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H I G H L I G H T S  

• Digital image segmentation is crucial for accurate quantitative analysis of medical images, including X-ray images of bone tumors. 
• Multi-level feature fusion and batch normalization were used to improve segmentation accuracy in image recognition with a convolutional neural network. 
• FCNN-4s algorithm uses fine feature fusion, BN layer, and data augmentation to improve bone tumor segmentation. 
• Adopts operations like Crop and Fuse, padding, ReLU activation, and SoftMax loss with optimized hyperparameters for better performance. 
• Improves bone tumor segmentation with refined structure and probability graph model, achieving higher accuracy and real-time performance.  
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A B S T R A C T   

Background and objective: Bone tumor is a kind of harmful orthopedic disease, there are benign and malignant 
points. Aiming at the problem that the accuracy of the existing machine learning algorithm for bone tumor image 
segmentation is not high, a bone tumor image segmentation algorithm based on improved full convolutional 
neural network which consists fully convolutional neural network (FCNN-4s) and conditional random field 
(CRF). 
Methodology: The improved fully convolutional neural network (FCNN-4s) was used to perform coarse seg-
mentation on preprocessed images. Batch normalization layers were added after each convolutional layer to 
accelerate the convergence speed of network training and improve the accuracy of the trained model. Then, a 
fully connected conditional random field (CRF) was fused to refine the bone tumor boundary in the coarse 
segmentation results, achieving the fine segmentation effect. 
Results: The experimental results show that compared with the traditional convolutional neural network bone 
tumor image segmentation algorithm, the algorithm has a great improvement in segmentation accuracy and 
stability, the average Dice can reach 91.56%, the real-time performance is better. 
Conclusion: Compared with the traditional convolutional neural network segmentation algorithm, the algorithm 
in this paper has a more refined structure, which can effectively solve the problem of over-segmentation and 
under-segmentation of bone tumors. The segmentation prediction has better real-time performance, strong 
stability, and can achieve higher segmentation accuracy.   
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1. Introduction 

Bone tumors are a type of orthopedic disease that can be either 
benign or malignant and pose a significant health risk. The peak inci-
dence of benign bone tumors is between 11 and 20 years of age, while 
malignant bone tumors tend to occur in individuals aged 20–40 years 
and often affect long bones, such as the distal femur, proximal tibia, 
fibular head, distal radius, and proximal humerus [1]. 

Currently, in clinical diagnosis, only a small portion of the infor-
mation contained in bone tumor X-rays is typically utilized. Qualitative 
diagnosis is mainly based on observing the morphological features of the 
tumor in the X-ray, with little consideration of quantitative parameters 
such as the shape, texture, and volume of the tumor that are related to 
the geometry and density information contained in the X-ray. Qualita-
tive diagnosis is subject to the subjectivity of human observers, and 
different doctors may have inconsistent readings of the same radiograph 
at different times, which poses significant challenges for clinical 
diagnosis. 

Digital image segmentation is the process of dividing an image into 
multiple regions based on specific attributes (such as color, texture, 
density, etc.). Accurate image segmentation is the foundation of quan-
titative analysis of medical images. Despite the relatively recent emer-
gence of digital image processing, research on image segmentation 
technology has made considerable progress and success. Zhou et al. [2] 
proposed a method for recognizing precancerous lesions and cancers in 
gastric cancer based on the fusion of shallow and deep features in 
endoscopic images. However, to date, there is still no segmentation 
method that can be universally applied to all types of images, and not all 
segmentation methods are suitable for a particular class of images. 

Due to the similar X-ray absorption coefficients between tumors and 
surrounding tissues, as well as the effects of X-ray scattering [3,4], un-
even light intensity, and different irradiation angles, the edges of bone 
tumors in X-ray images appear blurry, and the distribution of tumor and 
background features overlap. It is necessary to fully consider the local 
characteristics of the images. 

