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BACKGROUND: Resistance to trastuzumab is often observed in women with human epidermal growth factor receptor 2 (HER2)-
positive breast cancer and has been shown to involve multiple potential mechanisms. We examined the ability of microarray analyses
to determine the potential markers of pathological complete response (pCR).
METHODS: We conducted an analysis of tumours from 38 patients with locally advanced HER2-positive breast cancer who had
received trastuzumab combined with docetaxel. Quantitative reverse transcriptase (RT)–PCR was used to assess the expression of
30 key genes; microarray analyses were carried out on 25 tumours to identify a prognostic gene expression profile, with 13 blinded
samples used to validate the identified profile.
RESULTS: No gene was found to correlate with response by RT–PCR. The microarray analysis identified a gene expression profile of
28 genes, with 12 upregulated in the pCR group and 16 upregulated in non-pCR. The leave-one-out cross-validation test exhibited
72% accuracy, 86% specificity, and 55% sensitivity. The 28-gene expression profile classified the 13 validation samples with 92%
accuracy, 89% specificity, and 100% sensitivity.
CONCLUSION: Our results suggest that genes not involved in classical cancer pathways such as apoptosis or DNA repair could be
involved in responses to a trastuzumab–docetaxel-based regimen. They also describe for the first time a gene expression signature
that predicts trastuzumab response.
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Amplification and overexpression of human epidermal growth
factor receptor 2 (HER2) is observed in 20–30% of invasive breast
cancer (Slamon et al, 1987) and correlates with tumour progres-
sion and poor prognosis. Although the EGFR family stimulates
mitogenesis through ligand-induced pathways, there is no known
ligand for HER2. Increased HER2 expression induces a signalling
pathway that involves Ras and Src, as well as PI3K/Akt, and is
associated with tumour formation (Siegel et al, 1994).

Trastuzumab (Herceptin; F Hoffmann-La Roche, Basel,
Switzerland) is a humanised monoclonal antibody directed against
the HER2 protein. It produces significant (450%) tumour regres-
sion in B15% of patients with HER2-positive metastatic breast
cancer that is refractory to conventional therapy, and in B23%
of patients when used as first-line therapy (Cobleigh et al, 1999).

The addition of trastuzumab to standard chemotherapy signi-
ficantly improves the response rate, response duration, and
survival. The clinical benefits of trastuzumab-based therapies
have been well documented in both adjuvant (Joensuu et al, 2006)
and metastatic settings (Marty et al, 2005). However, the precise
molecular pathways through which trastuzumab exerts its anti-
tumour effects in breast cancer cells are not yet fully understood.
Trastuzumab action involves multiple mechanisms, including the
induction of apoptotic signalling pathways, cell cycle perturbation,
and cellular cytotoxicity (Sliwkowski et al, 1999). Treatment with
trastuzumab dephosphorylates and downregulates HER2, leading
to significant clinical efficacy against HER2-positive breast cancer.
It also sensitises breast cancer cells to chemotherapeutic agents,
especially to tubulin-polymerising agents and radiation therapy
(Baselga et al, 1998; Liang et al, 2003). It was shown that anti-HER2
monoclonal antibodies inhibit HER2-overexpressing breast
cancer cells through G1 cell cycle arrest, which was associated
with the induction of the cyclin-dependent kinase (CDK) inhibitor
p27kip1 and reduction of CDK2 (Le et al, 2003). Trastuzumab
may also inhibit the PI3K/Akt pathway by promoting PTEN
activation (Nagata et al, 2004). Trastuzumab has been shown to
reduce tumour volume and microvessel density in HER2-positive
breast cancer models in vivo (Laughner et al, 2001; Izumi et al,
2002). Synergy with DNA-damaging drugs is thought to be due to
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trastuzumab-mediated inhibition of DNA repair. Trastuzumab
partially inhibits the repair of DNA adducts in vitro after treatment
with cisplatin and blocks unscheduled DNA synthesis after
radiation (Pietras et al, 1994, 1999). Finally, trastuzumab has also
been shown to be associated with immunoreactive actions through
antibody-directed cellular cytotoxicity (ADCC) (Arnould et al,
2006).

