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Unsupervised Learning for Automated 
Detection of Coronary Artery Disease 
Subgroups
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Elsie G. Ross , MD, MSc* 

BACKGROUND: The promise of precision population health includes the ability to use robust patient data to tailor prevention and 
care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that ac-
count for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning 
approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease 
subgroups.

METHODS AND RESULTS: The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes 
individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling 
and K- means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard 
models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events 
and all- cause mortality. We then compared performance of risk stratification based on clusters and the American College of 
Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prog-
nostically distinct clusters. All- cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse 
cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle- aged/
healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 
3 (middle- aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison 
with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, 
stroke, and mortality.

CONCLUSIONS: Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. 
Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and 
provide sharper insights into disease characterization and risk assessment.

REGISTRATION: URL: https://www.clini caltr ials.gov; Unique identifier: NCT00380185.
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Atherosclerotic cardiovascular disease (ASCVD) 
represents a complex, heterogenous disorder for 
which the application of precision health tech-

nologies may be of great utility. Although clear risk 

factors have been established for disease develop-
ment, patients with ASCVD exist on a full phenotypic 
spectrum with varying comorbidities, clinical features, 
and rates of disease progression.1 Smoking status, 
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blood pressure, and other traditional risk factors are 
used to assess an individual’s likelihood for experienc-
ing adverse outcomes and guide treatment strategies.2 
However, conventional risk factors can have different 
relative contributions to ASCVD across different vas-
cular beds (eg, coronary, carotid, or peripheral arter-
ies).3– 6 Moreover, data beyond these specific variables 
can drive disease severity and contribute to cardiovas-
cular risk. Thus, assessing the presence or absence of 
conventional predictors may oversimplify the charac-
terization of a patient with ASCVD. Methods that cap-
ture and integrate richer patient characteristics may be 
important to better understanding prognosis and tar-
geting intensive risk- reduction therapies.

Unsupervised learning algorithms can identify 
complex interactions within data and may be used 
to identify unique patient subgroups within a het-
erogeneous population. This data- driven approach 
has been extensively applied to high- dimensional 
data including imaging7,8 and genomic sequenc-
ing9,10 and has begun to demonstrate promise in 
electronic health record– based strategies for risk 
stratification and resource allocation.11,12 In an effort 

to more adequately capture disease heterogeneity 
and examine subgroups, clustering algorithms have 
increasingly been performed on clinical data (some-
times called “phenomapping”).13– 16 However, prior 
phenomapping algorithms have largely relied on the 
use of 1 type of data, typically continuous variables, 
to perform clustering. Health care data, though, are 
known to be heterogenous, including continuous, 
categorical, and ordinal data, and are often missing. 
In our current work, we sought to apply flexible un-
supervised learning algorithms to heterogenous data 
collected from individuals with ASCVD. We hypoth-
esized that unsupervised learning using rich clini-
cal, sociodemographic, biological, and genetic data 
would identify distinct subgroups with unique areas to 
focus care and distinguish clinically significant differ-
ences in risk of cardiovascular events and mortality. 
We then evaluated whether unsupervised clustering 
improved cardiovascular risk stratification compared 
with conventional risk assessment based on the 2013 
American College of Cardiology/American Heart 
Association pooled cohort equations (PCEs).2

METHODS
Data Availability
The data that support the findings of this study are 
available from the corresponding author upon reason-
able request.

Study Cohort
The GenePAD (Genetic Determinants of Peripheral 
Arterial Disease) study is a prospective, multi- 
institutional study of patients who presented for non-
emergent coronary angiography at Stanford Health 
Care and Mount Sinai Medical Center (ClinicalTrials.
gov identifier: NCT00380185). The study enrolled 1789 
patients who were aged ≥40  years and underwent 
elective angiography to confirm the presence of coro-
nary artery disease (CAD) between April 2004 and July 
2008. Patients who had a history of radiation therapy, 
organ transplant, or chronic infectious diseases were 
excluded from the original GenePAD cohort. The study 
collected extensive data at the time of enrollment, in-
cluding physical, biological, and health- related factors. 
Individuals with hemodynamically significant CAD were 
included in our study, defined as having ≥50% stenosis 
in at least 1 coronary vessel. The left anterior descend-
ing, left circumflex (and ramus), and right coronary ar-
teries were the major coronary arteries analyzed. CAD 
severity based on coronary catheterization was further 
defined as having 1- vessel, 2- vessel, and triple- vessel 
or left main disease.

