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igor.riecansky@univie.ac.at

Specialty section:

This article was submitted to

Behavioral and Psychiatric Genetics,

a section of the journal

Frontiers in Psychiatry

Received: 08 April 2020

Accepted: 12 October 2020

Published: 25 November 2020

Citation:

Rovný R, Besterciová D and
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1Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine,

Slovak Academy of Sciences, Bratislava, Slovakia, 2 Social, Cognitive and Affective Neuroscience Unit, Department of

Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria

Deficits in the gating of sensory stimuli, i.e., the ability to suppress the processing of

irrelevant sensory input, are considered to play an important role in the pathogenesis of

several neuropsychiatric disorders, in particular schizophrenia. Gating is disrupted both

in schizophrenia patients and their unaffected relatives, suggesting that gating deficit

may represent a biomarker associated with a genetic liability to the disorder. To assess

the strength of the evidence for the etiopathogenetic links between genetic variation,

gating efficiency, and schizophrenia, we carried out a systematic review of human genetic

association studies of sensory gating (suppression of the P50 component of the auditory

event-related brain potential) and sensorimotor gating (prepulse inhibition of the acoustic

startle response). Sixty-three full-text articles met the eligibility criteria for inclusion in the

review. In total, 117 genetic variants were reported to be associated with gating functions:

33 variants for sensory gating, 80 variants for sensorimotor gating, and four variants for

both sensory and sensorimotor gating. However, only five of these associations (four

for prepulse inhibition—CHRNA3 rs1317286, COMT rs4680, HTR2A rs6311, and TCF4

rs9960767, and one for P50 suppression—CHRNA7 rs67158670) were consistently

replicated in independent samples. Although these variants and genes were all implicated

in schizophrenia in research studies, only two polymorphisms (HTR2A rs6311 and TCF4

rs9960767) were also reported to be associated with schizophrenia at a meta-analytic

or genome-wide level of evidence. Thus, although gating is widely considered as an

important endophenotype of schizophrenia, these findings demonstrate that evidence

for a common genetic etiology of impaired gating functions and schizophrenia is yet

unsatisfactory, warranting further studies in this field.

Keywords: schizophrenia, endophenotypes, intermediate phenotype, prepulse inhibition, P50, sensory gating,

sensorimotor gating, startle reflex

INTRODUCTION

Sensory and sensorimotor gating are conceptualized as basic cognitive processes that
regulate the processing of sensory input by the brain. It has been suggested that gating
represents a filtering mechanism, preventing distraction and sensory overload, or a protective
mechanism, securing uninterrupted processing of stimuli (1–4). Importantly, it has been
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further postulated that disrupted gating may contribute to
information processing deficits, cognitive fragmentation,
and thought disorder, the hallmark feature of schizophrenia
psychosis (5–8).

Sensory gating is routinely examined by measuring the
electroencephalographic event-related potentials (ERPs) during
a paired-pulse paradigm (7). The paradigm comprises trials
with two identical auditory stimuli of the same intensity, a
conditioning stimulus (S1) and a testing stimulus (S2), that are
presented successively with an interstimulus interval of 500ms
(9, 10). Auditory stimuli elicit an ERP, which is characterized
by a positive peak ∼40–90ms after stimulus onset, known as
P50 wave. It has been suggested that response to S1 triggers an
inhibitory mechanism that results in a reduced amplitude of the
P50 wave after the presentation of S2. The diminution of the P50
wave to S2 relative to that elicited by S1, called P50 suppression
or P50 gating, is the operational definition of sensory gating
(7, 10, 11). Other well-established, but less commonly assessed,
measures of sensory gating include the suppression of the N100
and P200 ERP waves (12, 13). The most widely used measure of
sensorimotor gating, on the other hand, is prepulse inhibition
(PPI) of the acoustic startle reflex. During the PPI paradigm, the
presentation of a sudden and intense auditory startling stimulus
(pulse) is preceded (usually 30–120ms) by a weaker non-startling
stimulus (prepulse). This leads to a reduction in the startle reflex
also known as PPI. In humans, PPI is commonly quantified by
measuring the eye-blink component of the startle reflex using
electromyography of the periocular muscles (14–16).

