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Abstract: During cardiac excitation contraction coupling, the arrival of an action potential at the
ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual
myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+

release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the
magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream
contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the
amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell
surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain
this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs
of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in
times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide
an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight
the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway,
ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of
β-adrenergic and angiotensin receptor signaling cascades on this process.

Keywords: L-type calcium channels; ion channel trafficking; t-tubule; caveolae; calcium signaling;
β-adrenergic receptor; angiotensin II

1. Introduction

Voltage-gated, L-type CaV1.2 channels play an essential role in cardiac excitation-
contraction (EC) coupling and can regulate cardiac gene expression. The number and
activity of voltage-gated, L-type CaV1.2 channels localized to specialized dyadic regions of
the t-tubule sarcolemma, adjacent to ryanodine receptor (RyR2) clusters, dictates the degree
of Ca2+ influx into cardiomyocytes and is thus a major determinant of the magnitude
of ventricular contraction. On the other hand, CaV1.2 channels localized to caveolae
are thought to play a critical role in regulation of gene expression in a process known
as excitation–transcription coupling. Targeting of CaV1.2 channels to the appropriate
membrane compartment is thus critical for their proper physiological function. The number
of CaV1.2 channels at the sarcolemma at any given time is governed by the relative amount
of channel insertions achieved with anterograde trafficking via the secretory and recycling
pathways, versus endocytosis via retrograde trafficking pathways. Endocytosed channels
can refuel recycling endosome pathways to provide a rapidly mobilizable pool of channels,
or they can be targeted for degradation in lysosomes or the proteasome. In this review,
we summarize the current literature on CaV1.2 channel trafficking and its regulation. We
highlight recent data indicating that G-protein coupled receptor (GPCR)-signaling can
positively (in the case of β-adrenergic receptors) or negatively (in the case of Angiotensin
type 1 receptors; AT1R) influence the surface abundance of CaV1.2 channels, providing a
means to tune cardiac EC-coupling by altering channel expression. We begin with a brief
summary of the structure and function of these multimeric channels.
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2. CaV1.2 Channel Structure and Function
2.1. CaVα Subunits

L-type Ca2+ channels (LTCC) are a family of voltage-gated Ca2+ channels (CaV1.1–1.4)
that allow Ca2+ influx into excitable cells in response to depolarization. Their structure
and function is reviewed extensively elsewhere [1–3]. Here we focus on trafficking and
regulation of CaV1.2, a multimeric protein complex composed of a pore-forming α1 subunit
encoded by cacna1c, and associated auxiliary subunits CaVβ, CaVα2δ and sometimes,
CaVγ [1]. CaVα1C subunits are widely expressed in brain, smooth muscle, and pancreas,
and they form the core of the most prevalent L-type Ca2+ channel in the cardiac muscle of
the heart [4,5]. Underscoring their fundamental importance in cardiac function, cacna1c
knockout is embryonic lethal in mice [6]. The typical structure of the CaV1.2 channel
complex is depicted in Figure 1. When expressed alone, CaVα1C subunits are not efficiently
inserted into the membrane resulting in very low current density [7–9]. The full functional
identity of the channel becomes evident once associated with its auxiliary subunits.

Figure 1. Illustration of the cardiac voltage gated L-type CaV1.2 channel complex. The channel consists of a pore-forming
CaVα1C subunit and auxiliary subunits CaVβ and CaVα2δ. The CaVα1c is composed of four homologous repeat domains
(I-IV), each having six transmembrane spanning segments (S1–S6, shown in blue). S1–S4 comprise the voltage sensing
domain (VSD) and S5–S6 form the pore domain (PD). CaVβ subunits (depicted in purple) are composed of a SH3, HOOK,
and GK domain. Interaction of CaVβ with the CaVα1c occurs between the GK domain on CaVβ subunits and the alpha
interaction domain (AID) on the I-II linker (orange). CaVα2δ subunits are proposed to interact with the extracellular loops
of domains I-III as highlighted by the red dashed lines [10–13].

2.2. CaVβ Subunits

CaVβ subunits are cytosolic proteins with Src homology 3 (SH3), HOOK, and guany-
late kinase (GK) domains forming the core of the protein responsible for the majority
of functional properties of the β subunits [14–17]. There are four main CaVβ subunits
(CaVβ1-4) encoded by separate genes with several splice variants. CaVβ2b is the most
highly expressed isoform in the heart [9]. Accordingly, CaVβ2

−/− mice suffer embryonic
lethality and disrupted cardiac phenotype [18]. In heterologous and native systems in-
teractions between CaVβ and CaVα1c subunits lead to alterations in channel activation
and inactivation as well as robust increases in surface expression and current density,
likely due to an increased open probability and/or enhanced cell membrane localization
of the channel complex [9,19–23]. This 1:1 stochiometric interaction between the subunits
is thought to occur within the α-interaction domain (AID), located within the I-II pore
loop of CaVα1c subunits [21,24], and small region of the GK domain on CaVβ, referred to
as the AID-binding pocket (ABP) [16]. Mutations within this region interfere with CaVβ

and CaVα1c interactions and result in diminished membrane targeting of CaVα1c [21].
Furthermore, deletion mutants of regions within the CaVα1c C-terminus result in reduced
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plasma membrane localized channels, with many channels remaining stuck in internal
membranes [25].

2.3. CaVα2δ Subunits

CaVα2δ, is comprised of two subunits α2 and δ which are encoded by the same gene
and bound together by disulfide bonds. The N-terminal α2 region is extracellular, with
the δ region anchored to the outer leaflet of the plasma membrane via a GPI anchor [26].
Of the several isoforms, CaVα2δ1-3 have been found in the heart [27,28]. Within all the
isoforms there is a Von Willebrand factor-A (VWA) domain in the extracellular region, and
in CaVα2δ1 and CaVα2δ2 this consists of a metal-ion-dependent adhesion site (MIDAS)
which is thought to interact directly with the extracellular loops of CaVα1c [11,29]. When
this MIDAS site is mutated, there is a diminished trafficking response and retention of
the subunits within the ER [29]. As well as promoting trafficking of the channel com-
plex, association of CaVα2δ with CaVα1c also enhances the voltage-dependent activation
by increasing the voltage sensitivity of the VSDs, allowing for calcium influx at more
physiological membrane potentials [10].

2.4. CaVγ Subunits

The final auxiliary subunit, γ, is composed of four transmembrane spanning segments
with intracellular N- and C-termini. This is the least studied auxiliary subunit of cardiac
CaV1.2 channels but of the eight isoforms of γ subunits, four have been shown to be
expressed in cardiac tissue and to associate with the CaV1.2 complex (CaVγ4, CaVγ6,
CaVγ7 and CaVγ8). In HEK293 cells coexpression of CaVα1c with the various CaVγ subunits
results in altered activation and inactivation kinetics of the whole cell Ca2+ current (ICa) [30].
However, the specific role of endogenous CaVγ subunits in native heart tissue and their
effects on channel trafficking remain unknown.