Data used for modeling included nearly all available 
variables from the GenePAD study (Table S1). In total, 

CLINICAL PERSPECTIVE

What Is New?
• We use unsupervised machine learning meth-

ods to define distinct clinical profiles in a cohort 
of patients with coronary artery disease from 
rich data including 155 clinical, sociodemo-
graphic, biological, and genetic features.

• By adding a novel component known as “gen-
eralized low rank modeling” to our unsupervised 
learning approach, we were able to combine 
multiple types of data that are typically siloed to 
enable phenotype discovery.

What Are the Clinical Implications?
• Such novel data- driven approaches can be ap-

plied to discover cardiovascular disease sub-
classes using a wide range of heterogenous 
data (as is collected in routine clinical practice).

• The discovered patient clusters may be used 
to tailor care, reveal population health patterns, 
and provide more refined risk assessment.

Nonstandard Abbreviations and Acronyms

GLRM generalized low rank modeling
MACCE major adverse cardiovascular and 

cerebrovascular events
PCE pooled cohort equation
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our analysis included 155 variables ranging from socio-
demographics; family, medical, and surgical histories; 
lifestyle and environment factors; angiographic find-
ings; and blood analyses. Fasting blood was collected 
for measurements of glucose, lipid levels, and select 
biomarkers17 as well as single- nucleotide polymor-
phisms (SNPs) associated with peripheral artery disease 
(PAD), ankle- brachial index (ABI), and CAD in genome- 
wide association studies.18– 23 Lifetime physical activ-
ity patterns were assessed using the Physical Activity 
Questionnaire.24 Patients also completed the Walking 
Impairment Questionnaire, which consists of 3 catego-
ries evaluating walking distance, speed, and stair climb-
ing.25 Biomarkers were collected from a subsample of 
participants, including high- sensitivity CRP (C- reactive 
protein; n=459) and cystatin C and β- 2 microglobulin 
(n=268). Diabetes was determined by self- reported use 
of insulin or oral hypoglycemic agents and/or a fasting 
blood glucose >126  mg/dL. ABIs were measured as 
previously described using a 5- MHz Doppler ultrasound 
(Nicolet Elite 5- MHz vascular model 110R Doppler; 
Nicolet Vascular, Golden, CO).26 Data on missingness 
for each variable are reported in Table S2.

All participants were prospectively followed for in-
cident cardiovascular events, hospitalizations, and 
all- cause mortality. Follow- up data were collected at 
≈1- year intervals for up to 5 years. The GenePAD study 
was funded by the National Heart, Lung, and Blood 
Institute and approved by the Stanford University and 
Mount Sinai School of Medicine Human Subjects 
Institutional Review Boards. All participants provided 
written informed consent.

Follow- Up and Outcomes
Our primary outcomes were major adverse cardio-
vascular and cerebrovascular events (MACCE) and 
all- cause mortality. In the primary outcome analysis, 
MACCE was defined as a composite of myocardial 
infarction (MI), stroke, and coronary and/or peripheral 
revascularization. To compare clustering to the PCEs, 
MACCE was redefined as MI, stroke, and death to be 
more consistent with the PCE models. Cardiovascular 
events, mortality, and cause of mortality were ascer-
tained through medical record review and by contact-
ing the patient or next of kin directly. All mortalities were 
verified through linkage with the Social Security Death 
Index. All- cause mortality data were verified through 
query of the Social Security Death Index as well as 
phone or postal communication. Follow- up continued 
through March 2012.