Both PPI and P50 gating are robustly reduced in schizophrenia
spectrum disorders [e.g., (17–20)], but also several other
psychiatric conditions, in particular, bipolar disorder and
obsessive–compulsive disorder [e.g., (21–28), for review see e.g.,
(29, 30)]. Deficits in PPI and P50 gating were reported not only
in psychiatric patients but also in their unaffected first-degree
relatives [(19, 31–33), for a recent review of PPI studies see ref.
(34)]. Several studies have demonstrated a significant heritability
of these measures, ranging 29–58% for PPI and 10–68% for P50
gating (31, 35–42). Given these attributes, including a high test–
retest reliability, PPI and P50 suppression deficits are considered
as important endophenotypes of neuropsychiatric disorders (20,
37), i.e., intermediate phenotypes (or markers) that are associated
with disorders but are simpler in terms of the genetic and
neurobiological architecture (43–45). Endophenotypes represent
an important approach to deal with the complexity and
polygenic nature of mental disorders such as schizophrenia.
It is supposed that studying the genetic architecture of
endophenotypes and their relationship with biological processes
impaired in neuropsychiatric disorders may contribute to a better
understanding of the underlying pathophysiology [e.g., (46)].
The genetic basis of gating in humans has been intensively
studied over the last decades, and it has become apparent
that a significant genetic component is involved in both PPI
and P50 suppression. Despite an extensive and rapidly growing
body of literature on the relationship between genotype and
gating in humans, the underlying genetic architecture of these
endophenotypes remains elusive due to fragmentary evidence
and lack of verification. Recently, Quednow et al. (47) carried out

a systematic review (and a meta-analysis) of human association
studies of PPI (sensorimotor gating). However, a similar
assessment of sensory gating studies is lacking, as is an integrative
review of genetic determinants of both sensory and sensorimotor
gating functions. The aim of this work was thus to evaluate
current knowledge regarding the etiopathogenetic links between
genetic variation, gating efficiency, and schizophrenia. For this
purpose, we carried out a systematic review of published genetic
association studies assessing the relationship between genetic
variation and the efficiency of sensory and sensorimotor gating
in humans. Furthermore, we critically assessed the reliability
of these findings by examining the quality of the studies, the
number of replications, and the relative number of positive and
negative results. Finally, we evaluated the evidence for genetic
mechanisms shared between gating and schizophrenia.

MATERIALS AND METHODS

Study Design
The review process followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines
(48). The Covidence online software (Covidence systematic
review software, Veritas Health Innovation, Melbourne,
Australia; available at www.covidence.org) was used to facilitate
the process of screening, paper selection, and data extraction.

Search Strategy
To identify eligible studies, we performed a systematic,
comprehensive search of the published literature using Pubmed
and Scopus until October 2019. The electronic databases
were searched using the combination of Boolean operators
and the following key words: sensorimotor gating, sensory
gating, prepulse inhibition, P50, startle, polymorphism, gene and
human, among others (for exact search phrases utilized, see
Supplementary Data 1). Also, a secondary search of relevant
articles was performed by screening the references of included
full-text papers.

Inclusion Criteria and Study Selection
To be included in the review a study had to meet the following
inclusion criteria: (1) study design of a candidate gene association
study (CGAS), genome-wide association study (GWAS), or
included these studies as a part of more complex study design
(e.g., pharmacogenetic study), (2) study enrolled human subjects
(healthy participants or psychiatric patients), (3) study outcomes
included sensorimotor gating as indexed by PPI or sensory gating
indices such as P50, N100, or P200 suppression, and (4) the
report was written in English. Only original research papers were
included; other article types, such as reviews, meta-analyses, case
reports, editorials, and commentaries, were excluded.

