ranked third by the score placed all subunits in
their correct position and orientation. However, the top-
scored model had one chain (blue) in a substantially
deviated orientation, which caused a larger overall RMSD
of 6.68 Å. The next example is the microtubule-bound S.
pombe kinesin-5 motor domain in the AMPPNP state (EMD-
3445, PDB ID: 5M5N), a three-chain complex. In the best
among the top 10-scored model which has an RMSD of
18.60 Å, Chain A (blue) was placed around the right
position but with a large rotation deviation of 166.22°. In
the top-scored models, Chain A (blue) was placed at the
position of Chain B (a shift of 29.76 Å) with a large rotation
deviation of 178.84°. In turn, Chain B (green) was placed in
the position of Chain A (a shift of 18.68 Å) with a small
rotation deviation of 2.83°, resulting in the increase in the
RMSD value of the top-scored model to 34.63 Å. The last
example is the Hsp90-Cdc37-Cdk4 kinase complex (EMD:

3340, PDB ID: 5FWP), which has four chains. The main
difficulty with this target was Chain E (blue). For this target,
both the best among the top 10-scored models and the top-
scored model have an RMSD above 10 Å. In the best among
the top 10-scored models, Chain E (blue) did not occupy its
density well due to a large rotation of 50.45°. In the top-scored
model, Chain E (blue) was shifted by 14.62 Å and has a
rotation deviation of 65.91°.

3.2 Comparison With Other Methods
We compared MarkovFit with two state-of-the-art methods for
structure fitting. The first method is γ-TEMPy, which works by
first identifying feature points representing atomic unit centroids
in a density map using vector quantization and then applying a
genetic algorithm to build structural models (Pandurangan et al.,
2015). The second method, designed by Bonomi et al., uses a
Gaussian mixture model to represent a density map and a

TABLE 4 | Comparison with the two existing methods on simulated maps at 10 Å resolution.

PDB ID No. subunits Best RMSD (Å) of the among top 10-scored model RMSD (Å) of the top-scored model

MarkovFit γ-TEMPy Bonomi MarkovFit γ-TEMPy Bonomi

1CS4 3 1.43 4.0 (2.6) (159) 1.43 4.0 3.5
1GPQ 4 1.26 3.2 (1.7) (805) 1.26 3.3 2.2
1MDA 6 1.43 14.1 (7.8) (4286) 5.85 14.1 8.1
1TYQ 7 1.99 16.9 (19.1) (599) 1.99 34.8 19.8
1VCB 3 1.62 (7.7) (16) (1.8) (453) 1.62 25.3 2.2
2BBK 4 1.22 10.9 (2.1) (857) 1.41 14.9 2.4
2BO9 4 1.70 3.3 (1.3) (502) 1.70 9.9 1.6
2DQJ 3 1.00 3.5 (2.0) (89) 1.00 3.9 2.5
2GC7 4 1.07 11.9 (1.3) (817) 1.07 22.5 2.0
1SGF 6 13.05 16.7 - 15.38 20.5 -
1SUV 6 1.79 - (5.2) (247) 1.79 - 5.3
1Z5S 4 2.18 - (8.7) (892) 2.18 - 9.0
2UZX 2 2.10 - (1.1) (551) 2.10 - 1.5
2WVY 3 2.32 - (0.9) (480) 4.56 - 1.3
3LU0 5 2.93 - (9.0) (800) 9.70 - 9.3
3NVQ 4 2.10 - (0.9) (903) 2.10 - 1.0
3PDU 4 2.36 - (1.3) (802) 1.81 - 1.6
3PUV 5 2.38 - (22.7) (698) 2.38 - 23.4
3R5D 3 1.52 - (1.4) (63) 1.52 - 1.9
3SFD 4 19.59 - (1.4) (385) 21.91 - 1.5

The results of γ-TEMPy and Bonomi’s method are taken from their articles. This dataset was constructed by combining the datasets used in these two articles (Table 1 in the γ-TEMPγ
article (Pandurangan et al., 2015) and Table 2 in the Bonomi’s method (Bonomi et al., 2019). “-” in the table indicates that the target was not included in the paper. In the left column, if the
score rank of the reported model is above 10, we use (RMSD) (rank) to show the RMSD and the rank of the best-RMSD model.