3. Trafficking of CaV1.2 Channels
3.1. Anterograde Transport of CaV1.2 to the Sarcolemma

CaVα1c, like all proteins destined for the cell membrane, is synthesized by membrane-
bound ribosomes on the rough endoplasmic reticulum (rER) [31]. This is the first step in
the classical secretory pathway. Briefly, free ribosomes initially pick-up the mRNA for the
channel in the cytosol and begin translation but this is paused once the ribosome translates
a signal sequence, A.K.A. the leader sequence. This is a short, ~20 amino acid long chain
of hydrophobic amino acids near the N-terminus of the polypeptide, that once translated,
finds and binds a signal recognition particle (SRP) that initiates targeting of the entire
complex to the rER membrane. This idea was originally proposed by Blobel and Sabatini
in their ‘signal hypothesis’ [32]. Recognition and binding of the signal sequence and
ribosome by the SRP puts a halt to translation until the SRP binds to an SRP receptor. Once
situated on the rER membrane, the SRP is released and the ribosome and polypeptide are
handed off to a protein translocation complex (Sec61) where translation resumes. The Sec61
translocon complex forms an ER membrane spanning channel that acts as a conduit for
entry of the growing polypeptide chain into the ER [33]. Since CaVα1c is a transmembrane
protein bound for the plasma membrane, it is directly inserted into the ER membrane as
it forms, with the N and C-termini located within the cytosol, the extracellular loops in
the ER lumen, and the hydrophobic transmembrane regions spanning the ER membrane.
CaVα2δ and CaVγ are similarly produced while cytosolic proteins like CaVβ subunits lack
signal sequences and are thus translated on free ribosomes and released directly into the
cytosol. Whether the entire channel complex assembles in the ER membrane remains
unclear but there is a school of thought suggesting that binding of at least CaVβ to CaVα1c
is necessary to release the channels from the ER and promote forward trafficking (discussed
in more detail below). Upon their exit, the channels move in vesicles onwards to the Golgi
apparatus, subsequently exiting from trans-Golgi complex in vesicles that are propelled by
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kinesin motor proteins along microtubule highways to their t-tubular, caveolar, or surface
sarcolemmal destinations (see Figure 2).

Figure 2. Anterograde CaV1.2 channel delivery pathways. Bottom: A depiction of the ‘Biosynthetic Delivery Pathway’ that
commences when CaVα1c are translated directly into the rER membrane. These pore-forming subunits have several ER retention
motifs and just one identified ER export motif. Binding of the CaVβ subunit to the CaVα1c while in the ER membrane is thought
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to lessen the influence of the retention signals and favor channel export, whereby the channels subsequently exit the ER in vesicles to
the Golgi complex. Absence of the CaVβ subunit may render the channels more vulnerable to ubiquitination on the ER membrane,
precipitating proteosomal degradation. Note this vulnerability has been reported in neuronal CaV1.2 and has not yet been confirmed
in the cardiac channels. Single or clustered channels exit the trans-Golgi network (TGN) and are carried along microtubules by motor
proteins to BIN1-anchored delivery hubs on the t-tubule sarcolemma to assume positions in dyadic and caveolar regions. It is unclear
exactly when and where in the anterograde trafficking pathway CaVα2δ joins the complex. Top: Stable sarcolemmal CaV1.2 channel
expression is maintained in the face of ongoing channel internalization by the endosomal recycling pathway. Endocytosed channels
enter the early endosome and are sorted, a subpopulation is sent to Rab7 positive late endosomes and may subsequently undergo
lysosomal degradation. The remainder of the channels are recycled back to the membrane either through a fast, direct pathway from
the early endosome along a Rab4-dependent fast recycling pathway, or through a slower Rab11-dependent recycling pathway from
the recycling endosome. If some channels are degraded, it is possible that endosomal reservoirs of channels take their place and
supplement this pathway to maintain stable membrane expression.

3.2. Role of the CaVβ-Subunit in CaV1.2 Trafficking

Until very recently, the prevailing thought was that CaVβ subunit interactions with α1c
were indispensable for channel trafficking to the cardiomyocyte surface membrane where the
channels fulfill a duality of functions at the t-tubules in triggering Ca2+ induced Ca2+ release
from RyR2, and contributing to loading of the SR [34], and play a further role at the caveolae
in activation of calcineurin-NFAT signaling pathways [35]. The role of the CaVβ-subunit in
membrane targeting of the channels has been extensively reviewed elsewhere [36,37] and so
we mention it only briefly here to highlight some more recent advances [38,39]. In heterologous
expression systems and in neurons, interactions between β-subunits and α1 are fundamentally
required for channel trafficking to the plasma membrane [7,19,24,40–44]. Expression of the α1-
subunit alone in the absence of the β-subunit, yields dramatically reduced surface expression
and little to no currents, in contrast to the robust surface expression and currents in cells in
which the β-subunit is co-expressed [19,23,43,45–47]. This effect is abrogated by mutations in
the AID or the ABP suggesting that it requires CaVβ binding to the AID on the I-II loop of
CaVα1 [48–50]. It was initially suggested that this interaction shielded an ER retention motif
on the I-II loop and thus promoted enhanced exit of the channel from the ER and on through
the anterograde trafficking pathway to the surface membrane [51]. However, this idea was
later refuted in work from the Colecraft lab that used chimeric channel constructs in which
various intracellular portions of CaVα1c were substituted into another calcium channel (the
α1g of CaV3.1) known to exhibit CaVβ-independent surface expression [23]. In this paradigm-
shifting study, it was revealed that the I-II loop actually contains an ER-export signal whereas
all the other intracellular loops and the N- and C-termini contain ER-retention signals. It is
thus thought that binding of the CaVβ to the AID induces a conformational change in the
channel that weakens the ER retention influences and instead shifts the balance toward ER
export and trafficking to the surface. Furthermore, in heterologous expression systems and
hippocampal neurons, binding of CaVβ to CaVα1c in the ER, reportedly protects the channel
from ubiquitination and proteosomal degradation [52].