The search results were imported to the Covidence, and after
removing duplicates, titles and abstracts of identified studies were
independently screened by the first and the second author (RR
and DB). At this stage, only irrelevant studies that obviously did
not meet the inclusion criteria were excluded from the review.
Next, for the remaining potentially eligible papers, the same two
authors independently assessed full texts to select only those
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articles that meet all of the abovementioned inclusion criteria.
Any disagreement between the two reviewers was discussed and
resolved by consensus. If needed, the third author (IR) was
involved to reach a decision.

Data Extraction
The following information was extracted from the selected
studies: name of the first author, affiliation of the first
author, year of publication, country, study design, sample
characteristics (sample size, mean age, sex ratio, race/ethnicity,
inclusion/exclusion criteria and population—healthy vs.
psychiatric patients), parameters of the auditory stimulation
(duration and intensity of acoustic stimuli, background
sound intensity, and sound frequency), electrode placement,
statistical test used, description of assessed polymorphisms
(polymorphism type, reference number/label, chromosomal
position, closest gene, reference and minor allele frequency,
functional consequence, and association with disorders), and
study outcomes of interest (genotype effects on PPI and sensory
gating across all samples including p-value, effect size, direction
of the effect, mean values, and standard deviations). The data
extraction was carried out by DB and RR, working independently
and in duplicate, using the Covidence data extraction tool. All
data extraction forms from both reviewers were inspected for
potential errors and compiled by RR.

Quality Assessment
The quality of genetic studies (Q-Genie) 11-item tool was used
to evaluate the quality of all included studies. We opted for this
tool since it was specifically developed and validated to facilitate
the assessment of the global quality of genetic association studies,
and it proved to be valid and reliable for both expert and
non-expert raters (49). The quality assessment was conducted
by DB and RR, working independently and in duplicate. The
final quality score for each study was calculated by averaging
the respective scores from the two reviewers. Following the
Q-Genie scoring system, scores below 33 indicate poor-quality
studies, scores between 33 and 40 indicate studies of moderate
quality, and scores above 40 indicate good-quality studies. The
degree of interobserver agreement was tested using the Cohen’s
kappa coefficient (κ), with values categorized as poor (≤0.20),
fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80),
and almost perfect agreement (>0.80) (50). The Cohen’s kappa
coefficient was computed by using the FREQ procedure in
SAS Studio software (SAS University Edition, release 3.8, SAS
Institute, Cary, NC, USA).

RESULTS

Identification of Relevant Studies
The systematic search yielded 1,820 potentially relevant
references. After removing 369 duplicates and 1,326 irrelevant
articles identified by screening abstracts, the full texts of the
remaining 125 papers were assessed for eligibility. Of them,
excluded were 39 studies that did not meet the inclusion criteria
and 16 duplicates not captured by Covidence, leaving 70 papers.
Based on the Q-Genie scoring system, 41 out of the 70 relevant

studies (58.6%) were rated high quality, 22 (31.4%) moderate,
and 7 (10.0%) poor. A weighted kappa value of 0.55, 95% CI
(0.50–0.60) indicates a moderate agreement between the two
raters (DB and RR). Poor-quality studies were excluded from the
systematic review due to concerns about the validity of results,
leaving 63 eligible papers. No additional papers were identified
by screening the references of the included articles. The process
of study selection is depicted in the PRISMA flow diagram below
(Figure 1).

Basic Description of the Included Studies
The final selection included 53 CGAS, 3 GWAS, and seven
pharmacogenetic studies (25, 52–113). These studies investigated
in total 63 independent sample groups: 36 samples of healthy
individuals, 20 patient samples (16 with schizophrenia), and
seven samples involving both patients and healthy individuals.
Sensorimotor gating (PPI) was assessed in 41 studies, sensory
gating (P50 or N100 suppression, for simplicity thereafter
referred to as P50 gating) in 18 studies, and four studies assessed
both measures. A short summary of the basic characteristics of
the studies is provided in Table 1; details for each study included
in this review are provided in Supplementary Table 1.

