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stic value model in
papillary renal cell carcinoma by immune-related
genes
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Abstract
Papillary renal cell carcinoma (PRCC) is the second most common type of renal carcinoma following clear cell renal cell carcinoma,
and the role of immune-related genes (IRGs) in tumorigenesis and metastasis is evident; its prognostic value in PRCC remains
unclear. In this study, we downloaded the gene expression profiles and clinical data of patients with PRCC from The Cancer Genome
Atlas (TCGA) database and obtained IRGs from the ImmPort database. A total of 371 differentially expressed IRGs (DEIRGs) were
discovered between PRCC and normal kidney tissues. Prognostic DEIRGs (PDEIRGs) were identified by univariate Cox regression
analysis. Then, we screened the four most representative PDEIRGs (IL13RA2, CCL19, BIRC5, and INHBE) and used them to
construct a riskmodel to predict the prognosis of patients with PRCC. This model precisely stratified survival outcome and accurately
identifiedmutation burden in PRCC. Thus, our results suggest that these four PDEIRGs are available prognostic predictors for PRCC.
They could be used to assess the prognosis and to guide individualized treatments for patients with PRCC.

Abbreviations: AUC = area under the ROC curve, ccRCC = clear cell RCC, DEGs = differentially expressed mRNAs, ICI =
immune checkpoint inhibitor, IRGs = immune-related genes, KM = Kaplan–Meier, OS = overall survival, PDEIRGs = prognostic
differentially expressed IRGs, PRCC = papillary renal cell carcinoma, RCC = renal cell carcinoma, ROC = receiver operating
characteristic, TCGA = The Cancer Genome Atlas, TMB = tumor mutation burden.
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1. Introduction

Renal cell carcinoma (RCC) is characterized by a lack of early
warning signs (which results in a high proportion of patients with
metastases), diverse clinical manifestations, and resistance to
radiotherapy and chemotherapy, and there is a potential role for
immunomodulation in the inhibition of tumor growth.[1,2]

Papillary renal cell carcinoma (PRCC), accounting for ∼15%
of kidney cancers, is the second most common type of renal
carcinoma following clear cell renal cell carcinoma.[3] Although
comprehensive treatments for PRCC have improved, the overall
survival rate (OSR) is still low, especially for advanced or
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metastatic patients for whom treatment options unfortunately
remain limited.[4,5] Hence, it is necessary to recognize biomarkers
and improve the prognosis of patients with PRCC.
With the development of microarray and sequencing technol-

ogy, as well as available open-access databases such as The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO), the discovery of biomarkers and identification of
molecular subtypes have been implemented in several cancers.[6,7]

There is growing evidence that the immune system plays an
important role in the development and progression of cancer.[8,9]

The immune system has been reported to participate in different
stages of cancer, and some immune checkpoint molecules (such as
PD-1, PD-L1, and CTLA-4) are practicable targets of immuno-
therapy.[10,11] In addition, immune escape has also been
confirmed to be a mechanistic marker for chemotherapy
resistance in cancer.[12] Immune checkpoint inhibitors reduced
the immune escape of cancer cells and enhanced the tumor-
specific immune response to attenuate tumor growth.[13,14]

Therefore, the identification of relevant IRGs might reduce drug
resistance and extend survival time for PRCC.
Recently, researchers have identified numerous IRGs of

patients with RCC based on gene expression profiles and have
constructed prognostic multigene signatures that can divide
patients into different risk groups.[15–17] Previous studies have
shown that IRGs were associated with the immune response
intensity and predicted the prognosis of patients with
PRCC.[18,19] Zhang et al reported that IDO1 and PD-L2 were
associated with a poor prognosis in PRCC.[20] However, the
molecular events of IRGs in PRCC need to be further explored
and summarized, which will lead to the discovery of their
potential functions in patients with PRCC.
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In this study, TCGA, ImmPort databases and the clinical
features of patients were analyzed to construct a prognostic
prediction model for PRCC based on IRGs. This could be used to
assist clinical treatment by evaluating the prognosis and
providing therapeutic strategies for patients with refractory
PRCC.
2. Materials and methods

Ethics committee approval was not required because all clinical
data in this study were obtained from a public database and are
available without individual identity.
2.1. Data collection and processing