Recently, trastuzumab-based neoadjuvant chemotherapy has
been shown to achieve promising efficacy, with a good patho-
logical complete response (pCR) rate, while being well tolerated in
women with stage II or III HER2-positive breast cancer (Buzdar
et al, 2005; Coudert et al, 2006, 2007). Among taxanes, docetaxel
associated with trastuzumab shows evidence of improved efficacy
in obtaining pCR rates.

In this study, we examined the expression of a panel of 30 genes
involved in cell cycle progression, DNA repair, and apoptosis,
which may have a putative role in trastuzumab resistance, in a
series of breast carcinomas that had been treated with trastuzu-
mab-based neoadjuvant chemotherapy. In parallel, we used
microarray analysis on the same tumour samples to identify a
potential marker of pCR that may have a prognostic value in
identifying patients who are more likely to respond to trastuzumab
therapy.

MATERIALS AND METHODS

Patients and samples

We retrospectively studied a population of 38 patients who had
received trastuzumab in combination with chemotherapy as
primary systemic therapy for their operable, HER2-positive, stage
II/III breast cancer (Table 1). All patients provided written,
informed consent for their tissue material and clinical data to be
used for research purposes. Patients were treated in two open-label
phase II clinical trials: TAXHER01 (n¼ 29) and GETNA01 (n¼ 9)
(Coudert et al, 2006, 2007).

All patients received weekly neoadjuvant trastuzumab
(4 mg kg�1 loading dose, followed by 2 mg kg�1 once weekly) in
combination with either docetaxel alone (100 mg m�2 every
3 weeks for six cycles) or docetaxel (75 mg m�2 every 3 weeks
for six cycles) combined with carboplatin (AUC 6) every 3 weeks
for six cycles. The pCR rates were assessed using Chevallier’s
classification (Chevallier et al, 1993) 3 weeks after the last course of
trastuzumab-containing neoadjuvant treatment. An absence of
disease in the breast or in the lymph nodes, with or without in situ
carcinoma, was considered to be a pCR. The HER2 status was
determined using both immunohistochemistry and fluorescence
in situ hybridisation (Coudert et al, 2006, 2007).

HER-2 testing

The HER-2 status was analysed before treatment in each tumour
according to ASCO guidelines for immunohistochemistry (IHC) or
fluorescent in situ hybridisation (FISH) (Wolff et al, 2007) IHC was
carried out with an anti-HER2 antibody (clone 4B5) on a Ventana
Benchmark XT automate (Ventana Medical Systems, Tucson, AZ,
USA). All tumours were considered as positive if 430% of tumour
cells display a complete and strongly positive membrane staining.
As described in a previous report (Coudert et al, 2006, 2007;
Arnould et al, 2006), all biopsies were also retrospectively analysed
with FISH procedures that confirm that all tumours included in
this study displayed an HER2 gene amplification with a mean of
more than six copies of the HER2 gene.

RNA extraction

Needle core biopsy samples were taken at baseline, with one used
for the initial diagnosis and two used for RNA extraction. All tissue

samples were snap frozen and stored in liquid nitrogen, and only
samples containing X30% tumour cells were analysed further.
Total RNA was extracted from tissue samples by using the
TRIzol method as recommended by the manufacturer (Invitrogen
Corporation, Carlsbad, CA, USA). The quantity, quality, and purity
of extracted RNA were assessed using a NanoDrop 1000 spectro-
photometer (NanoDrop, Wilmington, DE, USA) at 260 and 280 nm
(the A260/280 ratio of pure RNA is higher than 1.8) and an Agilent
2100 bioanalyser (Agilent, Santa Clara, CA, USA). Total RNA from
a pool of four normal mammary tissues was used as normal
sample, and RNA extracted from the MCF-7 human breast cancer
cell line was used to calibrate real-time quantitative and reverse
transcriptase (RT)–PCR.