Identification and Description of Genetic
Polymorphisms
Data extraction from the eligible studies resulted in the
identification of 201 polymorphisms located within or close to 77
genes. Association with PPI was tested for 125 polymorphisms.
Among them, 84 variants, within or close to 37 genes,
were reported as significantly (p < 0.05) associated with PPI
in at least one sample. Association with P50 gating was
investigated for 109 polymorphisms, of which 37, located
within or close to 13 genes, were significantly associated with
this measure in at least one sample. Association with both
PPI and P50 gating was investigated in 54 variants and a
significant association with both measures was reported for four
polymorphisms (COMT rs4680, rs165599, ANKK1 rs1800497,
and TCF4 rs9960767). A vast majority of the variants were
single nucleotide polymorphisms (SNPs, Table 2; for a detailed
summary see Supplementary Tables 2–5).

To provide insight into the involved biological mechanism,
we conducted an enrichment analysis using the Gene Ontology
Resource (114–116). The associated variants were annotated
by dbSNP and clustered based on the overrepresentation of
the corresponding genes in the Gene Ontology classification
section Biological Processes. The results of this analysis
are provided in Table 3. Associations were considered as
consistent (reliable) if a significant association with PPI or
P50 gating was reported in at least two independent samples,
and the number of reported significant associations was
higher than the number of null findings. For both PPI
and P50 gating, the reported positive associations included
several genes involved in neurodevelopmental processes and/or
cellular signaling (in particular glutamatergic, dopaminergic,
serotoninergic, and cholinergic neurotransmission). However,
most of the polymorphisms for which positive associations
were reported were explored in only one published study (PPI:
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FIGURE 1 | The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of the study selection process (51).

TABLE 1 | Overview of the basic characteristics of the studies included in the review (25, 52–113).

No. of samples Sample size Gating measure

Study design No. of

studies

Total Healthy Patients

(SZ)

Mixed Mean SD Range PPI P50 Both

CGAS 53 53 28 20 (16) 5 153 244 23–1,821 34 15 4

GWAS 3 4 2 0 2 719 385 306–1,212 2 1 0

Pharmacogenetic 7 6 6 0 0 57 41 23–114 5 2 0

Total 63 63 36 20 (16) 7 41 18 4

CGAS, candidate gene association study; GWAS, genome-wide association study; SZ, patients with schizophrenia; PPI, prepulse inhibition of the acoustic startle reflex; P50, suppression

of wave P50 or N100 of the auditory evoked potential.
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TABLE 2 | Overview of the reported associations with gating measures.

Reported associations Positive associationsc

Gating measure No. of investigated

variantsa
Sig.b Nonsig. SNP NonSNP Genes

PPI 125 84 (3) 100 65 19 37

P50 109 37 (9) 85 30 7 13

a Includes only variants investigated in candidate gene association studies and pharmacogenetic studies. bAssociations reported as significant (p < 0.05), number in parentheses: no.

of significant associations reported in genome-wide association studies. cNo. of variants/genes positively associated with gating function in at least one study. PPI, prepulse inhibition

of the acoustic startle reflex; P50, suppression of wave P50 or N100 of the auditory evoked potential; SNP, single nucleotide polymorphisms; non-SNP, includes copy number variants,

combined genotype, haplotypes, genetic interaction, indels, short tandem repeats.

TABLE 3 | Summary of genes and genetic variants associated with gating functions.

Gene ontology category

(Section biological processes)