The transcriptomic data, mutation data, clinical and follow-up
information from 289 patients with PRCC and the tran-
scriptomic data from 32 normal patients were downloaded from
the TCGA portal (https://portal.gdc.cancer.gov/). The IRGs were
obtained from the ImmPort database (https://www.immport.org/
home). Immune infiltrate data were obtained from the Cistrome
project (http://www.cistrome.org/), which contains the abun-
dances of six tumor-infiltrating immune cells (B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages and dendritic cells)
in PRCC. All of the datasets were disposed by R 3.6.2 software
(https://www.r-project.org/).
2.2. Identification of DEIRGs

We matched patients’ clinical information and transcriptomic
data according to their ID numbers and removed patients if their
ID numbers could not be matched. We ultimately obtained
complete gene expression profiles and overall survival (OS)
information data from 281 patients. To screen DEIRGs among
all identified genes of PRCC, the Wilcoxon signed-rank test was
employed to identify differentially expressed mRNAs (DEGs) by
the R language limma package based on the cutoff values: P
value< .05 and jlog2 FCj>1. Then, we screened relative IRGs in
DEGs that are DEIRGs.
2.3. PDEIRG screening and experimental model
construction

Here, the model is first built and trained on the training dataset.
The testing dataset means that a dataset was used to provide an
unbiased evaluation of a final model fit on the training dataset.
The 281 patients were randomly assigned to the training set (n=
139) and the testing set (n=142). The training dataset was
utilized to establish a Cox regression hazards model. Initially,
based on the expression profile and OS data, possible PDEIRGs
were identified by the R language survival package using
univariate Cox analysis. Next, Lasso regression was applied to
select the most significant risk genes and eliminate genes that
would overfit the model. Finally, we used Cox proportional
hazards regression to construct a prognostic risk score model.
2.4. Risk score calculation

To calculate the risk score for each patient, we used the regression
coefficients from the multivariate Cox regression model to weight
the expression values of the selected genes. The following
computational formula was used for this analysis:
2

Risk score ¼
Xn

i¼1

bi�xi

where bi refers to the estimated regression coefficients of each
gene and xi represents the expression value of the gene (FPKM).
The risk score model was calculated for each patient and used to
classify each patient into a low- or high-risk group based on the
median risk score of the training dataset as the cutoff. Patients in
the low-risk group had a higher OS, and those included in the
high-risk group had a lower OS. Kaplan–Meier (KM) survival
curves and log-rank tests were used to assess differences in OS
between the predicted high- and low-risk groups. The sensitivity
and specificity of the diagnostic and prognostic prediction models
were analyzed by receiver operating characteristic (ROC) curves
and quantified based on the area under the ROC curve (AUC).

2.5. Correlation analysis between the risk score and
clinical features, immune cell infiltration and tumor
mutation burden (TMB)

Univariate and multivariate Cox analyses were performed to test
the risk score and clinical features (age, sex, stage) as individual
indicators. Then, 3- and 5-year survival rates predicted by the
ROC curves for four models were compared.
To explore the associations between the prognostic model and

immune cell infiltration, we employed the Cistrome algorithm.
Cistrome, a useful resource for comprehensive analysis of tumor
infiltrating immune cells, is used for quantifying the composition
of six tumor infiltrating immune cell subsets (B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages and dendritic
cells). The immune infiltrate levels of patients with PPRC were
derived from the Cistrome website, and the correlation between
the risk score and immune cell infiltration was conducted in R.
Finally, we illustrated the respective mutation profiling of the

two risk levels by the R language Maftools package. The TMB in
PRCCwas defined as TMB= (total count of variants) / (the whole
length of exons).

2.6. Statistical analysis

All analyses were conducted using R software, and P< .05 was
considered statistically significant. The rank correlation among
the different variables was assessed with the Pearson correlation
coefficient test. Differences between variables were assessed with
independent t-tests. Kaplan-Meier curves and log-rank tests were
used to analyze the survival data, and univariate Cox regression
analysis was used to identify factors affecting the survival of
patients. Multivariate Cox regression analysis was used to
identify independent prognostic factors. Time-dependent ROC
analysis was used to evaluate the accuracy of the prognostic
prediction model. An AUC>0.60 was regarded as acceptable for
predictions, and an AUC>0.75 was deemed to have excellent
predictive value.