With the rapid development of computer technology, computer 
vision, image processing, and pattern recognition, digital image seg-
mentation plays an increasingly important role in quantitative analysis 
of medical images [6]. Among them, MRI and computed tomography 
(CT) are widely used imaging techniques for detecting abnormalities in 
tumor shape, size, or location, which help in detecting tumors. Zhao 
et al. [5] proposed a novel GAN that utilizes its synthesized CT images to 
visually resemble the reference CT (RCT) images and achieve desirable 
results on local mismatched tissues. In quantitative evaluation, it out-
performs other compared methods. In addition, MRI-guided radio-
therapy is a current research hotspot in radiotherapy. 

2. Materials and methods 

2.1. Basic theory 

2.1.1. Improved fully convolutional neural network 
In 1998, LeCun et al. [7] first applied CNN to image recognition, and 

in 2012, the AlexNet network structure proposed by Krizhevsky et al. [8] 
made significant breakthroughs in the field of CNN object classification. 
In 2015, Long et al. [9] proposed a pixel-level image semantic seg-
mentation network called Fully Convolutional Neural Network (FCNN), 
which improved upon AlexNet by performing end-to-end pixel-wise 
classification and achieving image segmentation tasks. FCNN converted 
the two fully connected layers of AlexNet into convolutional layers, 
allowing the network’s final output to remain a two-dimensional matrix, 
thus preserving spatial information between pixels and facilitating 
feature extraction. To make the output of the network the same size as 
the input, the original FCNN simply upsampled the output of the last 
convolutional layer to the same size as the input image, but this oper-
ation only utilized information from the 5th pooling layer, resulting in a 

coarser target feature that made it difficult to achieve precise 
segmentation. 

This algorithm will use feature information from different pooling 
layers to achieve multi-level feature fusion. After upsampling the output 
of the last convolutional layer, the first fusion will be performed with the 
feature vector matrix from the fourth pooling layer, and then the 
resulting feature fusion matrix will be upsampled and fused with the 
feature vector matrix from the third pooling layer. Then, the fusion 
feature matrix will be upsampled and fused with the feature vector 
matrix from the second pooling layer, and finally, the feature matrix 
from the third fusion will be upsampled to obtain a feature matrix the 
same size as the original image, resulting in a better feature information 
matrix. At the same time, the algorithm adds the batch normalization 
(BN) layer proposed by Ioffe et al. [10] after each convolutional layer to 
speed up network training and improve segmentation accuracy. The 
network structure with multi-level feature fusion is shown in Fig. 1, 
where Conv represents a convolutional layer that can extract various 
features of the image such as edges and positions, Pool represents a 
pooling layer that can achieve feature dimensionality reduction and 
preserve the main features extracted by the convolutional layer, BN 
represents a batch normalization layer that ensures that the weight 
distribution of the network after convolution does not change signifi-
cantly, Up represents an upsampling layer that mainly increases the size 
of the feature matrix through deconvolution, Crop_Fuse performs crop-
ping and fusion operations on the feature matrix, and Pixelwise Pre-
diction is the pixel-wise classification prediction layer that achieves 
image segmentation by classifying each pixel. 

2.1.2. Conditional random field 
Conditional Random Field (CRF) based image semantic segmenta-

tion is one of the classic probabilistic graphical segmentation algo-
rithms, which can remove noise in the segmentation result and enhance 
the boundary segmentation of the image. This algorithm integrates the 
fully connected CRF model proposed by Zheng et al. [11] into the 
improved FCNN network for post-processing bone tumor boundary 
segmentation, thereby improving the segmentation accuracy of bone 
tumor images. 

In the fully connected CRF model, the energy function that assigns 
pixels to their respective labels can be represented as: 

E(x) =
∑

i
φu(xi)+

∑

i∕=j
φp
(
xi, xj

)
(1) 

In Equation (1), E(x) represents the total energy of assigning pixels to 
their respective labels; φu(xi) is a unary energy potential function that 
represents the energy of assigning pixel i to label xi without considering 
the relationship between pixels; φp(xi, xj) is a pairwise energy potential 
function that represents the energy of assigning pixels i and j to labels xi 

and xj based on the difference in grayscale values and spatial position 
distances between pixels, and describes the relationships between 
pairwise pixels, such that similar pixels are assigned the same label. The 
unary energy potential function φu(xi) can be obtained from the initial 
coarse segmentation result of FCNN, and the pairwise energy potential 
function φp(xi, xj) can be represented as: 

φp
(
xi, xj

)
= μ
(
xi, xj

)∑M

m=1
W(m)k(m)

G
(
fi, fj
)

(2) 

In Equation (2), μ
(
xi, xj

)
is the label compatibility matrix, which 

represents the penalty for assigning different labels to different pixels. 