Genes with positive associations Reliable associationsa

Nervous system development PPI: AUTS2, AVPR1A, CTNNA2, ERBB4, KCNQ2, NCAM1, NGF,

NOS1, NRG1, OXTR, RELN, TCF4, TSPAN2

P50: DISC1, ERBB4, FLRT2, TCF4

PPI: TCF4 rs9960767

Synaptic transmission, glutamatergic PPI: GRID2, GRIK3, GRIN2A, GRIN3A, GRIN3B

P50: GRID2, GRIK4

Synaptic transmission, cholinergic PPI: CHRNA3, CHRNA4, CHRNA7

P50: CHRNA7c, CHRFAM7A

PPI: CHRNA3 rs1317286

P50: CHRFAM7A rs67158670

GPCR signaling pathway, coupled to

cyclic nucleotide second messenger

PPI: DRD2, DRD3, HTR1Ac, HTR2A

P50: GRM3

PPI: HTR2A rs6311

Regulation of calcium ion transport PPI: CAMK2A, FMR1, NOS1AP

P50: CACNAC1

Neurotransmitter reuptake PPI: SLC1A2, SLC6A3

P50: SLC6A3

Dopamine metabolic process PPI: COMT, DAO, DBH

P50: COMT

PPI: COMT rs4680

Serotonin metabolic process PPI: TPH2b

Proline metabolic process PPI: PRODH

Unclassified PPI: ANKK1, KPNA4

P50: ANKK1

aCriteria of reliability: significant association was reported in at least two independent samples and the number of reported significant associations was higher than number of reported

null results. bA significant association only at the level of haplotype, not single polymorphism. cA significant association only at the level of combined genotype of two or more variants.

GPCR, G protein-coupled receptor; for details of the reported associations, see Supplementary Tables 2–5.

64.3%, P50: 81.1%). Applying our criterion of reliability, only
four associations with PPI (CHRNA3 rs1317286, COMT rs4680,
HTR2A rs6311, and TCF4 rs9960767) and one with P50 gating
(CHRNA7 rs67158670) can be considered as consistent.

Among the polymorphisms positively associated with PPI, 22
(26.2%) are functional variants, i.e., related to the level of gene
expression or the biological function of the protein products (as
reported in the reviewed studies). For the remaining 62 (73.8%)
variants, no direct functional consequences were reported. For
P50 gating, 4 (10.8%) polymorphisms positively associated with
this measure are functional and 33 (89.2%) are without known
functional consequences. To examine the potential functional
role of the positively associated variants, we carried out an in silico
analysis using the HaploReg resource (117). The results of this
analysis showed that a substantial proportion of polymorphisms
that were associated with PPI (41 SNPs) and P50 gating (14 SNPs)

overlap with regulatory motifs such as promoter/enhancer
histone marks or DNase I hypersensitive sites (for a detailed
description see Supplementary Tables 2–5).

DISCUSSION

In this paper, we reviewed the available data on the relationship
between genetic variability and sensory information filtering
in humans. More specifically, we summarized, in a systematic
manner, findings from genetic association studies published in
peer-reviewed journals, examining the effect of common genetic
variants on two well-established parameters of gating functions,
PPI and P50/N100 ERP suppression (jointly referred to as
P50 gating), deficits of which are considered as schizophrenia
endophenotypes. We found that association with PPI or P50
gating was reported for variants located within or near 37
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and 13 genes, respectively, which are involved in a variety
of biological processes, mostly related to neurotransmission
and neurodevelopment. However, most of the polymorphisms
positively associated with PPI and/or P50 gating were examined
in only one study or were not consistently replicated in
other studies. According to our criteria for reliability (i.e.,
association confirmed in at least two independent samples and
positive outcomes outnumbering negative results), only four
polymorphisms within four genes for PPI (CHRNA3 rs1317286,
COMT rs4680, HTR2A rs6311, and TCF4 rs9960767) and one
polymorphism for P50 gating (CHRNA7 rs67158670) can be
considered as reliable or consistent across the studies. Two of
them (COMT rs4680 and TCF4 rs9960767) were identified as
significantly associated with PPI also by Quednow et al. (47), who
included 16 independent samples into a meta-analysis. Although
a large number of reported associations were with non-coding
polymorphisms, our analysis shows that a substantial proportion
of them may play a role in gene expression by affecting
the binding of transcription factors or chromatin remodeling.
However, since enhancers may activate transcription of their
target genes over considerable distances, up to hundreds or even
thousands of kilobases, caution should be taken when making
inferences about the functional connection between non-coding
variants in these regions and target genes (118).