In cardiomyocytes the cellular architecture is vastly different from that of heterologous
cells, but until recently, the same principals and reliance on the CaVβ-subunit for surface
trafficking were thought to apply, in part fueled by studies showing that short hairpin
RNA-mediated knockdown of CaVβ2 reduced ICa in adult rat ventricular myocytes by
~60% [53], and others showing that CaVβ2

−/− mice succumbed to embryonic lethality at
around E10.5 due to heart failure caused by reduced L-type calcium current [18]. Marx
and colleagues have cast doubt on the reliance of cardiac CaVα1c on CaVβ for trafficking
in a study where they generated transgenic mice that expressed WT CaVα1c and could
be doxycycline-induced to additionally express dihydropyridine (DHP)-resistant CaVα1c
with a triple alanine mutation in their AID that significantly decreases the affinity of
CaVβ-binding [44]. The AID mutant channels did not co-immunoprecipitate (co-IP) with
CaVβ but did display t-tubule localization and generated whole-cell Ca2+ currents that
could be distinguished from WT channels with addition of the DHP nisoldipine. This
study raises questions about the role of CaVβ in CaVα1c trafficking in cardiomyocytes,
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however, the interpretation of these results is complicated by the presence of WT channels.
Work from our lab reveals that CaV1.2 channels often insert into the sarcolemma as large,
multi-channel clusters [54]. In addition, we and others have shown that CaV1 channels
can functionally interact within clusters, such that the conformational change in one
channel that occurs upon gating, can be transmitted to adjacent interacting channels,
triggering their coordinate opening [55–64]. With this in mind, it seems possible that
the conformational change induced by CaVβ subunits binding to WT channels, could
be conferred to β-less AID mutant channels in the cluster and that this allows those
channels to escape the ER and traffic to the sarcolemma. This was partially addressed
by Marx et al. with experiments performed in a heterologous expression system, where
they expressed WT channels and DHP-insensitive WT or DHP-insensitive AID mutant
channels. Addition of nisoldipine resulted in remaining ICa in the DHP-insensitive WT case
and almost eliminated ICa in the DHP-insensitive AID mutant channels. The conclusion
was that CaVβ-less channels could not hitch a ride with WT channels in tsA cells. To
unequivocally dispel the CaVβ-CaVα1c trafficking hypothesis, a transgenic mouse that
expresses only AID mutant channels would be the gold standard. Nevertheless, this
study also revealed that CaVβ-less channels are refractory to β-adrenergic stimulation and
formed the prelude to the ground-breaking discovery that binding of the small Ras-like
G protein Rad to CaVβ on the CaV1.2 channel complex, partially inhibits channel activity
until Rad it is phosphorylated by PKA, causing it to dislodge from CaVβ and revealing the
enhanced open probability attributed to adrenergic regulation of these channels [39].

3.3. CaV1.2 Recycling

Membrane protein expression is maintained in the face of ongoing endocytosis by
both delivery via the biosynthetic pathway and from the endosomal recycling pathway
(see Figure 2). Rab GTPases choreograph the trafficking of vesicular cargo from the mem-
brane, through endocytosis, sorting, and subsequent recycling or degradation [65]. The
>60-member family of Rab proteins is the largest family in the superfamily of Ras small
GTPases. These proteins regulate the tethering or docking of vesicles to different mem-
brane and endomembrane compartments, and may play roles in transport of vesicles
along different cytoskeletal filaments by interacting with specific motor proteins [66]. For
example, insulin reportedly stimulates Rab4 activity and association with the motor pro-
tein kinesin II (KIF3) to facilitate microtubule-mediated delivery and plasma membrane
insertion of the GLUT4 glucose transporter in 3T3-L1 adipocytes [67]. Rab4 is known to
facilitate so-called ‘fast recycling’ (t1/2 = 1–5 min) of vesicular cargo from early endosomes
back to the plasma membrane [68,69]. Rab11 is another Rab protein which is known to
facilitate ‘slow recycling’ (t1/2 = 12–30 min) of vesicular cargo from recycling endosomes
back to the plasma membrane [68,69], and reportedly interacts with actin-filament asso-
ciated myosin V motor proteins [70]. In the heart, the role of Rab protein interactions
with cytoskeletal elements in CaV1.2 channel recycling has not yet been investigated but
our recent work suggests the presence of three endosomal reservoirs of CaV1.2 channels
located on: (1) Rab4-positive early endosomes, (2) Rab11-positive recycling endosomes,
and (3) Rab7-positive late endo/lysosomes [54]. This recent work further provided the
first reports of CaV1.2 channel trafficking and recycling in live adult mouse ventricular
myocytes [54]. This was achieved by transducing cardiomyocytes in vivo via retro-orbital
injection with a cardiotropic AAV9-packaged, fluorescent protein-tagged CaVβ2 (AAV9-
CaVβ2-paGFP) which essentially served as a fluorescent ‘biosensor’ to enable monitoring
of the localization and dynamics of a portion of the endogenous channels. Total internal
reflection fluorescence (TIRF) imaging using an ~150 nm evanescent field of excitation
light, allowed examination of channel dynamics in the surface sarcolemma and initial
portion of the t-tubular membrane in isolated, transduced cardiomyocytes, and revealed
ongoing, rapid insertion and removal of channels [54,59] that likely reflects delivery from
both the biosynthetic and recycling pathways, and counterbalancing endocytosis. Often
these insertion and removal events involved entire clusters of channels although smaller
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discrete events that may represent removal of individual channels were also observed.
The arrival and departure of channel clusters implies that CaV1.2 channels can cluster in
intracellular compartments. This idea was corroborated by immunostaining experiments
that revealed clusters of channels on endosomes, and others lined-up in vesicles along
microtubules. In agreement with the previously reported ~3 h lifetime of plasma mem-
brane CaV1.2 channels [19], 2 h cytoskeletal disruption with nocodazole, latrunculin A, or
a combination thereof, produced no change in ICa density measured with whole-cell patch
clamp electrophysiology, or in the overall expression of sarcolemmal channels assessed
with super-resolution microscopy of immunostained channels. While this study did not
explicitly examine the role of the cytoskeleton in ongoing (unstimulated) CaV1.2 channel
insertion and endocytosis, a previous study in tsA-201 cells using TIRF-fluorescence recov-
ery after photobleaching (TIRF-FRAP) revealed a significant deficit in channel delivery to
the membrane when microtubules, actin, or both were pharmacologically disrupted, and
intracellular dynamics of vesicular CaV1.2 was largely halted by these treatments [58]. With
regards to the dependence of CaV1.2 endosomal recycling on the cytoskeleton, in HL-1
cells Rab11a-mediated recycling of CaV1.2 channels occurs along actin filaments whereas
Rab4-dependent fast recycling is thought to occur along microtubules [71]. Thus, a model
of CaV1.2 channel recycling is beginning to emerge as illustrated in Figure 2.

3.4. Endocytosis and Retrograde Transport of CaV1.2

There remains a distinct absence of studies on CaV1.2 channel endocytosis in car-
diomyocytes. As already discussed, channel removal from the sarcolemma has been
visualized in these cells [54,59] but the mechanisms underlying it, and focused study
of channel removal/endocytosis from distinct compartments of the membrane such as
the t-tubules, crest, or caveolae, has not been explored. It is known that the endosomal
recycling pathway is replenished by endocytosed channels, as nicely illustrated by the
apparent increase in plasma membrane localized CaV1.2, and concominant reduction of the
Rab11-positive pool of endosomal CaV1.2 channels when dynamin-dependent endocytosis
was pharmacologically inhibited with dynasore in HL-1 cells [71]. Cell surface biotiny-
lation experiments performed on adult ventricular myocytes also suggest that dynasore
treatment increases the surface expression of CaV1.2 [72]. However, dynasore is known to
have off-target effects and can inhibit both dynamin-dependent and dynamin-independent
endocytosis [73]. Like other membrane proteins, endocytosis of CaV1.2 channels, may
occur via a dynamin-dependent mechanism which may be further subclassified into either
clathrin-dependent or clathrin-independent, or it can occur though dynamin-independent
mechanisms [74,75]. In neurons, depolarization and activity dependent endocytosis of
CaV1.2 channels has been reported to occur and is thought to impart a level of protection
against Ca2+ overload and associated neurotoxicity [76–78]. More in depth investigations
are required to determine whether a similar cardioprotective mechanism occurs in cardiac
muscle cells and to fully explore the mechanisms of endocytosis in these cells.