TABLE 5 | Modeling accuracy using AlphaFold2 subunit models.

EMDB ID PDB ID No. Subunits Res. (�A) Voxel size (�A) Best model by RMSD among top 10 Top-scored model

Rank RMSD (�A) APS (�A, °) RMSD (�A) APS (�A, °)

30324 7CA5 2 7.6 1.06 1 4.0 (1.53, 9.73) 4.0 (1.53, 9.73)
8475 5U05 4 7.9 1.26 8 2.79 (0.83, 7.86) 3.1 (0.41, 8.21)
3435 5G4G 6 7.8 1.45 9 4.83 (0.39, 7.52) 5.07 (0.43, 5.51)
8796 5WCB 6 6 1.31 - - - - -
3087 5A9K 6 19 1.6 10 20.6 (1.89, 111.51) 20.82 (1.95, 112.32)
1940 3ZW6 6 20 3.308 2 15.24 (0.57, 169.04) 15.83 (0.62, 167.2)

Among the targets in themedium resolution dataset (Table 3), we only performed fitting for targets that have all subunitsmodelled by AlphaFold2within an RMSD, of 5 Å. No. subunits, the
number of subunits in the structure; Res., reported resolution of the maps; voxel size, the size of the grid voxels of the maps. Two results are shown: the best RMSDmodel among the top
10-scored models and the top-scored models. “-” in the table indicates that modeling by MarkovFit did not yield valid models due to clashes.
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Bayesian scoring function to rank the generated models (Bonomi
et al., 2019).

The comparison was performed on a dataset of simulated
maps at 10 Å as shown in Table 4. This dataset includes nine
protein complexes, which are in common with Table 1 and the
datasets used in the two works (Pandurangan et al., 2015) and
(Bonomi et al., 2019). In addition, from the γ-TEMPy dataset
(Table 1 in their work), we added the remaining one protein
complex and the remaining 10 protein complexes from
Bonomi’s dataset (Table 2 in their work). As we presented
in Tables 1, 2, two data points are shown for each target; the
best RMSD among the top 10-scored models and the RMSD of
the top-scored model.

When the top-scored models of the nine common targets were
considered, MarkovFit clearly showed the best performance. The
average RMSD of these targets is 1.93 Å, 14.74 Å, and 4.92 Å for
MarkovFit, γ-TEMPy, and the Bonomi’s method, respectively.
MarkovFit showed the lowest RMSD for eight out of the nine
targets. Our method had a substantially higher accuracy on
1TYQ, where our method had an RMSD of 1.99 Å and the
other two methods had over 10 Å RMSD.

We also compare MarkovFit with each of the two methods
individually in terms of the top-scored models. 1SGF is the
remaining target to compare with γ-TEMPy. For this target,
both MarkovFit and γ-TEMPy did not produce near-native
conformation, but the former had a lower RMSD of 15.38 Å.
With the Bonomi’s method, we compare the 19 targets for which
both methods have results. The average RMSD values on these
targets by MarkovFit and Bonomi’s method were 3.55 Å and
5.27 Å, respectively. MarkovFit had a lower RMSD than the
Bonomi’s method for 12 out of the 19 targets.

In terms of the best among the top 10-scored models,
MarkovFit and γ-TEMPy had an average RMSD of 2.58 Å and

9.2 Å, respectively, on the 10 targets that are common for these
2 methods. Comparing against the Bonomi’s method is not
possible because the reported results in their papers are
models ranked lower than the top 10.

3.3 Fitting Predicted Models by AlphaFold2
To further investigate the performance of MarkovFit, we tested
the method on protein structure models generated by
AlphaFold2 (Jumper et al., 2021). AlphaFold2 is a deep
learning-based method for predicting protein structure
models from sequences that showed a substantial
improvement in structure prediction accuracy in the
Critical Assessment of techniques in protein Structure
Prediction (CASP) (Kryshtafovych et al., 2021).