Replication of Association Results
From the 35 associations that were tested in more than one
study, only 10 polymorphisms were reported to be significantly
associated with gating in two or more studies. Low statistical
power in some studies could increase the probability of false-
negative results and unsuccessful replications. Although we
excluded studies whose quality was evaluated as poor according
to the Q-Genie scoring system, yet in 12 of 63 studies that
fulfilled the criteria to be included in this review, sample size was
lower than 50. Furthermore, a considerable number of negative
replication results (14 of 30) come from samples that differed
in ethnicity compared to the initial studies reporting positive
results. Notably, in addition to genetic diversity, difference
in startle response and PPI across ethnic groups (119) could
decrease the number of successful replications. On the other
hand, the non-replications seem not to be due to diversity in
stimulation parameters since these did not substantially differ
between almost all studies that had yielded discrepant outcomes.
In the light of considerable heritability of gating functions (31,
35–42), the low number of reliably assessed genetic associations
clearly indicates that, despite the relatively large number of
genetic studies, current knowledge on the genetic architecture
of gating functions remains very limited. Next, we will focus
our discussion on the variants/genes consistently associated with
sensory and/or sensorimotor gating functions.

Catechol-O-Methyltransferase
Catechol-o-methyltransferase (COMT) is an enzyme degrading
catecholamines. A single nucleotide G-A substitution at codon
158 results in a change from valine to methionine (Val158Met)
causing a missense mutation with a lower metabolic activity of
the enzyme. This polymorphism significantly affects dopamine
turnover in the prefrontal cortex (PFC, Val allele associated

with reduced PFC dopamine levels), PFC activity, and executive
functions in healthy humans [for review see e.g., (120, 121)].
Numerous studies reported COMT Val158Met polymorphism
to be related with liability to schizophrenia and several other
mental disorders, but a recent meta-analysis did not confirm a
significant association with schizophrenia (122). The Val allele
was associated with weaker PPI in six of seven studies included
in our review. In agreement with these reports, a study by
Giakoumaki et al. (63) has shown that administration of a
COMT inhibitor tolcapone increased PPI in Val allele carriers.
As highlighted by the meta-analysis by Quednow et al. (47),
the association of PPI with COMT Val158Met polymorphism is
stronger in men than in women. Interestingly, a similar pattern
of sex-dependent effects of this variation was also reported for
response inhibition and linked with the activity of the PFC
[(123), see also (124)]. Given the putative role of the PFC in
the modulation of sensorimotor gating (125–128), it could be
speculated that the prefrontal circuitry is also involved in the
sex-specific effects of COMT genotype on PPI, which remains to
be established in future studies. The evidence for the association
of COMT Val158Met with P50 gating is less consistent, as a
significant association was reported in seven and non-significant
in nine studied samples.

AnotherCOMT polymorphism, rs165599, has not fulfilled our
reliability criteria but was reported to be significantly associated
with both PPI and P50 gating (only in one study each). Functional
consequences of this variation are less clear, although there is
evidence indicating its relationship with COMT mRNA levels
in the brain of healthy humans, and IQ and the presence of
psychotic symptoms in patients with 22q11 deletion syndrome
(129, 130). A large case-control study reported its association
with schizophrenia in women but not inmen, suggesting that this
SNP confers a sex-specific genetic component in schizophrenia
(131). Notably, rs165599 and rs4680 are both part of a three-
marker haplotype (together with rs2075507) that has been
implicated in COMT protein level, PFC function in obsessive–
compulsive disorder and attention-deficit hyperactivity disorder
(129, 132, 133). This haplotype was significantly associated with
P50 in a sample of patients with bipolar disorder (but not in
healthy controls) (25). Its relationship with PPI has not been
studied yet, as far as we are informed.

To sum up, there is considerable evidence that genetic
variability of COMT affects gating functions, which fits with
the proposed role of dopamine in the PFC (134). Interestingly,
however, disruption of PPI following administration of
dopamine agonists in rodents has been attributed to modulation
of striatal rather than cortical circuitry (135, 136). In humans, on
the other hand, the effects of dopamine agonists on PPI are less
evident and reliable (137). Given the importance of PPI to study
the neurobiology of schizophrenia in animal models, it would be
desirable in future studies to shed more light on the specific roles
of dopamine in cortical and striatal processing related to gating
in humans and rodents.