3.5. CaV1.2 Degradation

Upon endocytosis, CaV1.2 channels enter early endosomes (also known as sorting
endosomes) where they are sorted and designated for either recycling or degradation [79].
Sorting signals, which enable recognition that a given cargo should be routed to the degra-
dation pathway, include the presence of covalently attached ubiquitin [80]. Ubiquitination
is a post-translational modification that involves addition of small 7 kDa ubiquitin to
target proteins in a process that involves a series of enzymes called E1, E2, and E3 [80]. E1
activates ubiquitin in an ATP-dependent manner, and E2 then transfers it to E3-ubiquitin
ligases which then covalently attach one or more ubiquitins to a lysine residue on their tar-
get protein. Ubiquitination of membrane proteins can stimulate their endocytosis, and/or
function as a sorting signal recognized in the early endosome and result in targeting to late
endosomes and lysosomes for degradation [81]. Ubiquitination can also occur to newly
formed CaV1.2 channels on the ER membrane and when it occurs there, channels are
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targeted to the proteasome for degradation. Figure 2 (top panel) shows an illustration
of the endosomal degradation pathway, highlighting the role of Rab7 which regulates
movement of vesicular cargo to late endosomes and lysosomes for degradation. Rab11b is
also illustrated there in the recycling endosome where, it reportedly plays a role in targeting
CaV1.2 channels out of the recycling endosome and toward degradation in mouse neonatal
cardiomyocytes [82]. This is in contrast to the role that we and others have reported for its
close family member Rab11a in facilitating slow recycling of CaV1.2 in HL-1 cells [71] and
adult mouse ventricular myocytes [54].

Nedd4 ubiquitin ligases are expressed in the heart and have been reported to ubiquiti-
nate various cardiac ion channels including NaV1.5 and hERG [80]. Nedd4-1 reportedly
plays a role in reducing total and surface membrane expression of CaV1.2 α1c in transfected
tsA-201 cells by promoting channel degradation [83]. Furthermore, co-expression of an
adaptor protein called lipopolysaccharide-induced tumor necrosis factor (LITAF) was
found to enhance α1c ubiquitination levels [84]. In rabbit cardiomyocytes, overexpression
of LITAF has been found to decrease ICa, reduce Ca2+ transient amplitude, and lower
total α1c transcriptional expression [84]. An earlier study concluded that Nedd4-1 effects
on CaV1.2 were not direct as they could not detect ubiquitination of any of the channel
subunits in transfected tsA-201 cells but did observe a significant reduction of ICa, and
surface biotinylation assays and western blots revealed reduced surface and total cellu-
lar channel expression [83]. Brefeldin-A, an inhibitor of ER-Golgi trafficking, abrogated
the Nedd4-1 effects suggesting that the enzyme was acting to promote sorting of newly
synthesized channels for degradation, even before their forward traffic to the membrane.
Furthermore, Nedd4-1 dependent degradation of CaV1.2 was prevented by MG132 an
inhibitor of the proteasome, while lysosomal inhibitors also impacted the regulatory ef-
fects on CaV1.2, implying that Nedd4-1 promoted channel sorting toward both of these
degradation pathways. Interestingly, the Nedd4-1 effects on channel degradation were
dependent on co-expression of CaVβ subunits. Recall that binding of CaVβ to CaVα1c in the
ER, is thought to protect neuronal CaV1.2 channels from ubiquitination and proteosomal
degradation [52], so the dependence of this Nedd4-1 effect on CaVβ implies interference
with its binding or chaperoning of α1c. A similar dependence on CaVβ was also noted in
the more recent Moshal et al. study [84].

An elegant study from the Colecraft lab recently capitalized on the importance of
CaVβ subunits for stable membrane expression of CaV1.2 in their report on the creation of a
potent engineered CaV1.2 channel inhibitor which targets the catalytic domain of Nedd4-2
E3-ubiquitin ligase to CaVβ subunits using a nanobody [85]. Adenoviral transduction of
adult guinea pig cardiomyocytes with this cleverly named ‘CaV-aβlator’ led to complete
eradication of ICa, due to removal of CaV1.2 from the dyad and routing to Rab7 positive
late endosomes for degradation. Thus, despite the doubt cast on whether CaVβ plays an
essential role in CaV1.2 forward trafficking, it seems to play an important role in regulating
its degradation and in this way controlling its membrane availability. Moreover, given that
CaV-aβlator was targeted toward the CaVβ subunit, yet ubiquitination was detected on
both CaVβ and CaVα1c, leading to channel redistribution from the dyad to Rab7 positive
late endosomes, this work raises the intriguing question, does CaVβ binding to CaVα1c at
the sarcolemma confer a protection from ubiquitination in an analogous manner to that
described in the ER of neurons [52]? This question remains unanswered.

4. CaV1.2 Localization and Targeting
4.1. Dyads

To fulfill their function as a channel for Ca2+ flux from the extracellular milieu into
the cytosol, CaV1.2 channels need to make their way to the sarcolemma. In the heart,
the sarcolemma is a complex system of periodically arranged t-tubules approximately
coincident with the z-lines, as well as the region on the surface of the cell between t-tubules
known as the surface sarcolemma or crest [86,87]. T-tubules plunge 2–9 µm deep into
the myocytes [87] and bring the membrane into close (~12 nm) proximity of junctional
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sarcoplasmic reticulum (jSR) localized ryanodine receptors (RyR2) at sites known as dyads
or couplons. At some locations, the surface sarcolemma also comes into close apposi-
tion with the jSR and these non-t-tubular couplons are estimated to represent 22–25%
of the total cellular couplon content [88]. Several reports have weighed in on the pro-
portion of total CaV1.2 expressed at dyads with Scriven et al. estimating that 75% of
CaV1.2 channel clusters reside at these specialized initiation sites of EC-coupling [89],
while Pásek et al. found that approximately 80 % of CaV1.2 is localized to the t-tubule
membranes [90]. Dyadic CaV1.2 channels are essential components of cardiac EC-coupling,
this is demonstrated during heart failure when the architecture of cardiomyocytes is re-
modeled, and t-tubules become fractured, displaced, disorganized, and separated from
the jSR [72] creating orphaned RYR2 [91], and resulting in reduced Ca2+ transient ampli-
tude, contractile dysfunction, and promotion of arrhythmia promoting dyssynchronous
Ca2+ release events [92–95]. β2-adrenergic receptors (β2-ARs) preferentially signal on the
t-tubule membrane [96]. In contrast, β1-adrenergic receptors (β1-ARs) are located across
the entire sarcolemma and produce less restrictive, global signals [96–98]. Regulation of
CaV1.2 channels by β-ARs is the most important regulatory pathway for tuning of cardiac
EC-coupling to meet metabolic and hemodynamic demands.