3. Results

3.1. Screening of DEGs and DEIRGs in PRCC

The RNA sequencing dataset of patients with PRCC was
downloaded from the TCGA database, and the IRGs were
obtained from the ImmPort database. A total of 321 samples
were used, which included PRCC tissues (n=289) and normal
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Figure 1. Expression of DEGs and IRGs in the two sample groups. (A and B). Expression of DEGs in the two sample groups represented by a heatmap and
Volcano plot. (C and D). Expression of IRGs in the two sample groups represented by a heatmap and Volcano plot. Green represents downregulated genes, black
represents non-differentially expressed genes, red represents upregulated genes (P value< .05 and jlog2 FCj>1).
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kidney tissues (n=32). Using a P value of less than 0.05 and [log
FC] more than 1 as the cutoff criteria, we extracted DEGs
between PRCC tissues and normal kidney tissues by the R
language limma package. A total of 5286 DEGs were identified,
including 3370 upregulated and 1916 downregulated DEGs
(Fig. 1A and B). Next, IRGs were identified from the extracted
DEGs. This analysis revealed 371 differentially expressed IRGs
(DEIRGs), including 232 genes that were upregulated and 139
genes that were downregulated in PRCC tissues compared with
normal kidney tissues (Fig. 1C and D).

3.2. Identification of prognostic DEIRGs and validation of
the prognostic gene signature

To identify possible prognosticDEIRGs (PDEIRGs), univariateCox
regression analysis was applied to the expression of each DEIRG in
the entire TCGA cohort. The results showed that 78 DEIRGs were
significantly associated with the overall survival (OS) of patients
3

with PRCC (P< .05). We further screened the optimal PDEIRGs to
construct a Cox regression hazards model in a training cohort that
randomly selected 139 of the 281 patients. First, we used least
absolute shrinkage and selection operator (Lasso) regression to
delete PDEIRGs that correlated highly with one another and
identified 14 candidate PDEIRGs in the training cohort (Fig. 2A and
B). The prognostic gene signature was then established based on
multivariate Cox proportional hazards regression analysis, and we
ultimately defined four optimal PDEIRGs (risk genes) for inclusion
in the prognostic risk model: IL13RA2, CCL19, BIRC5, and
INHBE. They were identified as high-risk genes (predicting a poor
prognosis) in terms of the OS of patients (Table 1).

3.3. Construction of the prognostic risk model in the
training set

To investigate the association between the risk genes and the
clinical prognosis of patients with PRCC, we developed a
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Figure 2. Further analysis of the PDEIRGs in the training cohort. (A and B). Candidate PDEIRGs selected through Lasso regression analysis.
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prognostic risk scoring system based on these genes. The risk
score was calculated as follows:

Risk score ¼ ð0:3711�IL13RA2Þ þ ð0:0157�CCL19Þ
þ ð0:2913�; BIRC5Þ þ ð0:0352�INHBEÞ:

The patients in the training set were then divided into a high-
risk group (n=69) and a low-risk group (n=70) according to the
median risk score. From the Kaplan-Meier curve, patients in the
high-risk group had significantly poorer OS outcomes than those
in the low-risk group (log-rank test, P< .05) (Fig. 3A). The area
under the ROC curve (AUC) values for the prognostic model
were 0.929 at three years and 0.707 at five years (Fig. 3B and C),
confirming the prediction accuracy of survival prediction based
on our four-gene signature. The distribution of the risk scores,
survival status, and expression of the 4 IRGs in training samples
are illustrated in Figure 3D–F. In patients with high-risk scores in
the training set, the four risk genes (IL13RA2, CCL19, BIRC5,
and INHBE) were upregulated, and these risk genes displayed the
opposite expression pattern in the low-risk group.

3.4. Validation of the prognostic model in the testing set
and the entire TCGA dataset

To assess the performance of the prognostic risk model, we
validated our four-gene signature in the testing set (n=142) and
Table 1.

Risk genes in the prognostic risk model.

Gene Coefficient P-value HR (95% CI)

BIRC5 0.2913 3.30E-06 1.338 (1.184–1.513)
CCL19 0.0157 3.83E-04 1.016 (1.007–1.025)
INHBE 0.0352 .016 1.036 (1.007–1.066)
IL13RA2 0.3711 .036 1.449 (1.025–2.050)

CI= confidence interval, HR=hazard ratio.