Serotonin 2A Receptor
The HTR2A gene encodes a G-protein-coupled serotonin 2A
receptor (5-HT2AR). In humans, 5-HT2AR is widely expressed
throughout the brain with particularly high density in the
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neocortex (138). 5-HT2AR has been implicated in multiple
brain functions such as learning, memory, and cognition [for
review see (139)]. Importantly, several lines of evidence implicate
5-HT2AR in the pathophysiology of psychiatric disorders.
First, genetic variants in the HTR2A gene and functional
abnormalities of 5-HT2AR are associated with many psychiatric
disorders including schizophrenia [for review see (140)]. Second,
5-HT2AR antagonists produce antipsychotic and antidepressant-
like effects, whereas agonists have psychotomimetic properties
including PPI-disruptive effects (140, 141). HTR2A rs6311 (also
known as−1438A/G) is a functional SNP, which lies upstream of
the HTR2A promoter region and alters its activity (142). Meta-
analyses confirmed the association of this polymorphism with
schizophrenia and obsessive–compulsive disorder (143–145).
Given the involvement of serotonin in multiple neurobiological
processes, warranted are further studies of the role of 5-HT2AR
in gating and its relationship with schizophrenia.

Nicotinic Acetylcholine Receptor
A lot of research implicates signaling via nicotinic acetylcholine
receptor (nAChR) in gating, schizophrenia, and nicotine
dependence [for review see (146)]. It is well established in
rodents and humans that the agonist of nAChR nicotine
enhances PPI and P50 gating [for review see (147)]. In humans,
sensorimotor gating efficiency was found to be inversely related
to nicotine dependence (148). Smoking and nicotine dependence
are highly prevalent in schizophrenia, and it has been proposed
that tobacco is used by the patients as self-medication to
alleviate the symptoms, in particular the impairment of cognitive
functions (149). Moreover, recent research indicates that nicotine
dependence and schizophrenia may share a part of their
genetic liability [for review see (150)]. Across the reviewed
studies, consistent associations were reported between PPI and
variation in CHRNA3 gene as well as between P50 gating and
CHRFAM7A gene.

CHRNA3 is a part of a CHRNA5–CHRNA3–CHRNB4 gene
cluster on chromosome 15 (15q25 region), encoding α5, α3,
and β4 subunits of the nAChR, linked in previous studies to
nicotine dependence as well as schizophrenia (151–153). Our
search specifically points to CHRNA3 rs1317286, which was
reported to be associated with nicotine dependence in a GWAS
(154). The analysis using HaploReg indicates that this SNP
overlaps with enhancer histone marks and may thus play a
role in CHRNA3 transcription. However, due to high linkage
disequilibrium, it is difficult to determine causative variants in the
CHRNA5–CHRNA3–CHRNB4 cluster, which is under complex
and coordinated regulatory control (155). Interestingly, TCF4
(see below) has been identified as one of the regulators of gene
expression at this locus (156).

CHRFAM7A is a partial duplication of a gene encoding
α7 nAChR, CHRNA7. Translation of CHRFAM7A is low,
but it seems to negatively regulate α7 nAChR function [for
review see (157)]. The P50 gating-associated polymorphism of
CHRFAM7A denoted as rs67158670 (or CHRFAM7A12bp) is
a 2-bp deletion in exon 6. This mutation causes a frameshift
in translation, resulting in a truncated protein, which is even a
more potent inhibitor of α7 nAChR (157). Reduced expression

of CHRNA7 was found in the frontal cortex of schizophrenia
patients post-mortem (158) and smoking counteracts this deficit
(159). In addition to the association with P50 gating, studies
reported association of CHRFAM7A12bp with schizophrenia,
bipolar disorder, and episodic memory [for review see (157)].
The impact of CHRFAM7A12bp on brain development is
debated, and research in this direction could bring new
discoveries of the pathomechanistic links between gating deficits
and schizophrenia.