RT–PCR and real-time quantitative PCR

One microgram of total RNA was reverse transcribed in 20 ml
of RT–PCR. Real-time quantitative PCR was carried out on an
ABI PRISM 7300 (Applied Biosystems, Foster City, CA, USA) using
the TaqMan method. Analysis of 18S ribosomal RNA was used
to assess complementary DNA (cDNA) quality and as a reference
control. Results were analysed at the Ct level and references for the
genes analysed are summarised in Table 2. Survivin, caspase-3,
and their splice variant expressions were determined by design
primers and probes labelled at the 50 end with FAM and at the
30 end with TAMRA. Assays on Demand (Applied Biosystems)
were used for the other studied genes. The results were analysed
using either the 2�DCt method for expression comparison or the
2�DDCt method (Vegran et al, 2007) for statistical analyses.

Statistical analyses were carried out with Statview 5.0 software (SAS
Institute, Inc., Cary, NC, USA). The non-parametric Mann–Whitney

Table 1 Demographic data

Training set
(n¼25)

Independent
set (n¼ 13)

Total
(n¼ 38)

Age (years)
p50 13 9 22
450 12 4 16

SBR grade
I 1 0 1
II 14 8 22
III 10 4 14
Unknown 0 1 1

Hormone receptors
ER-negative 13 3 16
ER-positive 12 10 22
PR-negative 16 3 19
PR-positive 9 10 19

Tumour size (cm)
o2 1 0 1
2–4 17 12 29
44 6 1 7
ND 1 0 1

Treatment
TH 18 11 29
TCH 7 2 9

Pathological response
pCR 11 4 15
Non-pCR 14 9 23

Abbreviations: ER¼ oestrogen receptor; non-pCR¼ non-pathological complete
response; ND¼ not determined; pCR¼ pathological complete response; PR¼ pro-
gesterone receptor; SBR¼ Scarff-Bloom-Richardson; TCH¼ trastuzumab+
carboplatin+docetaxel; TH¼ trastuzumab+docetaxel.
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U-test was used to compare gene expression with pathological
response. Statistical significance was considered when P-value was
o0.05.

Microarray experiment

Microarray analyses were carried out using the Affymetrix-
Microarray Platform of the Institute of Genetics and Molecular
and Cellular Biology (IGBMC) and Génopole Alsace-Lorraine
(Dr Philippe Kastner). The analysis used samples from 25 patients
(11 with pCR and 14 with non-pCR) who constituted the training
set. It was randomly constituted with the 25 first patients enrolled
in the study. The resulting profile was validated using an
independent and blinded group of 13 patients (four with pCR
and nine with non-pCR) belonging to the test set. It was also
randomly constituted with the 13 patients who joined the protocol
after the beginning of training set microarray analysis.

The fluorescent nucleic acids hybridised onto the microarrays
were prepared from total RNA. One microgram of total RNA
was reverse transcribed into cDNA using a poly-dT with an
extended region as a 30 end primer. After second-strand synthesis,
all the different double-strand cDNAs had a common 30 end
extension, which was used as a specific annealing site during
PCR amplification. This unidirectional PCR amplification pro-
duced single-strand linear PCR products, which were labelled by
random priming with dUTP-Cy5 (red) for the test samples or with
dUTP-Cy3 (green) for the reference samples. Test and reference
samples were co-hybridised onto microarrays. Human microarrays
from the Affymetrix-Microarray Platform of the IGBMC and
Génopole Alsace-Lorraine were used, onto which 25 000 genes were
spotted. Reference genes were eliminated. Hybridised slides were
scanned to detect fluorescence signals at high resolution.
Fluorescent intensities were normalised and standardised using
IGBMC in-house ‘Elea’ software, followed by a LOcal Weighted

Table 2 References and nucleotide sequences of primers and probes used in this study