4

entire TCGA dataset (n=281). First, the survival risk score of
each patient in the testing set and entire TCGA dataset were
calculated based on the above formula. According to the median
risk score, we divided patients into high- and low-risk groups. In
the testing set, 78 patients were categorized as high-risk and 64
were categorized as low-risk. In the entire TCGA dataset, 145
patients were classified as high-risk and 136 were classified as
low-risk.
Next, Kaplan-Meier survival analysis was used to determine

the prognostic differences between the high-risk and low-risk
groups. The Kaplan-Meier curve results showed that there was a
significant difference in prognosis between the two groups in both
the testing set and the entire TCGA dataset (P< .05) (Fig. 4A and
D). In agreement with the results of the training set, the survival
curves demonstrated that patients in the high-risk group
exhibited markedly poorer overall survival than those in the
low-risk group. Moreover, time-dependent ROC analyses were
performed for the testing set and the entire TCGA dataset at three
and five years. In the testing set, the AUCs at three and five years
were 0.824 and 0.741, respectively (Fig. 4B and C). In the entire
TCGA set, the AUCs at three and five years were 0.866 and
0.735, respectively (Fig. 4E and F).
The risk score distribution, survival status and risk gene

expression in the testing set and the entire TCGA dataset are
displayed in Fig. 5A–F. Similar to the results in the training set,
the four-gene levels were lower in the low-risk group than in the
high-risk group. Therefore, these results demonstrated that this
four-gene risk model can be used and is precise regarding the
prognostic prediction of patients with PRCC.

3.5. Independence of the risk model from other clinical
factors

We speculate that the collaboratively abnormal expression of the
risk model could be regarded as an independent prognostic
factor. Next, univariate and multivariate Cox regression analyses



Figure 3. Prognostic analysis of the training set. (A). Survival curve for the low-risk and high-risk groups. (B and C). 3- and 5-year ROC analysis predicted overall
survival using the prognostic model. (D). Risk score distribution of patients with PRCC in the prognostic model. (E). Survival status and duration for patients in the
prognostic model. (F). Heatmap of the four risk gene expression levels in the prognostic model.
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Figure 4. Validation of the prognostic model in the testing set and the entire TCGA dataset. (A). Kaplan-Meier curve analysis of high-risk and low-risk patients in the
testing set. (B and C). Time-dependent ROC curve for predicting the 3- and 5-year survival in the testing set. (D). Kaplan-Meier curve analysis of high-risk and low-
risk patients in the entire TCGA set. (E and F). Time-dependent ROC curve for predicting the 3- and 5-year survival in the entire TCGA set.

Figure 5. Prognostic analyses of high-risk and low-risk patients in the testing set and the entire TCGA dataset. (A). Risk score distribution of patients in the testing
set. (B). Survival status scatter plots of patients in the testing set. (C). Heatmap of risk gene expression in the testing set. (D). Risk score distribution of patients in the
entire TCGA set. (E). Survival status scatter plots of patients in the entire TCGA set. (F). Heatmap of risk gene expression in the entire TCGA set.

Wang et al. Medicine (2021) 100:12 Medicine
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Figure 6. Forest plot summary of analyses of OS. (A). Univariate analysis of the risk score, age, sex and pathological stage in the TCGA dataset. (B). Multivariate
Cox analysis of the TCGA dataset.
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were conducted to assess whether the risk score model was
independent from other clinical parameters (age, sex and
pathological stage) as a prognostic factor for PRCC. The
univariate analysis indicated that pathological stage and our risk
score model (P< .001) were markedly correlated with the
prognosis of patients with PRCC (Fig. 6A). The multivariate
analysis revealed that the risk score and stage remained
independent prognostic factors associated with OS in the entire
TCGA dataset (P< .001, Fig. 6B and Table 2). These results
demonstrated that the prognostic risk model and pathological
stage can be used independently to predict the prognosis of
patients with PRCC.
We also performed 3- and 5-year ROC analyses to determine

the sensitivity and specificity of these factors. The risk score was
more accurate than the other clinical parameters: the AUCs at
three years for risk score, age, sex and pathological stage were
0.837, 0.535, 0.481 and 0.799, respectively (Fig. 7A), and the
corresponding variables at five years were 0.706, 0.491, 0.445
and 0.694, respectively (Fig. 7B).

3.6. Correlation among immune cell infiltration, TMB and
the risk score

To determine whether our risk model could reflect the tumor
immune microenvironment andmutation burden in patients with
PRCC, immune infiltration profiling and mutation count
analyses were carried out to explore the correlation between
the risk score and immune cell infiltration and tumor mutation
burden (TMB) in the entire TCGA dataset. We found that the
abundance of B cells and CD4+ T cells was positively correlated
with the risk score (P< .05, Fig. 8A and B). However, no
significant correlations were observed between CD8+ T cells,
Table 2.