Transcription Factor 4
The TCF4 gene codes for a basic helix–loop–helix protein,
transcription factor 4, which belongs to a subclass of
transcriptional regulators termed E-proteins. E-proteins
bind to a specific promoter element known as the Ephrussi-box
(E-box) to regulate transcription of target genes in various tissues
including the brain [for review see (160)]. Although the precise
physiological function of TCF4 is not yet fully understood,
a recent study demonstrated that binding sites for TCF4 are
present in a large number of genes involved in nervous system
development, ion transport, and signal transduction (156).
Moreover, this study also showed that TCF4 binding sites are
found in many susceptibility genes implicated in common
neurodevelopmental disorders including schizophrenia and
autism spectrum disorders. Notably, several SNPs in TCF4 itself
have been directly linked to schizophrenia, underscoring the
possible role of this gene in schizophrenia pathogenesis (161).
Our analysis points to a reliable association of TCF4 rs9960767
with PPI. Notably, Quednow et al. (90) reported that the effect
of this polymorphism on PPI is moderated by smoking behavior,
which fits with the regulatory role of TCF4 on the CHRNA5–
CHRNA3–CHRNB4 cluster (156). The association of this
variation with schizophrenia was confirmed at a meta-analytic
and genome-wide level [for review see (162)]. TCF4 rs9960767
is located within intron 3 of the TCF4 gene and has no direct
obvious functional consequences. Neither is there evidence of
its linkage disequilibrium with other common non-synonymous
polymorphisms or causal variants, which alter TCF4 mRNA
expression in adult human brain (163). Williams et al. (163)
suggested that rs9960767 may exert effects on TCF4 expression
in a developmental context. Our findings support this notion
as the HaploReg analysis indicates that rs9960767 may affect
putative binding sites of transcription factors Foxa and STAT
in the brain germinal matrix, which plays a critical role during
brain development. All these findings indicate that sensorimotor
gating deficit is a constituent of the neurodevelopmental insult,
which is assumed to play a crucial role in the pathogenesis of
schizophrenia (164).

Common Genetic Factors of Gating
Functions
Four polymorphisms out of 45 variants studied so far were
reported to be significantly associated with both PPI and
P50 gating. Given our criteria of reliability, however, none
of these associations was reliable for both measures. Evidence
for common genetic mechanisms underlying both sensory and
sensorimotor gating thus remains elusive. Although sensory and
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sensorimotor gating represent related concepts, the hallmark
of which is inhibition, the relationship between PPI and P50
suppression is not fully understood. Correlation between the
magnitude of PPI and P50 suppression seems weak since
most studies found no significant relationship between the two
measures (165–171). Furthermore, PPI primarily relies on the
processing in the brainstem and the basal ganglia, which is
modulated by the cerebral cortex (125–128, 135, 172–176), while
the sources of P50 ERP and P50 suppression are thought to be
localized predominantly in the hippocampus, the temporal and
the frontal lobes (167, 177–179). Given the importance of PPI and
P50 gating in psychiatry, further research is warranted to clarify
the relationship between these two phenomena in more detail at
both the cognitive/psychological and neurobiological levels.

CONCLUSION

Our review identified a considerable number of genetic variants
associated with PPI or P50 gating in previous studies. However,
a critical evaluation of the reports shows associations of only
five polymorphisms (four for PPI and one for P50 gating) as
consistently replicated across the studies. From these, only two
variants (HTR2A rs6311 and TCF4 rs9960767, both associated
with PPI) also show a reliable association with schizophrenia
(meta-analytic or genome-wide evidence). Although deficits
in sensory and sensorimotor gating are widely considered as
important endophenotypes of schizophrenia, the evidence for
the common genetic etiology of the impaired gating functions

and schizophrenia thus remains limited, and further large-scale
studies are warranted to advance our understanding of this
complex problem.
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