When xi ∕= xj, the penalty μ
(
xi, xj

)
= 1; k(m)

G

(
fi, fj

)
is the Gaussian filter 

kernel, where fi, and fj are the feature vectors of the filter, determined by 
the spatial position between pixels and their grayscale values, and m is 
the number of filters; W(m) is the weight of each filter. 

In the CRF model, a bilateral Gaussian filter is used to assign pixels 
that are close in space and have similar grayscale values to the same 
label; a spatially smooth Gaussian filter is used to remove isolated small 

S. Wu et al.                                                                                                                                                                                                                                      



Journal of Bone Oncology 42 (2023) 100502

3

regions in the bone tumor segmentation result. Therefore, Equation (2) 
can be further represented as: 

φp
(
xi, xj

)
= μ
(
xi, xj

)[
W(1)exp

(
−
|Pi − Pj|

2θ2
α

−

⃒
⃒Ri − Rj

⃒
⃒

2θ2
β

)

+W(2)exp

(

−

⃒
⃒Pi − Pj

⃒
⃒

2θ2
γ

)]

(3) 

In Equation (3), Ri and Rj represent the grayscale feature value 
vectors of pixels i and j; Pi and Pj represent the spatial position rela-
tionship feature vectors of pixels i and j; θα、θβ and θγ represent the 
weights of the grayscale, position, and other factors on the potential 
functions of the pixels. Zheng et al. [9] have conducted a large number 
of experiments and found that when the bilateral filter weight W(1) = 5, 
the control parameters θα = 160、θβ = 3, the smoothing filter weight 
W(2) = 3, and the control parameter θγ = 5, the boundary of the image 
can be better segmented. 

2.2. Algorithms used in this paper 

In this paper, the algorithm flow of bone tumor image segmentation 
using the improved full convolutional neural network is shown in Fig. 2. 
Firstly, the collected images are preprocessed. Then, part of the 

processed data is used as the training set and the rest as the test set. This 
training set is used to train FCNN and CRF fusion algorithm. Finally, the 
model is tested on the test set, and the segmentation results are evalu-
ated using performance indicators. Figs. 3–5. 

2.2.1. Image preprocessing 
Each pixel in the original CT bone tumor image is stored in the 

computer as 16 bits, but in digital image processing, 8-bit images are 
commonly used. Therefore, in this study, the CT images were first 
normalized in terms of gray level, with the gray values of each pixel 
uniformly compressed to the range of 0–255. 

2.2.2. Improved FCNN-4s coarse segmentation algorithm 
In order to obtain good tumor features, this paper proposes a fine 

feature fusion model and adds a BN layer to the network. The FCNN-4s 
algorithm includes a data layer, convolution layer, pooling layer, acti-
vation function layer, upsampling layer, and output probability map 
layer. The feature fusion operation (Fuse) is used to fuse the features of 
high-dimensional feature matrices and low-dimensional feature 
matrices, and the data of the corresponding dimensions of the two 
matrices are added together under the premise of the same dimension 
and size. If the dimensions and sizes of the two target matrices are not 
the same, the FCNN-4s algorithm will perform a matrix cropping oper-
ation (Crop) to make their dimensions and sizes the same, so that the 

Fig. 1. The network structure chart of the multilevel features information fusion.  

Fig. 2. The flow chart of algorithm.  
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Fig. 3. The network structure chart of the improved FCNN-4s.  