Given the importance of t-tubule localized CaV1.2 channels for the fundamental pro-
cess and tuning of EC-coupling, it is vital that an efficient trafficking route exists to deliver
and maintain a functional CaV1.2 channel population at these sites. It has been deter-
mined that targeted transport of CaV1.2 channels to the t-tubule membrane is conferred
by Bridging integrator 1 (BIN1) [72], a member of the membrane-curvature mediating
BAR (Bin1-Amphiphysin-Rvs) domain superfamily that is also involved in biogenesis
and maintenance of the t-tubule network [99–101]. BIN1 has been shown to anchor mi-
crotubules at the t-tubule membrane, providing a delivery ‘hub’ for CaV1.2 channels as
they exit the TGN and travel in vesicles along these cellular highways in the anterograde
trafficking pathway [72]. A multitude of evidence supports this idea as discussed below.
Firstly, immunolabeling of CaV1.2 and BIN1 in ventricular myocytes has revealed the two
proteins colocalize along the t-tubules, biochemical studies have indicated they co-IP, while
transfection-mediated overexpression of BIN1 in atrial HL-1 and non-cardiac HeLa cell-
lines co-transfected with CaV1.2 results in enhanced formation of membrane invaginations
and surface expression of CaV1.2 [72]. Lentiviral transduction of human embryonic stem
cell-derived cardiomyocytes (hESC-CMs) with BIN1 facilitates development of the t-tubule
network and CaV1.2 clustering, cooperative gating, and overall activity (Po) [101]. Dynamic
imaging of BIN1 and α-tubulin in HeLa cells has revealed tethering of microtubules at
BIN1-positive sites [72]. In the more architecturally complex adult ventricular myocytes,
vesicular CaV1.2 has been shown to decorate cardiomyocyte and microtubules [54,72].
BIN1 knockdown in the heart either with siRNA [72] or shRNA [102], a cardiac specific
knockout mouse model [99], or pathologically during heart failure [102], results in reduced
CaV1.2 channel expression at the cell surface and t-tubules [102]. Further evidence of a role
for microtubules and BIN1 in CaV1.2 delivery to the surface is provided by the reported
blunting of cell surface accumulation of CaV1.2 in cells where both dynamin-mediated
endocytosis and microtubule-dependent delivery were pharmacologically disrupted with
dynasore and nocodazole over 18–24 h [72]. This dependence on microtubules for main-
tenance of surface CaV1.2 channel expression appears absent in the less specialized atrial
HL-1 cell-line lacking in t-tubules wherein 18 hr incubation in nocodazole left CaV1.2
channel ICa density unaltered [71].

The precise nature of the molecular interaction between BIN1 and microtubules has not
yet been fully elucidated but may involve the cytoplasmic linker protein CLIP-170 [103,104].
Localization of phosphorylated CLIP-170 is most evident in the intercalated disks of adult
mouse cardiomyocytes [105] but close inspection of the images in the aforementioned
article reveals a robust periodic staining pattern that appears to coincide with the z-lines
and so conceivable that CLIP-170 could be an intermediate between BIN1 and microtubules
in these cells. However, in skeletal muscle this CLIP-170—BIN1 interaction appears to at
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least partially rely on the BAR domain of BIN1, as a point mutation in this region strongly
reduced co-IP of BIN1 with CLIP-170 [103]. This is somewhat in conflict with a previous
report that truncated BIN1, named BIN1-BAR (as it retains the BAR-domain important
for the membrane curvature-mediating effects of BIN1, but lacks the coiled-coil and SRC
homology 3 (SH3) domains,) fails to recruit CaV1.2 channels to the surface membrane [72],
the inference being that the BAR domain in the cardiac isoforms of BIN1 is neither necessary
nor sufficient for the CaV1.2 trafficking and targeting effects. It should be noted that these
BIN1-BAR experiments were performed in HL-1 cells which, as already discussed above,
may have a less robust reliance on microtubules for anterograde trafficking of CaV1.2. It
remains to be seen if BIN1 and CLIP-170 co-localize and co-IP in ventricular myocytes.

BIN1 has been reported to bind to another cytoskeletal highway, actin via its BAR
domain [106]. The SH3 domain of BIN1 has further been found to interact with neuronal
Wiskott–Aldrich syndrome protein (N-WASP) [107], and there is evidence that the cardiac-
specific isoform of BIN1 (lacking exon 7, 11 and 14–16 but containing exons 13 and 17,
A.K.A. BIN1 + 13 + 17), can bind to and activate N-WASP to promote actin polymerization
by Arp2/3 complexes [99,108]. BIN1 + 13 + 17 also associates with F-actin and α-actinin,
and these interactions likely stabilize t-tubules by anchoring them to the z-lines via α-
actinin [99]. Indeed, actin stabilization with cytochalasin-D is well-known to preserve
the t-tubule network in cultured cardiomyocytes [109,110]. Additionally, BIN1 + 13 + 17
is thought to be the main cardiac isoform responsible for generating micro-folds on the
t-tubule membrane [99]. It has been speculated that these microfolds may limit the lateral
diffusion of CaV1.2 channels in the membrane and thus facilitating channel clustering.
Indeed, in a conference abstract we have yet to develop into a full manuscript [111], we
reported that CaV1.2 channel clusters are ~42% smaller in cardiac-specific BIN1 heterozy-
gous knockout (BIN1+/−) mouse ventricular myocytes that have a less dense population
of t-tubule micro-folds than WT counterparts [99]. Pharmacological disruption of actin
with latrunculin-A reportedly decreases the amount of membrane in ventricular myocyte
t-tubules after 24 h in culture, compared to controls, suggesting that actin organizes and
supports the highly folded regions of the t-tubules [99]. This finding appears contrary
to a previous report that inhibition of actin polymerization with latrunculin-B enhances
membrane tubule formation by F-BAR and BAR-proteins [112]. Two explanations were
presented for this enhanced tubulation: firstly, actin disruption removes the stabilizing
membrane scaffold and permits enhanced membrane deformation; second, they suggested
an indirect antagonistic effect of the disruption of actin on dynamin such that endocytic
vesicles that normally bud-off the membrane to internalize proteins and maintain homeo-
static membrane protein populations, no longer underwent efficient fission and instead
promoted elongation of membrane tubules. This cell biological study was not performed on
cardiomyocytes but on more architecturally primitive COS-7 cells and did not specifically
test the effect of actin disruption on BIN1-induced membrane tubulation, but focused on
other BAR-domain proteins. In our recent work, we found that short-term (2 h) actin
disruption with latrunculin-A did not appreciably change CaV1.2 clustering, membrane
expression, or current density under basal, unstimulated conditions [54].