Univariate and multivariate Cox regression analyses of the entire
TCGA cohort.

Univariate analysis Multivariate analysis

Variables HR (95% CI) P-value HR (95% CI) P-value

Overall survival
Age 0.99 (0.96–1.02) .460 0.99 (0.96–1.02) .407
Gender 0.65 (0.31–1.36) .253 1.07 (0.48–2.39) .862
Stage 3.15 (2.22–4.48) 1.69E-10 3.11 (2.16–4.49) 1.32E-09
Risk score 1.02 (1.01–1.02) 9.90E-07 1.01 (1.01–1.02) 2.23E-04

CI= confidence interval, HR=hazard ratio, TCGA=The Cancer Genome Atlas.
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dendritic cells, macrophages, neutrophil cells and risk score
(Fig. 8C–F). Compared with the low-risk group, the mutation
count was higher in the high-risk group of patients with PRCC
(P< .05, Fig. 9).

4. Discussion

Because of the different molecular mechanisms and the low
proportion of PRCC in RCC, patients with PRCC have been
excluded from large clinical trials of targeted drugs, such as
sorafenib and sunitinib, and research on PRCC is always less
studied than clear cell RCC and progresses slowly.[21] Although
some patients with PRCC can be diagnosed by ultrasonography
and receive surgery at an early stage, a significant number of
advanced patients die due to postoperative recurrence, metasta-
sis, and resistance to chemotherapeutic drugs, underscoring the
importance of exploring the molecular mechanisms and
prognostic factors of PRCC.[22]

Recently, studies have been reported involving gene signatures
for prognostic prediction in human cancers.[23–25] Immune cells
were found in human solid tumors, and the immune pattern of
the tumor microenvironment is a major predictor of patient
survival in most primary tumors.[26] Previous studies have shown
a major prognostic value of the immune pattern (CD8+/DC-
LAMP+ cell densities) in colorectal carcinoma and RCC,
reproducible from primary to metastatic tumors.[27] The immune
checkpoint molecules on expanded T cells in patients with
advanced RCC were higher than those on unexpanded T cells
before surgery.[28] Considering the importance of the immune
environment in the progression of cancer, it is essential to identify
immune-related biomarkers to evaluate the prognosis of patients
with PRCC, which may also play a significant role in
immunotherapy. The objective of our study was to recognize
the immune-related genes (IRGs) associated with prognosis and
to construct a dependable model to predict the overall survival
(OS) of patients with PRCC.
First, we obtained 371 DEIRGs, including 232 upregulated

and 139 downregulated genes, based on 289 PRCC tissues and
32 normal kidney tissues that were downloaded from the TCGA
database. We then performed Cox and Lasso regression analyses
to assess the relationship of these DEIRGs with the prognosis of
patients with PRCC, and 4 PDEIRGs of interest (IL13RA2,
CCL19, BIRC5, and INHBE) were ultimately determined. All 4
PDEIRGs have been reported to be involved in the immune
microenvironment and inflammatory response.[29–32] The IL-

http://www.md-journal.com


Figure 7. Time-dependent ROC curve analyses of risk score and clinical factors in the entire TCGA dataset at three and five years. (A). AUC at three years. (B). AUC
at five years.
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13RA2 bound and upregulated by IL-13 as well as CCL19 ligand
binding the chemokine receptor CCR7, they have been
established as an important component of migratory events in
adaptive immune function, such as intravenous transfer of CD4
Figure 8. Relationships between the risk score and infiltration abundances of six
Dendritic cells. (E). Macrophages. (F). Neutrophils.

8

and CD8 T cells.[33,34] Kuo et al showed anti-apoptotic protein
BIRC5 maintained survival of HIV infected CD4 T cells and Li
et al found that BIRC5 and INHBE were significantly overex-
pressed in the high TMB group and correlated with worse
types of immune cells. (A). B cells. (B). CD4+ T cells. (C). CD8+ T cells. (D).