Function Gene or transcript Reference NCBI Reference or sequences

Cell cycle cdc27 NM_001256 Hs01559427_m1
SKP2 NM_032637 Hs01021867_m1
p27 NM_004064 Hs00153277_m1
p53 NM_000546 Hs00153340_m1
c-Myc NM_002467 Hs00153408_m1
Cyclin B2 NM_004701 Hs00270424_m1
RBX1 NM_014248 Hs00360274_m1
CCL4 NM_002984 Hs99999148_m1
CDC45l NM_003504 Hs00907337_m1

DNA repair XRCC2 NM_005431 Hs00538799_m1
ERCC2 NM_000400 Hs00361161_m1
MREIIA NM_005591 Hs00967442_m1
HMOX2 NM_002134 Hs01558390_m1
MSH5 NM_002441 Hs00159268_m1

Apoptosis Survivin NM_001168 F: 50-CCAGATGACGACCCCATAGAG-30

R: 50-TTGTTGGTTTCCTTTGCAATTTT-30

P: 50-CATTCGTCCGGTTGCGCTTTCC-30

Survivin-2B NM_001012271 F: 50-AAGAACTGGCCCTTCTTGGA-30

R: 50-CCAAGTGCTGGTATTACAGGCGTA-30

P: 50-ACTGCCCCACTGAGAACGAGCCA-30

Survivin-DEx3 NM_001012270 F: 50-CCCAGTGTTTCTTCTGCTTCAA-30

R: 50-TTCTTCGCAGTTTCCTCAAATTCT-30

P: 50-ACGACCCCATGCAAAGGAAACCAACA-30

Survivin-3B AB154416 F: 50-CCAGATGACGACCCCATAGAG-30

R: 50-AAGAACTGGCCCTTCTTGGA-30

P: 50-CATTCGTCCGGTTGCGCTTTCC-30

F: 50-GCTTTGTTTTGAACTGAGTTGTCAA-30

Survivin-2a R: 50-GCAATGAGGGTGGAAAGCA-30

P: 50-AGATTTGAGTTGCAAAGACACTTAGTATGGGAGGG-30

Caspase-3 NM_032991 F: 50-CTGGACTGTGGCATTGAGACA-30

R: 50-AGTCGGCCTCCATGGTATTT-30

P: 50-TGGTGTTGATGATGACATGGCGTGTC-30

Caspase-3s F: 50-AGAAGTCTAACTGGAAAACCCAAACT-30

R: 50-CAAAGCGACTGGATGAACCA-30

P: 50-ATTATTCAGGTTATTATTCTTGGCG-30

Casp8AP2 NM_012115 Hs00201640_m1
Caspase-9 NM_032996 Hs00154261_m1
ASC NM_013258 Hs0154724_gH
Fasl NM_000639 Hs00899442_m1
LTBR NM_002342 Hs00158922_m1
HSP90 NM_001040141 Hs00743767_sH
TRAF5 NM_004619 Hs01072220_m1
BCL-x NM_001191 Hs00236329_m1
CD40 NM_000074 Hs99999100_s1

Housekeeping 18S x03205.1 Hs99999901_s1

Abbreviations: F¼ forward; NCBI¼National Center for Biotechnology Information; P¼ probe; R¼ reverse.
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Estimates of Smooth Scatterplots (LOWESS) fitting-based method.
Briefly, genes were selected as invariants from ranks of values in
the Cy3 and Cy5 channels, and were then used in the LOWESS
algorithm to compute the normalisation factor between the two
channel values. This generated two values: the signal value
A¼ Log2 (test value * reference value)/2 and the log ratio M¼ Log2

(test value/reference value).

Microarray data analysis

Using A values, we determined the lowest median expression level
of the population and excluded every gene with an A value lower
than this. Using this heuristic filtering, we identified 14 829 genes
for further analysis. From this subset of genes, statistical filtering
was performed on M values using IGBMC in-house statistical ‘Zoe’
software. The Mann–Whitney U-test was then used with 1000
permutations to compare pCR and non-pCR rates. Only genes with
Po0.002 were kept in the signature to discriminate pCR and non-
pCR groups. P-values and q-values (for false discovery rate) were
presented in Table 3.