Another class of cardiac ion channel, Cx43 hemichannels are known to undergo
targeted delivery to the specialized cardiomyocyte membrane region of the intercalated
disk in a manner that involves actin ‘rest-stops’ [113]. These are sites of pause for Cx43-
containing vesicles that may have traveled from the TGN along a microtubule and are then
handed-off to actin to form a pool of sub-membrane channels. Mobilized channels are
ultimately handed-back to microtubules to be delivered to their final destination. These
actin rest-stops may serve as sorting nexuses to redirect microtubule-mediated delivery to
specialized sub-domains, and/or as pick-up locations to add accessory proteins, and/or
as intracellular reservoirs to store ready-made channels which can be rapidly inserted
into the membrane when demand arises. It remains to be determined whether actin
rest stops play a role in CaV1.2 channel trafficking in the heart but recent evidence from
our group suggests that the mobilization of an internal pool of endosomal channels in
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adult mouse ventricular myocytes is affected by actin disruption pointing to a role for
actin in the endosomal recycling pathway [54]. In HL-1 cells, actin disruption reportedly
leads to impaired recycling of CaV1.2 channels via the Rab11a pathway from recycling
endosomes to the membrane [71]. A noteworthy point to consider when examining the
role of actin in cardiomyocytes is that somewhat oddly, cytochalasin-D, a drug that is
widely used as a means to disrupt actin polymerization, appears to have a stabilizing
effect on actin in these cells, explaining why it preserves cell shape and prevents loss of
t-tubules in culture [109,110]. Latrunculin-A on the other hand seems to act in the expected
manner to disrupt the actin cytoskeleton [99,109]. Stabilization of actin with cytochalasin-
D reportedly facilitates CaV1.2 trafficking in cultured cardiomyocytes and prevents the
peri-nuclear accumulation of the channels seen in cultured cells without cytochalasin-D
supplementation [109]. This implies a role for actin in CaV1.2 trafficking through the
biosynthetic and anterograde trafficking pathway. However, actin is also known to play a
role in stabilizing and guiding microtubules, so it may also be the case that stabilization of
actin and preservation of cell shape and architecture, simply facilitates forward trafficking
along microtubules [114–116]. Given the preponderance of data supporting the role of
microtubules in forward trafficking of CaV1.2, it seems likely that a substantial portion of
the cytochalasin-D effect could be explained by this supporting role of actin.

4.2. Caveolae

Caveolae represent another specialized sarcolemmal compartment where a subset
of CaV1.2 channels are known to reside [117]. It has been estimated that as much as 15%
of sarcolemmal CaV1.2 reside in caveolae [35]. At ~50–100 nm in diameter [118], these
flask shaped, cholesterol and sphingolipid rich invaginations of the sarcolemma are much
smaller than the ~200–300 nm mean diameter t-tubules [119], the contrast in size between
the two can be appreciated on freeze-fracture electron micrographs of rabbit ventricular
myocytes [120]. Caveolae decorate the surface and t-tubular sarcolemma of cardiomyocytes
although they are notably absent from dyadic regions [120]. This is perhaps a geometric
phenomenon as the dyadic cleft is only ~12–15 nm wide to allow close proximity between
the t-tubular CaV1.2 and jSR localized RYR2, thus the physical restrictions of that narrow
space intrinsically exclude 50–100 nm diameter caveolae. The precise role of caveolar
CaV1.2 channels in the heart remains unclear with some studies suggesting their involve-
ment in EC-coupling [121], others finding no role in EC-coupling but supporting a role in
ET-coupling [35], and others still finding no role in either physiological processes [122]. In
terms of channel regulation, β2-AR are known to specifically associate with CaV1.2 and
Cav-3 in caveolae [117], and intact caveolae are necessary for β2-AR-mediated regulation
of CaV1.2 channels, but not for their regulation by β1-ARs. How the channels are targeted
to these microdomains remains unknown. The fact that caveolae are sub-diffraction limit
structures may have hampered their study thus far but the increased resolution afforded
by ‘super-resolution’ light microscopy techniques may help provide answers as to how
CaV1.2 channels are localized to these specialized domains, and the role they play there.

5. CaV1.2 Lifetime

Studies of the lifetime of CaV1.2 channels in the t-tubule sarcolemma and the caveolar
compartments would give us information about the dynamics of channel turnover and
may reveal differences in delivery and removal mechanisms during health and disease,
or circumstances that promote channel insertion or endocytosis. However, there are no
reports of CaV1.2 channel lifetime in adult cardiomyocytes, likely due to a lack of live cell
fluorescent markers of the channel and the resistance of these cells to chemical transfection
methods. Existing measurements of CaV1.2 channel lifetime have all been performed
in immortalized cell-lines, and none examine specific sarcolemmal sub-populations of
channels. Nonetheless, there are some interesting insights to be gained from studies in
heterologous expression systems. Pulse-chase experiments monitoring the percentage of
‘pulsed’ channels remaining in the membrane fraction up to 10 h post-chase, performed
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on transiently transfected human embryonic kidney cells (HEK293) expressing the pore
forming α1c and auxiliary β2a subunits suggest the channels have a half-life of ~3 h [19]. A
different study in HEK293T cells tracked pulse-chased channels over a 25 h period after
the chase and reported a half-life of α1c of ~25 h, after an initial rapid degradation in the
first 4 h post-chase [123]. The difference in these results is likely because the first study
was examining the membrane fraction while the second examined total cellular CaV1.2.
Altogether, these results suggest that membrane CaV1.2 turns over more rapidly than
cellular CaV1.2. In agreement with that, a more recent study found that while endogenous
ICa current density in HL-1 cells was maintained at a stable level for >18 h despite disruption
of microtubule-based channel delivery with nocodazole, internalization of transfected
CaV1.2-HA channels labeled with a 10 min pulse of anti-HA DyLight 488, was seen
to occur a much faster rate with a time constant of internalization of 7–8 min [71]. A
similar 9–10 min time constant was obtained in tsA201 cells using an approach in which
photoactivatable GFP tagged CaV1.2 was photoactivated and its presence at the membrane
measured over the subsequent 100 min [124]. Conrad et al. posited that if the membrane
population can remain at a stable expression level for >18 h despite ongoing internalization
of channels at this rapid rate, then there must also be an ongoing insertion of channels
to counterbalance this [71]. They used a clever ‘double pulse-chase’ protocol to visualize
this dynamic insertion of channels wherein initial surface CaV1.2-HA were labeled with
anti-HA DyLight 488, and 20 min later, a second pulse of anti-HA DyLight 561 revealed
robust staining reflecting the presence of channels that were newly inserted during the
intervening 20 min. The authors further concluded that surface membrane CaV1.2 channel
population in HL-1 cells is constantly and dynamically maintained by endosomal recycling.
This endosomal recycling pathway was studied in more detail by our group in live adult
mouse ventricular myocytes, where we found that a pool of readily insertable CaV1.2 form
a reservoir of channels, which is replenished by channel internalization, and can be rapidly
mobilized to the t-tubule sarcolemma in times of acute stress [54,59].