Fig. 4. The results of coarse segmentation and fine segmentation are compared.  
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network can smoothly learn the features. In the matrix cropping oper-
ation, if the dimensions are different, the low-dimensional feature ma-
trix is convolved to make the two matrices have the same dimensions; if 
the sizes are different, the same size as the high-dimensional feature 
matrix is extracted symmetrically from the center of the low- 
dimensional feature matrix. These operations are all designed to 
improve the performance of the network and achieve better bone tumor 
segmentation results. To prevent the feature information matrix from 
becoming too small after pooling, this paper performs a padding oper-
ation on the original bone tumor image (240×240) with a padding size 
of 100. The output size indicates the dimension and size of the output 
feature matrix. The algorithm performs three fusion operations on the 
feature matrices of different dimensions to obtain more refined bone 
tumor features. Meanwhile, the BN layer can keep the weight distribu-
tion of the parameters during each iteration from changing significantly, 
thereby accelerating the convergence speed. 

2.2.3. Fine segmentation fusion algorithm of FCNN-4s and CRF 
This paper describes the process of determining whether each pixel 

in an CT bone tumor image is a tumor point, using a binary classification 
approach where the label “0″ represents non-tumor pixels and ”1″ rep-
resents tumor pixels. After obtaining two initial probability maps from 
FCNN-4s, the energy function is initialized to obtain the original prob-
ability values for each pixel. The following steps are used to calculate the 
CRF model and iteratively adjust the two-class probability maps pre-
dicted by FCNN-4s using a fusion algorithm. 

Step 1: Involving filtering the probability maps for both classes using 

a Gaussian filter k(m)

G

(
fi, fj

)
to obtain two filtered results Q̃

(m)
(l) for la-

bels “0″ and ”1″, respectively. 

Step 2: Assigning weights W(m) to Q̃
(m)

(l) and calculates the pairwise 
energy potential function φp(xi, l) for each class probability map based 
on the label compatibility matrix μ(m)(xi, l). 

Step 3: Calculating the unary energy potential function φu(xi) for the 
output of the FCNN-4s network, and then integrates it with the pairwise 
energy potential function φp(xi, l) from Step 2 to obtain the overall en-

ergy function Q̂i(xi). 
Step 4: Normalizing Q̂i(xi) to obtain the probability values for each 

pixel’s label,denoted as Qi(xi). and selects the label with the highest 
probability for each pixel. The algorithm loop continues until the 

probability values for each pixel’s label converge to 90% or more, at 
which point the algorithm stops. If the convergence threshold is not met, 
the pixel loss is back-propagated to the FCNN-4s algorithm for further 
learning and parameter adjustment. 

The pseudo-code for the algorithm is shown below, which results in a 
fusion network structure of CRF and FCNN-4s. The end-to-end calcula-
tion of the loss and parameter updates for each pixel can be performed 
using the back-propagation algorithm.  

Begin 

Qi(xi)←
1
Zi

exp(− φu(xi)) for all xi, Z is the normalization factor. 

While not converged Qi(xi)⩾90% do 

Q̃
(m)

i (l)←
∑

j∕=ik
(m)

G

(
fi , fj

)
Qj(l)for m = 2; 

φp(xi, l)←
∑

l∈Lμ(m)(xi, l)
∑2

m=1W(m)Q̃
(m)

i (l); 

Q̂i(xi)←φu(xi) + φp(xi, l); 

Qi(xi)←
1
Z

exp( − Q̂i(xi) ); 

end while 
End  

2.3. Data set and image preprocessing 

The images used in the experiments were collected from the Second 
Affiliated Hospital of Fujian Medical University. The three-dimensional 
size of each CT image is 240×240×155, and the ground truth labels are 
manually annotated by five experts. 

In this experiment, 150 CT images of bone tumors were randomly 
selected as the training set. The image preprocessing techniques and 
data augmentation techniques described in section 2.2.1 were used to 
obtain a total of 48,000 training images with a size of 240×240. This 
paper mainly performed data augmentation on the bone tumor images, 
including horizontal and vertical flipping, as well as counterclockwise 
rotation by 90◦, 180◦, and 270◦, to improve the accuracy of the trained 
model. 