We modeled individual protein subunits in the medium-
resolution experimental dataset by AlphaFold2. Among five
models produced by AlphaFold2, we reported the best RMSD
in Supplementary Table S1. Among the 28 targets in the
dataset, interestingly, there were only six targets where
AlphaFold2 modeled all their subunits within an RMSD of
less than 5 Å (Supplementary Table S1). We performed
structure fitting only for these six targets. Table 5
summarizes the results.

Among the six targets, only one target had an RMSD of less
than 3 Å and three targets were within 10 Å RMSD when the
lowest RMSD model among the top 10-scored models was
considered. The map EMD-8796 (PDB: 5WCB) did not yield
models as subunit poses had too many clashes among them.
Thus, overall, AlphaFold2 models were not accurate enough for
most of the targets in this dataset.

3.4 Computational Time
The CPU hours of running MarkovFit are shown in Figure 7.
They were measured on 11 experimental map targets
from the medium resolution dataset with a different
number of subunits. The computational time of the entire
MarkovFit process is the sum of the times for the subunit
pose search process using FFT, the pairwise score
computation between every pair of subunits, the belief
propagation application on the MRF graph, and the step
of picking the top 10 docked structures using the max-heap
tree. The subunit pose search process and the pairwise score
computation take most of the MarkovFit time, while the
belief propagation algorithm and the picking of the top
10 conformations step take a few minutes. The search
process and the pairwise score computation on the 11-
target experimental subset took on average about 59%
(7.7 h) and 40% (6.25 h) of the total computational time
of MarkovFit, respectively.

In Figure 7, we see a correlation between the number of amino
acids in the protein complex and the computational time. The
two main factors that affect the computational time are the size of
the map and the number of subunits. Apparently, a large map has
a larger search space. As the search process is performed on each
subunit individually, the running time increases as we have more
subunits. Also, the pairwise interaction score computation
increases as we have more subunits.

FIGURE 7 | Computational time relative to the protein complex size. The
CPU time of the entire process (circles) as well as the initial subunit pose
search step (triangles) are shown. 11 experimental map targets with different
number of chains were used: EMD-3658, EMD-7327, EMD-0366, EMD-
1495, EMD- 2526, EMD-8475, EMD-6553, EMD-3201, EMD-8796, EMD-
3087, and EMD-6671. The time was measured on 20 cores of AMD EPYC
7402P 24-Core @ 2.8 GHz.
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4 DISCUSSION

In this work, we developed MarkovFit, a procedure to perform
structure fitting to cryo-EM maps of medium to low resolution.
The MRF is effective in finding correct combinations of subunit
poses that are mapped in the target EM map, and the Max-heap
algorithm is used to select top-scored conformations.

Although the algorithmworked well overall, there were several
reasons that could lead to failure of the search process. A main
cause is the small size of a subunit, e.g., ~100 or fewer residues as
observed in the target 4WY4 in the simulated map dataset
(Table 1) and 6N88 and 6SN9 in the experimental map
dataset (Table 3). Finding the correct pose of a small domain
is difficult, especially when the other subunits are large and have a
higher density in the corresponding positions in the EM
map. Also, apparently, as the map resolution gets worse,
density values across the cryo-EM map become
undistinguishable, resulting in incorrect predictions of
candidate poses for subunits (Figure 5).

Fitting existing subunit structures have been a major strategy
in structure modeling for cryo-EM maps of medium to low
resolution. This approach is becoming more important now as
predicting structures is becoming increasingly reliable by
structure prediction methods of the new generation (Jumper
et al., 2021), although AlphaFold2 did not work that well in
the dataset we used (Table 5, Supplementary Table S1).
Structure models of dozens of organisms are precomputed and
made available to the public, too (Aderinwale et al., 2022; Varadi
et al., 2022). A future important direction of development would
be to combine these two approaches effectively: structure
prediction of individual proteins and combining and fitting
them into a cryo-EM map.
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