6. GPCR Regulation of CaV1.2 Trafficking
6.1. Stimulated Insertion

The presence of several internal pools of ready-made CaV1.2 channels, invites the
thought that perhaps there is some redundancy in these reservoirs under steady-state basal
conditions, and that additional channels from the pools could be rapidly mobilized to the
sarcolemma to increase channel and current density in times of high demand. Our lab
recently reported that activation of β-ARs with isoproterenol (ISO; 100 nM) in isolated
adult mouse ventricular myocytes, triggers PKA-dependent augmentation of sarcolem-
mal insertion of CaV1.2 channels [54,59]. We visualized this dynamic process using the
aforementioned AAV9-CaVβ2-paGFP biosensor approach, and found that the stimulated
insertions occurred extremely rapidly, with a τ = 4.12 s at physiological temperature [54].
Immunostaining experiments revealed that these inserted channels were mobilized from
subsarcolemmal pools of Rab4 positive endosomes and Rab11 positive recycling endo-
somes (see illustration of the pathway in Figure 3). This manifested as significantly reduced
colocalization between these specific endosomal markers and CaV1.2 after ISO, suggesting
that the CaV1.2 cargo of these endosomes had been delivered to the sarcolemma. The role of
the Rab4-dependent fast recycling pathway, and the Rab11-dependent slow recycling path-
way was confirmed by experiments in transiently transfected tsA-201 cells using dominant
negative (GDP-locked) and constitutively active (GTP-locked) Rab4 and Rab11 to study
the impact on ISO-induced increase in membrane CaV1.2 channel expression. Furthermore,
super-resolution microscopy of the t-tubule and sarcolemmal crest regions revealed that
stimulated channel insertions occurred predominantly at the t-tubule membrane. This has
implications for EC-coupling as more channels in the t-tubule dyad regions could enhance
EC-coupling. Indeed we found that the larger superclusters of CaV1.2 channels observed in
response to ISO promoted enhanced cooperative gating behaviors [59]. This gating behav-
ior is a known property of CaV1.2 channels in which physically interacting channels within
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a cluster can communicate with one another via Ca2+-calmodulin dependent associations
between their C-terminal tails [56]. The opening of the highest activity channel in the
cluster drives the other attached channels leading to amplification of Ca2+ influx [55]. This
raises an interesting point when one considers that ISO-stimulated insertion of channels
is a PKA-dependent phenomenon, wherein super-clustering and enhanced sarcolemmal
expression of CaV1.2 is prevented by pharmacological inhibition of PKA with PKAi or
H-89 [59]. It is unknown whether PKA-phosphorylation of CaV1.2 channels can occur
while they are localized on endosomal membranes but there is a PKA-anchoring protein
called D-AKAP2, that associates with endosomes in cardiomyocytes and displays an ISO-
stimulated enhanced colocalization with Rab11 positive endosomes, that could potentially
support that [54]. Notably, D-AKAP2 has been shown to regulate transferrin receptor
recycling through interactions with Rab4 and Rab11 [125], and a human functional poly-
morphism in D-AKAP2 (1646V), is known to lower heart rate variability [126], suggestive of
a heart that cannot respond well to stressors. PKA-phosphorylation of the CaV1.2 channel
complex leads to enhanced open probability (Po) of these channels, and increased longer-
lived mode 2 openings, that generates enhanced Ca2+ influx and the positive inotropic
response downstream of β-AR activation during the fight-or-flight response [39,127–129].
Thus, it is possible that just a small number of high Po, phosphorylated channels inserted
into the membrane from the endosomal pool could have a disproportionately large effect
on ICa and EC-coupling. This idea that β-AR signaling-mediated regulation of CaV1.2
channel recycling could by itself, generate the stereotypical augmentation of ICa seen in
cardiomyocytes during flight-or-flight, is supported by functional patch clamp data in
which disruption of endosomal channel insertion with cytoskeletal disruptors, abrogates
the left-ward shift in voltage-dependent activation and enhanced ICa response to ISO
despite preserved ISO-stimulated cAMP production and robust adrenergic signaling [54].
The idea that an increase in the number of functional channels in the sarcolemma could at
least partially underlie the augmented ICa associated with β-AR signaling was previously
suggested by Bean et al. in a 1984 study on frog ventricular heart cells where fluctuation
analysis of ICa recordings revealed an ISO-stimulated increase in the number of functional
channels per cell [130], although the same group later clarified that an increase in the
number of functional channels did not necessarily mean there were more channels in
the membrane, but could instead reflect previously quiescent channels that became more
compelled to open in the presence of ISO [131]. Nonetheless, receptor stimulation of ion
channel insertion from intracellular pools has been reported in several other cells and tis-
sues including: (1) neurons where β2-AR signaling via Gαs/adenylyl cyclase/cAMP/PKA
stimulates Rab11-dependent insertion of AMPA receptors from recycling endosomes into
the plasma membrane of dendritic spines [132]; (2) kidney, where V2R vasopressin re-
ceptor signaling through Gαs/adenylyl cyclase/cAMP/PKA stimulates PKA-dependent
insertion of aquaporin 2 (AQP2) from Rab11-positive recycling endosomes into the apical
membrane [133,134]; and (3) heart, where two other cardiac ion channels, namely KATP
and KCNQ1 are mobilized from Rab11-positive endosomal pools to the sarcolemma in
response to acute stress [135–137].

6.2. Stimulated Endocytosis

The endosomal reservoir of channels, which is constantly replenished by ongoing
channel internalization, may similarly have the capacity to accommodate more channels if
there is a need to reduce sarcolemmal channel density. This may occur if an analogous Ca2+

overload-preventative channel internalization system as has been described in neurons, also
exists in cardiomyocytes [76–78]. Prolonged activation of AT1R receptors with angiotensin
II has been reported to stimulate endocytosis/internalization of CaV1.2 channels in adult
rat cardiomyocytes [138]. This process is seen to occur over about an hour and involves
β-arrestin1 recruitment to t-tubular CaV1.2 channels. A preferential internalization of
t-tubule localized channels occurs over the period of around an hour and leads to reduced
ICa and reduced amplitude Ca2+ transients and cell-shortening. It remains to be determined
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what endosomal pool these channels are targeted toward and whether they can be quickly
recycled back to the membrane again after the angiotensin II stimulus is removed, or if they
are targeted for degradation. Results from Hermosilla et al. suggest that a subpopulation of
the endocytosed channels may be redistributed to surface membrane locations as indicated
by enhanced immunostaining of CaV1.2 on the surface membrane while t-tubular signal
faded. This stimulated endocytosis pathway is represented in Figure 4.
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Figure 3. β-adrenergic receptor stimulated insertion. An illustration of the stimulated insertion pathway that ensues upon
acute activation of Gs-coupled β-ARs. Reservoirs of preformed channels are present in subsarcolemmal pools. Activation of
the β-AR/AC/cAMP/PKA pathway triggers rapid mobilization of these individual and clustered channels to the t-tubule
membrane, along Rab4 and Rab11 dependent trafficking pathways. As a result of this enhanced insertion, there is an
increase in the number of functional channels at the sarcolemmal. Large superclusters of CaV1.2 channels form on the
t-tubule membrane. These channels exhibit more cooperative interactions and generate enhanced Ca2+ influx to amplify
EC-coupling [59].