3. Results 

3.1. Evaluation criteria 

This paper evaluates the segmentation results of bone tumors using 
indicators such as the Dice Similarity Coefficient (DSC), sensitivity, and 
positive predictive value (PPV). The DSC represents the similarity be-

Fig. 5. Compared with the segmentation results of five segmentation methods.  
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tween the experimental segmentation results and the labels, sensitivity 
represents the ratio of correctly segmented tumor points to the true 
tumor points, and PPV represents the ratio of correctly segmented tumor 
points to the total segmented tumor points. The formulas are as follows: 

Dice =
|P ∧ T|

(|P| + |T|)/2
(4)  

Sensitivity =
|P ∧ T|
|T|

(5)  

Positive =
|P ∧ T|
|P|

(6) 

In the formulas, P represents the segmentation results obtained using 
the algorithm proposed in this paper, while T represents the labels 
generated by experts for the bone tumors. 

3.2. Model training process 

During the training stage, the mature Caffe deep learning framework 
was used to learn the model parameters on the training set. Considering 
that Sigmoid and Tanh activation functions easily cause gradient 
disappearance, ReLU was chosen as the activation function for the 
network, and the conventional SoftMax classification loss function was 
used. 

Since the selection of learning rate is crucial to the network and 
determines whether the network can converge and to what degree, it 
cannot be too large or too small. In this paper, the convergence of the 
network under different learning rates was compared using the original 
training set. According to the experimental results, when the network 
selects relatively large learning rates such as 10e-08 and 10e-09, the 
training loss cannot converge. When the learning rate is 10e-10, the 
training loss can converge and the convergence is better than that of 
smaller learning rates such as 10e-11. Therefore, a learning rate of 10e- 
10 was ultimately adopted. 

The weight decay coefficient has a certain impact on the degree of 
overfitting of the network. This paper compared the training accuracy of 
the network under different weight decay coefficients. The experimental 
results showed that when the weight decay coefficient is too small, it has 
not played a role in weight decay and the training accuracy of the 
network is poor. When the weight decay coefficient is too large, the 
network will be overfitting to some extent and the training accuracy will 
decrease. Therefore, a weight decay coefficient of 0.0005 was ultimately 
adopted. 

To verify the effectiveness of adding BN layers, this paper compared 
the training loss and accuracy of the network before and after adding BN 
layers using the original training set. The network with BN layers had a 
loss of about 5000 after 8000 iterations, and the network had basically 
converged after 1.2x105 iterations. In contrast, the network without BN 
layers had a loss of about 5000 after 2.0x104 iterations, and the network 
converged after nearly 1.6x105 iterations, which fully demonstrates that 
BN layers can speed up the convergence of the network and reduce the 
loss value. Adding BN layers also improves the accuracy of the trained 
model to some extent. 

After selecting the network structure and parameters correctly, to 
verify the influence of augmented datasets on the model accuracy, this 
paper compared the tumor classification accuracy on different datasets. 
As the dataset was gradually augmented, the training accuracy 
improved significantly. This indicates that increasing training samples 
can prevent network overfitting and improve the model’s generalization 
ability, which ensures that the trained model can achieve good bone 
tumor segmentation on the test set. 

3.3. Comparison of segmentation results between single-mode image and 
fused mode image 

This paper proposes a bone tumor segmentation model that com-
bines coarse segmentation and fine segmentation to improve segmen-
tation accuracy. F. 7 shows the results of our algorithm for coarse and 
fine segmentation, where the red contour represents the position of the 
bone tumor. It can be seen that our algorithm is able to accurately locate 
and segment the bone tumor, and precisely outline the contour of the 
tumor with a small error compared to the ground truth. 

Subsequently, three metrics were used to quantitatively analyze the 
segmentation results, as shown in Table 1. It can be seen that the fine 
segmentation model has significantly improved segmentation accuracy 
in terms of metrics such as the similarity index, sensitivity, and positive 
predictive value, compared to the coarse segmentation model. In 
particular, the positive predictive value has increased by 6.15%. 