Unsupervised Learning Based on 
Generalized Low Rank Modeling
Unsupervised learning algorithms discover under-
lying patterns in observed data. One approach is to 

cluster observations (patients) into self- similar groups. 
However, most clustering algorithms do not perform 
well when there are hundreds of variables. Furthermore, 
most clustering algorithms are built for fully observed 
numerical data, not the combination of missing values, 
numbers, categories, and ranks that are common in 
clinical data sets. Therefore, cluster analysis commonly 
excludes patients with any missing data variables (re-
sulting in potential bias and deterioration in sample size) 
and employs data analysis pipelines that separately 
analyze binary and continuous data.27 Generalized low 
rank modeling (GLRM) offers a flexible framework to 
address these problems.12,28 GLRM enables simultane-
ous analysis of high- dimensional data sets with mixed 
data types and partially missing entries, transforming 
them into a low- dimensional numerical matrix that is 
amenable to standard machine learning algorithms. 
This process is referred to as dimensionality reduction. 
Dimensionality reduction algorithms posit a small num-
ber of unobserved latent features that explain most of 
the variation in the observed data. The data may then 
be represented in terms of the latent variables instead 
(the low- dimensional numeric matrix).

As illustrated in Figure  1A, an original data set is 
transformed into “latent features” that capture the prin-
cipal components of variation in the data. This is done 
by approximating the original data as a product of 2 
low- rank matrices X and Y. The statistical methodology 
of GLRM has been described in detail previously.28 In 
brief, GLRM is an extension of principal components 
analysis that enables the ability to add data- type ap-
propriate loss functions (eg, for categorical, ordinal, 
continuous data) and regularization to approximate a 
heterogenous data set and constrain the low- rank rep-
resentations X and Y, respectively. Missing entries are 
simultaneously imputed in the process of constructing 
the low- rank matrices.

In our analysis, we applied quadratic loss for con-
tinuous features, hinge loss for Boolean features, and 
ordinal hinge loss for ordinal features.28 We applied 
quadratic regularization to the X and Y matrices. We 
tested a range of rank values from 5 to 154 (total fea-
tures– 1) and chose a rank of 50 based on a balance 
of approximation of the largest drops in training error 
(Figure S1) while maintaining generalizability (ie, not 
overfitting our model by choosing rank based on the 
lowest error). By using a more sparse model with less 
features, we also optimize the performance of cluster-
ing algorithms by reducing noisiness of the data.

The resulting latent features were then used for 
estimating clusters. Once the clusters were identi-
fied, summary statistics and outcomes were eval-
uated within and across clusters (Figure  1B). We 
specifically excluded MACCE and mortality event 
variables from our low- rank modeling preprocess-
ing step. Thus, outcomes were only evaluated after 
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cluster assignments. Our GLRM feature matrix was 
calculated using the GLRM package in Julia (ver-
sion 0.5).28

Based on the low- rank feature matrix, we applied 
K- means clustering to discover unique groups/clus-
ters. To identify the optimal number of clusters, we 
first performed validation statistics for stability and 
internal measures. Stability measures evaluated how 
much change in a clustering result occurred by remov-
ing 1 column of data at a time.29 The internal validity 
measures evaluated the degree of connectedness of 
the clusters (connectivity) and the relative compact-
ness and separation of clusters (silhouette width and 
Dunn index).29 The optimal cluster number was cho-
sen based on the majority recommendation in addi-
tion to consideration of clinical utility and practicality. 
The cluster metrics were thus calculated for a range 
of K=2– 6. K- means clustering was performed using 
Euclidean distances and the kmeans package in R. 
Cluster validation metrics were computed using the cl-
Valid package. After selecting the number of clusters, 
we produced cluster plots by applying discriminant 

analysis of principal components using the adegenet 
package in R.30,31

Statistical Analysis
After the identification of distinct clusters, the baseline 
characteristics were compared across cluster groups. 
Normality was assessed with the Kolmogorov– 
Smirnov test. Continuous variables did not follow 
a normal distribution, and thus the nonparametric 
Kruskal– Wallis test was used to compare continuous 
data. Differences in categorical variables were com-
pared using the χ2 test or Fisher exact tests, accord-
ingly. Descriptive data are presented as mean and 
standard deviation for continuous variables or per-
centages for categorical variables.