The classification of patients constituting the test set was
performed with the calculation of the correlation coefficient between
the microarray values of each test patient and the mean of the 28-
gene microarray expression value of pCR and non-pCR determined
with the training set. A patient was classified as a pCR when the
correlation coefficient obtained with the mean training pCR values
was superior to the one obtained with the mean training non-pCR
values, and inversely. As mentioned above, the classification of
patients belonging to the test set was blindly performed. The
comparison with real patient response was carried out later.

Leave-one-out cross-validation test

The leave-one-out cross-validation test was performed on the
training set patients. One patient was randomly suppressed. On the
new 24-patient training set, a Mann–Whitney U-test was carried

out with 1000 permutations to compare pCR and non-pCR rates.
Only genes with Po0.002 were kept to generate a signature
discriminating pCR and non-pCR groups. Thereafter, the excluded
patient was classified with the calculation of the correlation
coefficient between the microarray values of the patient and the
mean of the gene microarray expression value of pCR and non-
pCR determined with the 24-patient training set. One patient was
excluded each time, generating 25 different tests.

RESULTS

Analysis of selected gene expression by quantitative
RT–PCR

When the relative expression of genes associated with cell cycle
progression was compared with pathological response, it was
found that the expression of these genes did not correlate with
the observed pathological response. We next compared the relative
expression of DNA repair genes with pathological response, and
the results similarly showed that the expression of these genes did
not correlate with pathological response. No relationship was
found with the relative expression of apoptotic genes either.

Microarray data analysis

Of the 25 patients in the training set, 11 (44%) showed pCR and 14
(56%) had non-pCR. Microarray analysis of tumour samples from
these patients indicated that expression significantly differed
between pCR and non-pCR tumour samples for 28 genes
(Figure 1A). Among these 28 genes, 12 were more highly expressed
in pCR tumour samples (WEE1, ZNF146, SENP7, GPR22,
KIAA1549, SYNCRIP, SLC30A6, GRHL2, CCDC123, LOC340171,
STX1A, cDNA FLJ11973 fis, and clone HEMBB1001221), and 16
genes were highly expressed in non-pCR samples (LOC158402,
PITPNA, PPP2CA, SLC35A4, NFE2L1, C5orf3, PEX19, P2RX1,
CDC14A, SENP8, PSMD11, CTNS, DER1, PRKACA, LAMA3, and
FLJ20160) (Table 4). In addition, there was no difference observed
for treatment effect (TAXHER01 or GETNA01) on this 28-gene
expression profile.

The discriminatory 28-gene profile was validated using a leave-
one-out cross-validation test. The analysis of the profile was
carried out without previous knowledge of the patients’ patho-
logical response. One patient was excluded each time and was
classified using a correlation coefficient based on the mean
expression value of each selected gene for the pCR and non-pCR
subsets. A patient was classified as being in the pCR group when
their correlation coefficient was higher, with mean values above
the non-pCR values, and vice versa. Using this approach, the leave-
one-out cross-validation test classified 6 out of 11 pCR patients as
having the pCR expression profile, and 12 out of 14 non-pCR
patients into the non-pCR profile. Thus, the gene expression
profile exhibited 55% sensitivity, 86% specificity, and 72%
accuracy (Table 5).

To proceed further, the discriminatory 28-gene profile was then
validated using the independent cohort of 13 patients. Analysis of
the profile was carried out without earlier knowledge of the
patients’ pathological response. Each patient’s tumour sample was
classified using a correlation coefficient based on the mean
expression value of each selected gene for the pCR and non-pCR
subsets. A patient was classified as being in the pCR group when
their correlation coefficient was higher, with mean values above
the non-pCR values, and vice versa. Using this approach, our
28-gene profile correctly classified the four pCR patients as having
the pCR expression profile, and 8 out of 9 non-pCR patients into
the non-pCR profile (Figure 1B). Thus, our 28-gene profile for a
trastuzumab–docetaxel-based regimen exhibited 100% sensibility,
89% specificity, and 92% accuracy (Table 6).