4. Discussion 

In order to verify the superiority of the proposed improved algo-
rithm, this paper compared it with the simple segmentation algorithm 
FCNN-8s, which only performs two feature fusions, and FCNN-4s algo-
rithm without CRF fusion. The experiment also compared with tradi-
tional CNN algorithms proposed by famous scholars Havaei [12] and 
Pereira [13]. From F. 8, it can be seen that the Havaei [12] algorithm has 
obvious over-segmentation, the segmentation of bone tumor boundaries 
is not clear and there are many isolated scatter points. The Pereira [13] 
algorithm has better segmentation accuracy due to its deeper network, 
and its performance is slightly better than the Huawei algorithm, which 
also reduces the over-segmentation of bone tumors to a certain extent. 
Although FCNN-8s obtained a smooth bone tumor segmentation con-
tour, the feature fusion is relatively less, which resulted in insufficiently 
fine bone tumor boundaries and low segmentation accuracy. Compared 
to FCNN-8s, FCNN-4s has some enhancement in obtaining bone tumor 
boundary information, but the segmented bone tumor boundary is still 
not delicate enough. Especially in the segmentation of the third complex 
bone tumor image, the segmentation results of various algorithms are 
unsatisfactory due to the complexity of the tumor boundary. However, 
the proposed algorithm can still obtain satisfactory results. Overall, the 
FCNN-4s model with more fine feature fusion and the end-to-end algo-
rithm structure formed by fusing CRF can make similar pixels obtain the 
same label, refine the bone tumor boundary, and effectively solve the 
problems of over-segmentation and under-segmentation of bone tumors. 

Additionally, as shown in Table 2, the proposed algorithm has higher 
segmentation accuracy compared to other algorithms. The Dice coeffi-
cient is improved by 6.78% and 3.95% compared to the algorithms 
proposed by two other scholars, respectively, and on average, it is 
improved by 9.16% compared to the FCNN algorithm without fusion 
CRF. Moreover, in terms of the average time for segmenting a bone 
tumor image, the proposed algorithm has high real-time performance in 
the prediction stage, with an average time of 1 s to complete the seg-
mentation of a bone tumor image. 

Other types of deep learning algorithms such as U-Net [17,18,19] 
may also be implemented for tumor segmentation. U-Net is a popular 
deep learning algorithm that has shown promising results in various 
medical image segmentation tasks, including tumor segmentation. It is a 
type of convolutional neural network that is designed to learn from both 

Table 1 
Segmentation performance evaluation of different segmentation algorithms.  

Different segmentation algorithm Dice Sensitivity Positive 

Improved FCNN-4s rough segmentation 
algorithm  

0.8746  0.8692  0.8561 

Fine segmentation fusion algorithm of FCNN-4s 
and CRF  

0.9122  0.9215  0.9176  
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low-level and high-level features of the image, allowing for more ac-
curate and robust segmentation. U-Net has been used in several studies 
for tumor segmentation, and its performance has been shown to be 
comparable or even superior to other segmentation methods. Its ability 
to handle complex and irregular shapes of tumors makes it a suitable 
choice for many medical image analysis applications. 

Cancer spread and controllable treatment can also be analysed 
visually discrete element method [4]. and also by state-of-the-art 
graphical and meshing algorithms [1516]. These type of computer 
simulations is able to assist and improve bone cancer diagnosis, which is 
advances orthopedics diagnosis. Note that the use of deep learning is 
vital in this aspects of computer aided diagnostics and will be a prom-
ising technology [20,21]. 

5. . Conclusion 

This paper proposes an improved bone tumor image segmentation 
algorithm to address the shortcomings of traditional convolutional 
neural network (CNN) algorithms, such as high computational 
complexity and low accuracy. The proposed algorithm uses an improved 
fully convolutional neural network to achieve coarse segmentation of 
bone tumor pixels and a probability graph model that fuses the corre-
lation between image labels, and the conditional random field is used to 
form a trainable end-to-end segmentation algorithm. Compared with 
traditional CNN segmentation algorithms, the structure of this algorithm 
is more refined, which can effectively solve the problem of over- 
segmentation and under-segmentation of bone tumors, and has better 
segmentation prediction real-time performance and stability, achieving 
higher segmentation accuracy. The experimental results show that the 
proposed algorithm has higher segmentation accuracy than other algo-
rithms and has high real-time performance in the average time required 
for segmentation of a bone tumor image, with an average of 1 s to 
complete the segmentation of a bone tumor image. 
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