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Abstract

Although the potential effect of aberrant expression of catabolic and anabolic genes on the 

development of osteoarthritis (OA) is well-documented, the regulatory mechanism for the 

expression of these genes in articular chondrocytes remains to be elucidated. The recent advances 

in epigenetic studies have identified microRNA (miRNA) as one of the epigenetic mechanisms for 

the regulation of gene expression. This mini review highlights the role of miRNA in the regulation 

of gene expression in articular chondrocytes and its significance in the pathogenesis of OA, with a 

discussion on the potential of miRNA as a new biomarker and therapeutic target for OA. Further 

investigations are required to determine the specificity, sensitivity, and efficacy of miRNA for 

clinical applications.
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1. Introduction

In contrast to genetics which is the study of hereditable variation in DNA sequences, 

epigenetics refers to the study of the changes in gene transcription activity caused by 

mechanisms other than changes in DNA sequences. Traditional epigenetic covalent 

modifications include DNA methylation and histone protein modifications (e.g. acetylation, 

methylation, phosphorylation, ubiquitination and sumoylation).

Recently, non-coding RNAs (ncRNAs) that possess epigenetic-like properties in the 

regulation of gene expression have also been considered as one of the epigenetic 

mechanisms [1,2]. With the use of high-throughput technologies, comprehensive assessment 

of the quantity of transcriptional molecules, including protein-coding messenger RNAs 
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(mRNA) and ncRNAs, is now an area of rapid expansion in biomedical research of common 

diseases, such as Osteoarthritis (OA).

OA is the most common form of arthritis and is the leading cause of chronic disability in 

middle-aged and older populations [3]. Aberrant gene expression in articular chondrocytes 

of OA joints has been well documented in both animal and humans studies. However, the 

underlying regulatory mechanism that causes aberrant gene expression in OA cartilage has 

not yet been elucidated.

This review will first highlight the role of microRNA (miRNA), one of the most studied 

ncRNAs, in the regulation of aberrant gene expression in articular chondrocytes as it relates 

to the pathogenesis of OA, and then discuss the potential use of miRNA as a biomarker and 

potential therapeutic target for OA.

2. miRNA and OA

2.1 Biogenesis of miRNA

Classically, a gene is assumed to be transcribed into an mRNA and then translated into a 

protein; however, the discovery of genes encoding ncRNAs has extended the definition of a 

gene. The ncRNA genes produce transcripts functioning as structural, catalytic, or regulatory 

RNAs rather than being translated into proteins. Based on their length, ncRNAs can be 

divided into short ncRNAs (<30 nucleotides) and long ncRNAs (lncRNAs, >200 

nucleotides). Short ncRNAs include miRNAs, short interfering RNAs (siRNAs), and piwi-

interacting RNAs (piRNAs) [4]. MiRNAs are transcribed from miRNA genes as long 

primary transcripts (pri-miRNAs) characterized by a hairpin structure and are processed as 

pre-miRNAs (around 70-nucleotides long) in the nucleus. After being transported into the 

cytoplasm, pre-miRNAs are cleaved by Dicer and then matured into miRNA of 22–24 

nucleotides [5].

2.2 Aberrant gene expression in OA cartilage

Adult articular cartilage is an avascular tissue in which chondrocytes are the only cellular 

component. Articular chondrocytes maintain the low-turnover of the extracellular matrix 

(ECM) by delicately regulating the expression of catabolic and anabolic genes. Progressive 

degradation of articular cartilage ECM is the major pathophysiological feature of OA.

Increased expression of catabolic genes and decreased expression of anabolic genes are 

usually observed in OA chondrocytes, which disrupt the metabolic balance in articular 

cartilage.

A number of catabolic genes have been proposed to be involved in the development of OA, 

including the genes encode: 1) Aggrecanases, such as ADAMTS (a disintegrin and 

metalloproteinase with thrombospondin motifs)-4 and -5, two major aggrecanases which 

have been shown to play important role in development of OA [6–9]; 2) Collagenases, 

particularly MMP (matrix metalloproteinase)-13, a major type II collagen (COL2A1)-

degrading collagenase, which contributes to the initiation and progression of OA [10,11]; 3) 

Pro-inflammatory cytokines, such as IL (interleukin)-1β, IL-6, and TNF-α (tumor necrosis 
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factor)[12,13]; 4) RunX2 (Runt- related transcription factor 2), which contributes to the 

pathogenesis of OA by promoting chondrocyte hypertrophy and matrix breakdown in 

articular cartilage. Runx2+/− mice exhibit decreased cartilage destruction and osteophyte 

formation, along with reduced expression of type X collagen and MMP-13, as compared 

with wild-type mice [14]. Upregulation of these catabolic genes contributes to the increased 

degradation of articular cartilage ECM.