Table 3 P-value and q-value for the 28 genes constituting the gene
signature

GenBank ID Resampling P-value q-value

AK095652 o0.001 o0.001
NM_003390 0.001 0.001
AL117644 0.001 0.002
AK022035 o0.001 o0.001
NM_002715 0.001 0.004
NM_007145 0.001 0.007
NM_020654 o0.001 0.001
NM_080670 0.001 o0.001
XM_045127 o0.001 0.001
NM_003204 0.001 0.001
NM_005295 o0.001 o0.001
NM_006372 o0.001 o0.001
NM_018691 0.001 0.001
NM_002857 o0.001 o0.001
NM_002558 0.001 0.002
NM_017964 o0.001 o0.001
NM_003672 0.001 0.007
NM_024915 o0.001 o0.001
NM_145204 0.001 0.002
NM_002815 0.001 0.003
NM_004937 o0.001 o0.001
NM_018630 o0.001 o0.001
NM_032816 o0.001 0.002
NM_002730 0.001 o0.001
NM_000227 0.001 o0.001
NM_017694 0.001 0.001
XM_295178 o0.001 o0.001
NM_004603 0.001 0.001
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DISCUSSION

The aim of oncology is to provide the most appropriate cancer
treatment to ensure the best patient response. However, it is very
difficult to choose the best combination of chemotherapy agents, and
it is necessary to develop new tools that will aid in making the best
treatment choice. In this study, we explored gene expression profiles
to predict response to trastuzumab–docetaxel-based chemotherapy
in women with locally advanced HER2-positive breast cancer.

The real-time quantitative PCR study on 30 genes involved in cell
cycle progression, DNA repair, or apoptosis revealed that these genes
did not seem to be predictive for pathological response. Trastuzu-
mab-induced apoptosis has been demonstrated in both breast
tumour cell lines and breast carcinomas (Brodowicz et al, 2001;
Milella et al, 2004; Emi et al, 2005; Henson et al, 2006). However, in
our study, we failed to highlight a role for apoptosis-related genes in
our response discriminating profile. This could be explained by
immunoreactive actions through ADCC (Arnould et al, 2006).

Using microarray analysis, we generated a 28-gene profile that
could discriminate between tumour samples that would attain a
pCR and those that would not in response to treatment with a
trastuzumab–docetaxel-based regimen. This profile was not affected
by treatment effect (TAXHER01 or GETNA01), and the results
confirm previous analyses that have commented on the association
between pCR and HER2 amplification (Arnould et al, 2006; Coudert
et al, 2006, 2007). In addition, the expression values of the 30

selected genes analysed with real-time quantitative PCR were
concordant with those that overlapped with high-throughput
microarray, confirming the absence of involvement of these genes.

In the leave-one-out cross-validation test, the classifier shows
72% accuracy, 86% specificity, and 55% sensitivity. The 28-gene
expression profile classified the 13 test samples with 92% accuracy,
89% specificity, and 100% sensitivity. The performance with the test
set is better than that with the training set, conforming previous
observations showing that independent validation is the gold
standard to evaluate the performance of the prediction rule
(Michiels et al, 2007). However, the main characteristic of this
classifier is high specificity, both with training and test sets, allowing
the identification of patients resistant to trastuzumab–docetaxel-
based treatment.

Among the genes identified in the profile, NFE2L1 was
upregulated in the non-pCR group. NFE2L1 has been described to
be a regulator of detoxifying enzyme expression, and, in association
with Jun, is able to induce the expression of genes encoding
detoxifying enzymes. As a result, overexpression of NFE2L1 could
protect tumour cells by decreasing the toxicity of treatment. More-
over, overexpression of NFE2L1 was described as having the same
impact as c-Myc overexpression (Morrish et al, 2003), suggesting
that this gene could be implicated in resistance to chemotherapy.