Figure 4. Angiotensin type 1 receptor stimulated endocytosis. Prolonged exposure to angiotensin II, over the course of an
hour, leads to: (1) recruitment of β-arrestin1 to t-tubule localized CaV1.2 channel-AT1R receptor complexes; (2) clathrin-
coated pit formation, and (3) endocytosis. This reduces CaV1.2 channel expression and ICa. The identity of the cellular
compartment to which the channels are targeted upon internalization are unknown as represented by the grey dotted arrows.
Their fate may lie in lysosomal degradation or they may be stored in intracellular reservoirs, or finally, as indicated by the
study by Altier et al., some channels may be recycled to other membrane regions, including the surface membrane which
appeared to grow more intensely positive for CaV1.2 immunostaining as t-tubular and dyadic expression dropped [138].
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Given the findings that β-AR stimulation can trigger rapid CaV1.2 channel insertion
into the t-tubule membrane [54,59], an obvious question to explore is whether subsequent
phosphatase mediated dephosphorylation of CaV1.2 can trigger internalization. This has
been reported to occur in dendritic spines where, as already discussed above, a pool of
intracellular GluA1-containing AMPARs is thought to transition to a readily insertable state
upon phosphorylation AMPA receptors by PKA and/or calcium/calmodulin-dependent
protein kinase II (CaMKII), or protein kinase C (PKC) [139–141]. The resulting plasma
membrane insertion of the receptors, facilitates long term potentiation (LTP) by increasing
channel open probability (Po) and homeostatic scaling up. Conversely, dephosphorylation
by calcineurin (CaN) leads to receptor internalization, long term depression and homeo-
static scaling down [142]. Whether a similar system exists in cardiomyocytes will make for
an interesting future study.

7. Conclusions

CaV1.2 channel expression on the cardiomyocyte sarcolemma is tightly controlled and
regulated. They are constantly being internalized, sorted, recycled, degraded, but at steady-
state this complex system reaches an equilibrium where a constant level of expression is
maintained. Regulatory mechanisms have emerged in recent years that suggest the balance
between channel insertion and internalization can be tilted by GPCR-mediated regulatory
pathways. Rapid channel insertion from endosomal pools provides extra CaV1.2 channels
to the t-tubule membrane during fight-or-flight to fuel the harder-working myocytes with
more Ca2+ influx capacity to generate a positive inotropic effect and meet the enhanced
hemodynamic and metabolic demands associated with this response. Furthermore, prolonged
AT1R signaling triggers channel endocytosis and reduced expression generating a negative
inotropic effect. We await further detailed characterization of the kinetics of CaV1.2 channel
trafficking, and of when in the anterograde pathway the auxiliary subunits join the complex.
Moreover, the specific mechanism of targeting and transport of these channels to non-t-
tubular locations including caveolae and the surface membrane remains to be determined.
An interesting avenue for future research in those topics is that of the role of the junctional
tethering protein junctophilin 2 (JPH2) in targeting CaV1.2 to microdomains within the
sarcolemma. A recent study reported that JPH2 recruits CaV1.2 to lipid rafts on the T-tubules
wherein overexpression of JPH2 in cultured rat cardiomyocytes led to increased channel
density at the t-tubule and surface membrane that was not accompanied by an increase
in total cellular CaV1.2 protein, implying JPH2 increased channel trafficking rather than
altered channel biosynthesis [143]. Future studies should also parse out the mechanistic
details of trafficking alterations that may explain how failing hearts redistribute CaV1.2 from
the t-tubular sarcolemma to the surface membrane [144–146], and others that mediate the
enhanced CaV1.2 sarcolemmal expression observed with aging [147–149].

It will be important for the field moving forward to have a definitive measure of
CaV1.2 channel lifetime in cardiomyocytes and a full picture of how channels are targeted to
caveolae, t-tubules, or the surface sarcolemma, and indeed how these targeting mechanisms
become altered in disease. The recently developed Retention Using Selective Hooks (RUSH)
system [150] may make more accurate measurements and visualization of CaV1.2 channel
trafficking feasible. This system allows the user to trap channels at certain points along
the biosynthetic or recycling pathways, release them at will, and observe the kinetics
and direction of the trafficking of the channels as they travel to their destinations in
the cell. The RUSH system utilizes various protein ‘hooks’ fused to streptavidin which
reversibly anchor and retain streptavidin-binding peptide (SBP) fused proteins of interest
in a cellular compartment. The addition of biotin outcompetes the SBP/streptavidin
interaction and severs the connection between the hook and bait allowing the protein
to be released into the secretory pathway. This system has recently been used to study
glutamate receptor [151], KCNQ1/KCNE1 [152], and to study altered transport kinetics
during pathological conditions [153]. One could envisage that this system could be used
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to determine when and where the various auxiliary subunits of the channel join the
α1 subunit.

In addition, future studies should examine size and mobility of the endosomal pool of
channels and how it may be altered by aging or disease. Furthermore, as already mentioned
above, we eagerly anticipate future determination of the molecular mechanisms under-
lying PKA-triggered mobilization of the endosomal channel reservoirs and whether the
inverse effect is seen with phosphatase-mediated channel dephosphorylation. In addition,
the question still remains open as to whether the triggered insertion of CaV1.2 channels
downstream of β-adrenergic receptor stimulation, is accompanied by an increase in RyR2
expression on the other side of the dyad. There is some evidence that this might be the
case as cardiomyocyte stimulation with isoproterenol reportedly enhances phosphorylated
RyR2 clustering in dyadic regions [154]. A coordinated stimulated enhancement of both
CaV1.2 and RyR2 in dyadic regions during fight-or-flight could facilitate an even larger
inotropic response.

This relationship between CaV1.2 and RyR2 expression raises a final intriguing idea that
should be explored. Recent work has suggested that the functional expression of ion channel
complexes at the cardiomyocyte sarcolemma is regulated by a ‘microtranslatome’ whereby
mRNA transcripts of NaV1.5 and hERG associate with each other during translation to coor-
dinate and regulate the balance of expression of these channels [155]. A fine balance between
the depolarizing NaV1.5 and repolarizing hERG channels is critical to maintain action poten-
tial production of the correct duration and to avoid arrhythmias. The idea of co-translational
regulation of CaV1.2 is an interesting one considering that gain-of-function mutations in
CaV1.2 can lead to long QT8 (Timothy syndrome) [5] and that aberrant interactions between
adjacent CaV1.2 channels can also facilitate arrhythmogenic activity [56,156,157]. Could there
be association between CaV1.2 channel transcripts that regulates its functional expression
or balances it against a repolarizing channel? Could CaV1.2 channel subunit transcripts
associate and undergo co-translation that facilitates ER export? These are all open questions
in this still developing field of CaV1.2 trafficking regulation.
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