A number of anabolic genes have been proposed to be involved in the structure and function 

of articular cartilage, including the genes encode: 1) Aggrecan, a major proteoglycan in 

articular cartilage [15,16]; decreased aggrecan expression is often evident in OA cartilage 

[17,18]. 2) Collagens, collagen type II is one of the major ECM components of the articular 

cartilage. Mice bearing a small deletion mutation in type II collagen gene developed OA-like 

lesions [19]. 3) SOX9 (SRY-Box 9), SOX9 is a master transcription factor for 

chondrogenesis during the development of the skeletal system, in cooperation with SOX5 

and SOX6 [20,21].

Although mice with conditional postnatal deletion of Sox9 in chondroytes do not develop 

OA [22], later OA usually is associated with decreased SOX9 expression [23]. 4) NFAT1 

(Nuclear Factor of Activated T-cells 1), which is a member of the NFAT transcription factor 

family originally identified as a regulator of the expression of cytokine genes during the 

immune response [24,25].

NFAT1 has recently been shown to play an important role in maintaining the permanent 

cartilage phenotype in adult mice. Nfat1 knockout (Nfat1−/−) mice exhibit normal skeletal 

development, but display over-expression of numerous matrix-degrading proteinases and 

pro-inflammatory cytokines, as well as loss of collagen-2 and aggrecan during the early 

stage of OA.

These initial changes are followed by articular chondrocyte clustering, formation of 

chondro-osteophytes, progressive articular surface destruction, formation of subchondral 

bone cysts, and exposure of thickened subchondral bone, all of which resemble human OA 

[26]. Down regulation of these anabolic genes contributes to the decreased ECM synthesis, 

impairing the repair ability of articular cartilage.

2.3 Regulation of gene expression in OA by miRNAs

The importance of epigenetic regulation of gene expression to the development of OA has 

recently been reported [27–29]. A number of miRNAs have been identified to be involved in 

the pathogenesis of OA in recent epigenetic studies. miRNAs may directly bind to catabolic 

and anabolic mRNAs to regulate their expression at a post-transcriptional level in cytoplasm 

with a complimentary sequence to induce cleavage and degradation, or block translation 

[30–32].

New findings indicate that the regulatory effect of miRNAs on the expression of catabolic 

and anabolic genes in OA may take place at upstream levels prior to their transcription. First, 

miRNAs target upstream signaling pathways or transcription factors. The activity of several 

signaling pathways, such as NF-kappaB pathway [33,34], Wnt/beta-Catenin pathway [35], 
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SIRT1/p53 pathway [36] and SDF1/CXCR4 pathway [37], were found to be modulated by 

miRNAs in chondrocytes during the development of OA.

Moreover, miRNAs have also been reported to regulate transcription factor SOX9 in the 

development of OA [38,39]. Second, miRNAs target upstream epigenetic factors. Histone 

deacetylase-2 [40], -4 [41–43], and NAD-dependent deacetylase sirtuin-1 [44] have been 

found to be regulated by miRNAs in OA cartilage, indicating that the interaction among 

different epigenetic mechanisms is involved in OA pathogenesis.

2.4 miRNA and treatment of OA

The development of disease-modifying pharmacologic therapy for OA currently faces major 

obstacles largely because the pathogenesis of OA remains unclear. The aberrant expression 

catabolic and anabolic genes is a well-characterized molecular finding in OA; however, 

clinical trials targeting a single inflammatory mediator or proteinase did not slow the 

progression of OA [45–47].

This is probably due to the involvement of multiple factors in the pathogenesis of OA. In this 

regard, upstream molecular regulators would be more favorable therapeutic targets.

MiRNAs could be potential upstream targets for treatment of OA as one miRNA may 

regulate several genes. Furthermore, miRNAs regulate gene expression in OA cartilage at 

multiple levels and in a sequence-specific manner [48,49]. However, a large number of 

miRNAs have recently been identified in OA joint tissues, and one gene may be regulated by 

several miRNAs (Table 1).

Further investigations are needed to identify the articular cartilage specific miRNA(s) and to 

validate their efficacy in animal models of OA and in patients with OA. Specific 

transcription factors that regulate multiple catabolic and anabolic genes, such as NFAT1 

[26,27,29], could also be potential upstream targets for treatment of OA.