Two small ubiquitin-like (SUMO)/sentrin-specific protease
(SENP) family members were differentially expressed in both
pCR and non-pCR groups. Thus, SENP7 was upregulated in the
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Figure 1 Hierarchical clustering of the 28 genes discriminating both pathological complete response (pCR) and non-pathological complete response
(non-pCR) for the 25 patient training (A) and 13 patient test (B) sets. Green and red colours represent underexpression or overexpression centred to
median array values, respectively.
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pCR group, whereas SENP8 was strongly expressed in the
non-pCR group. Although the properties and targets of SENP7
have not yet been determined, it has been established that SENP8
is an NEDD8-, rather than SUMO-, specific protease (Hay, 2007).

The WEE1 gene harbours a large expression level in the pCR
group. This gene suppresses the activity of the Cyclin B1–Cdc2
complex, suggesting its implication in the response process to
trastuzumab–docetaxel-based treatments (Yoshida et al, 2004).
The GRHL2 gene, which is overexpressed in the pCR group as well,
is involved in the regulation of hTERT. The GRHL2 down-
regulation by siRNA induced a decrease in hTERT activity and
increased the immortalisation process (Kang et al, 2009).

PPP2CA is described as an anti-apoptotic gene (Hu et al, 2009),
which could explicate why it is overexpressed in the non-pCR group.
Other genes are overexpressed in the non-pCR set. For example,
CDC14A is able to interact with and inhibit p53 and the Cyclin
B–Cdk1 complex (Paulsen et al, 2006), and PSMD11 has been found
to be overexpressed in breast carcinomas (Deng et al, 2007).

Surprisingly, four genes that discriminated between responses to
treatment have been described as being involved in either synaptic
transmission (SYNCRIP, P2RX1, and STX1A) or brain development
(KLHL2). These results could highlight a new role of these genes in
breast cancer.

Several studies have analysed gene expression profiles of breast
carcinomas treated with docetaxel-based regimens. A 92-gene
profile was identified that discriminated between docetaxel-resistant
and -sensitive breast carcinomas (Chang et al, 2003). The functional
classes of these differentially expressed genes were apoptosis, cell
adhesion or cytoskeleton, protein transport, signal transduction,
RNA transcription, RNA splicing or transport, cell cycle, and
protein translation. Further, a 512-gene signature was described as
predicting pCR to primary systemic therapy with gemcitabine,
epirubicin, and docetaxel (Thuerigen et al, 2006). This signature
contained a predominance of genes encoding enzymes and proteins
binding to nucleic acids, many of which were transcriptional
regulators. Another study on 44 breast tumour tissues identified
85 genes that predicted a clinical response to docetaxel with 80%
accuracy (Iwao-Koizumi et al, 2005). The most prominent

characteristic in non-responders was the elevated expression of
genes controlling the cellular redox environment (glutathione and
thioredoxin systems). Lastly, an in vitro study recently identified 50
genes involved in docetaxel sensitivity that were able to predict the
response in 22 out of 24 clinical samples that were used in Chang’s
study (Potti et al, 2006).

To date, only one study has used RNA profiling to predict
responses to trastuzumab–vinorelbine-based treatments in
patients with early HER2-positive breast cancer (Harris et al,
2007). In this study, resistant tumours exhibited a higher
expression of several growth factors, growth factor receptors, the
PI3K regulatory subunit p85, microtubule-associated protein 2, and
some basal genes. Although the chemotherapeutic agent used with
trastuzumab is different, this signature was not confirmed in an
independent set of patients to validate the identified profile. In
addition, no predictive genes were identified in pCR tumours.

In conclusion, our results suggest that genes not involved in
classical cancer pathways, such as apoptosis, cell cycle progression,
or DNA repair, could be involved in determining responses to a
trastuzumab–docetaxel-based regimen. Importantly, our results
identify for the first time a gene expression signature that predicts
trastuzumab response in breast carcinoma. A consequence of
individualised treatment is that it can be difficult to identify
appropriate numbers of patients with similar characteristics who
have been exposed to the same treatment regimen to adequately
statistically power the study. Thus, the prognostic accuracy of the
28-gene profile that we identified will be confirmed in a new multi-
centre cohort of patients using a multivariate analysis in a larger
number of cases.
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