Figure 9. Mutation burden of patients with PRCC in the high-risk and low-risk
groups with risk score.
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prognosis in chromogenic RCC (chRCC).[35,36] Moreover,
IL13RA2 could mediate resistance to sunitinib in certain
populations of ccRCC by avoiding sunitinib-induced apopto-
sis.[37] BIRC5 was overexpressed in patients with breast cancer
and was responsible for shorter relapse-free survival, worse
overall survival, reduced distant metastasis-free survival, and
increased risk of metastatic relapse events.[38] In addition, INHBE
emerged as a candidate hepatokine associated unexpectedly with
whole-body energy metabolism under obese insulin-resistant
conditions, which could decrease fat utilization and increase fat
mass.[39] CCL19 has been regarded as one of the immune-related
risk genes that can predict PRCC patient survival.[18] From this, a
prognostic prediction model was constructed, and the risk score
of patients was calculated.
Next, we examined the value of the risk score model for the

prognostic prediction of patients by survival analysis. The results
showed that patients in the high-risk group had significantly
poorer OS outcomes than those in the low-risk group, suggesting
that the model was associated with the prognosis of patients with
PRCC. We then further analyzed the reliability and stability of
the model and validated it. Our results indicated that the model
could accurately discriminate patients with different survival
outcomes. Combining univariate and multivariate Cox regres-
sion analyses, the model was demonstrated to independently
predict the prognosis of patients with PRCC. Thus, our model
can be used to identify patients with PRCC at high risk for death
and to carry out early interventions to improve the prognosis of
patients in clinical work.
Previous studies have demonstrated that immune infiltration is

an important determinant of the therapeutic response and
prognosis of cancer.[40,41] Li et al found that higher enrichment of
multiple immune/inflammatory cells, such as Th2 cells and
macrophages, was associated with poor prognosis in breast
cancer.[42] G. Drake et al reported that the high infiltration of
CD8+ T cells in RCC is related to worse outcome.[43] Therefore,
we also analyzed the relationship between the risk score and
immune cell infiltration and found that the risk score correlated
positively with the infiltration of B cells and CD4+ T cells. The
tumor mutation burden (TMB) might predict clinical response
and be associated with survival in patients taking immune
checkpoint inhibitors (ICIs) across a wide variety of cancer
types.[44,45] Thus, we speculated whether our model reflected
9

TMB and found that the mutation burden was higher in the high-
risk group than in the low-risk group. These results suggested that
the model can be used to distinguish patients with different
sensitivities to immunotherapy and to develop individualized
treatment strategies.
Recently, the riskmodels according to PDEIRGs have attracted

wide attention and revealed the tremendous potential in
prognosis prediction of patients with cancer. Wang et al
constructed a prognostic risk model screening 15 PDEIRGs in
PRCC and verified that the model could independently
distinguish patients with different risks of death.[18] Wan et al
applied Cox and Lasso regression to identify 7 PDEIRGs for
establishing a risk model for the prognostic stratification of
patients with ccRCC and found that the model could predict
immune cell infiltration, themutation burden and the progression
of ccRCC.[17] Zhang et al established a prognostic prediction risk
score model based on the expression profiles of 14 IRGs in lung
adenocarcinoma that showed high prediction accuracy and
stability in identifying immune features.[46] Our research differed
from previous studies in several ways. First, there were fewer
IRGs in our model than in the previous models, and we focused
on only 4 IRG expression patterns in PRCC. Second, the IRGs in
our model did not overlap with those in the previous models.
Third, we used multiple algorithms (including univariate Cox,
multivariate Cox and Lasso regression) to identify PDEIRGs for
the model. Therefore, our study was more accurate and reliable
than the others.
There are still some limitations in our study. First, all of the

investigative data were completely acquired from public data-
bases. Second, we evaluated the performance of the risk model by
the full TCGA cohort lacking further validation, owing to limited
patient numbers in the validation datasets. Third, the biological
functions of 4 PDEIRGs in PRCC require further examination by
a series of experiments.
5. Conclusion

In summary, we constructed a risk model using 4 IRGs
(IL13RA2, CCL19, BIRC5, and INHBE) for the prognostic
prediction of patients with PRCC from the TCGA database. The
risk score generated by this model can serve as an independent
prognostic predictor to distinguish patients with different
survival outcomes for PRCC. Moreover, this prognostic model
may also serve as a predictor for increased immune cell
infiltration (B cells and CD4+ T cells) and can stratify patients
with PRCC with different mutation burdens. Our study develops
knowledge of IRGs in PRCC and provides new potential
prognostic and therapeutic biomarkers. However, further
experiments are required to verify the findings of this study.
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