2.5 miRNA and OA biomarker

Currently, X-ray and MRI (magnetic resonance imaging) are the established methods for the 

diagnosis of OA in clinical practice. However, specific blood testing that can be used to aid 

in the diagnosis and monitoring of OA progression is still under development. Clinicians and 

scientists are striving for a novel molecule(s) which can be used as a biomarker for early OA 

detection and for monitoring the progression of OA [50].

Given the high frequency of miRNAs expression in OA and the remarkably stable form of 

miRNAs present in clinical samples of plasma and serum [51,52], miRNAs could be ideal 

blood-based biomarkers for OA [53].

However, more studies are needed to identify the OA-specific miRNAs with high sensitivity 

to OA changes.
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3. Conclusion

The recent advances in epigenetic studies have shed light on the importance of miRNAs in 

regulation of gene expression at multiple levels related to the pathogenesis of OA. This 

warrants the potential of miRNAs as therapeutic targets for OA. The tissue-specificity and 

high frequency of miRNA expression in OA renders miRNAs novel molecules as potential 

biomarkers for diagnosing OA, monitoring OA progression, and evaluating treatment 

efficacy. Further studies are required to identify which miRNAs out of the large number of 

miRNAs reported in the literature (Table 1) have high specificity, sensitivity and efficacy and 

could be used for clinical validation in OA patients.
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Abbreviations

OA Osteoarthritis

MiRNA MicroRNA

NcRNA Non-coding RNA

MRNA Messager; RNA

SiRNA Short Interfering RNA

piRNA Piwi-interacting RNA

ECM Extracellular matrix

ADAMTS A Disintegrin and Metalloproteinase with Thrombospondin Motifs

MMP13 Matrix Metalloproteinase 13

COL2 Type II Collagen

IL-1β Interlukin 1-β

COL9 Type IX Collagen

TNF-α Tumor Necrosis Factor-α

Runx2 Runt-Related Transcription Factor 2

NFAT Nuclear Factor of Activated T-cells
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Table 1

Summary of differentially expressed miRNAs and their target(s) in OA cartilage

miRNA Species Change in OA Target gene Reference

miR-125b H ↓ ADAMTS4 [54]

miR-140 M ↑ ADAMTS5 [31,55,36]

Has-miR-15a H ↓ ADAMTS5 [31,55,36]

miR-30a H ↓ ADAMTS5 [31,55,36]

miR-98 R ↑ Bcl2 [57]

miR-199a H ↓ COX2 [58]

miR-210 R ↓ DR6 [34]

miR-221-3p H ↓ Est-1 [59]

miR-138-5p H ↑ FOXC1 [60]

miR-21 H ↑ GDF5 [61]

miR-92a-3p H ↓ HADC2 [62]

miR-365 H ↑ HDAC4 [43]

miR-142-3p M ↓ HMGB1 [63]

miR-140 H ↓ IGFBP-5 [64]

miR-27a H ↓ IGFBP-5 [64]

miR-381a-3p H ↑ IKBalpha [65]

Has-miR26a-5p H ↓ iNOS [66]

miR-26a H ↓ KPNA3 [60]

miR-26b H ↓ KPNA3 [60]

miR-139 H ↑ MCPIP [67]

miR-373 H ↓ MECP-2 [68]

miR-27a H ↓ MMP-13 [30,64,69,70]

miR-27b H ↓ MMP-13 [30,64,69,70]

miR-127-5p H ↓ MMP-13 [30,64,69,70]

miR-320 H ↓ MMP-13 [30,64,69,70]

miR-9 H ↓ NF-kappaB1 [33]

miR-634 H ↓ PIK3R1 [71]

miR-221-3p H ↓ SDF1 [37]

miR-370 H ↓ SHMT-2 [68]

miR-34a H ↑ SIRT1 [36, 44]

miR-449q H ↑ SIRT1 [36, 44]

miR-145 H ↓ SMAD3 [72]

miR-146a R ↑ SMAD5 [73]

miR-101 R ↑ SOX9 [39,74]

miR-30a H ↑ SOX9 [39,74]

miR-125b-5p H ↑ SYVN1 [75]

miR-130A R ↓ TNFα [76]
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miRNA Species Change in OA Target gene Reference

miR-145 H ↓ TNFRSF11B [77]

miR-562-5p H ↓ TRAF2 [78]

HSA: Homo Sapiens; H: Human; M: Mouse; R: Rat↑: Upregulation; ↓: Down Regulation
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