In addition, we explored which features were most 
informative for the cluster identities based on the con-
cept that each K cluster includes individuals based on 
their distance to the cluster centroid and is defined 
by a Voronoi cell in the latent space.32 We therefore 
obtained a representation of cluster centroids in the 
original space by multiplying each centroid’s latent 

Figure 1. Schematic for generalized low rank modeling.
A, Patient data are condensed to fewer dimensions to allow for analysis using unsupervised K- means clustering. The 
“features” matrix is a high- dimensional data set that includes patient information on demographics and clinical, lifestyle, 
angiographic, and cardiovascular genetic risk markers. This data set is transformed into a lower dimensional “latent feature” 
space by approximating the features matrix as the product of 2 matrices, shown as the X (containing each observation) 
and Y representations (containing the definition for each observation). L,r indicates the loss function that accounts for the 
accuracy in the data approximation and regularizes the latent feature representation to prevent overfitting. B, After cluster 
analysis, data are then transformed back to their original form and analyzed to discover subgroup characteristics and 
compare long- term outcomes across clusters.
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representation by matrix Y. Results of the features 
most heavily weighted for each cluster were illustrated 
as a heatmap using R package gplots.

After the exclusion of individuals with missing follow- up 
dates (N=99 for MACCE, N=66 for all- cause mortality), 
Kaplan– Meier curves were generated and compared 
using the log- rank test. To evaluate the relationship be-
tween cluster membership and outcomes, hazard ratios 
(HRs) for MACCE and all- cause mortality were estimated 
using Cox proportional hazards modeling.

Comparison of Risk Stratification by 
Clustering With PCE Modeling
To evaluate how our clustering methodology com-
pared with standard clinical risk stratification, Cox 
proportional hazards models were also used to esti-
mate the relative hazards of each American College 
of Cardiology/American Heart Association PCE risk 
group for MACCE or all- cause mortality.2 HRs were 
compared between the PCE model and for a range 
of cluster numbers (N clusters recommended from 
validation statistics±1). To be consistent with the PCE 
model, the MACCE composite excluded coronary and 
lower extremity revascularization events and was rede-
fined to include MI, stroke, and death.

The PCE includes sex, age, race, total cholesterol, 
high- density lipoprotein cholesterol, diabetes, systolic 
blood pressure, antihypertensive use, and smoking 
status. We calculated the 5- year PCE predicted risk 
of this cohort given that patients were followed for an 
average of 5 years. To do this, we annualized the 10- 
year predicted risk and categorized them based on the 
estimated 5- year risk into the standard PCE groups 
(<2.5% considered low risk, 2.5%– 4.9% considered 
intermediate risk, and ≥5% considered high risk), as 
previously described.33 Given that our cohort likely 
had a higher risk of MACCE at baseline, we performed 
PCE recalibration using the D’Agostino method.34 In 
the cluster sensitivity analysis comparing N±1 clusters, 
we additionally tested a more granular PCE model that 
categorized the estimated 5- year risks into 4 groups 
(<2.5% considered low risk, 2.5%– 3.74% as interme-
diate low risk, 3.75%– 4.9% as intermediate high risk, 
and ≥5% considered high risk).33,35

All analyses were performed using R version 3.5.2. 
A P value <0.05 was considered statistically significant. 
P values were adjusted for multiple comparisons using 
the Benjamini and Hochberg method.

RESULTS
After excluding individuals without CAD, 1329 partici-
pants remained. The overall cohort was 71% men and 
54% White and had a mean±SD age of 67±10.5 years. 
Aside from the 3 biomarkers that were obtained 

from a subsample of the GenePAD cohort, variables 
used in the GLRM had a mean of 4.8% missing data 
(Table S2). Based on this rich data set of demographic, 
clinical, lifestyle, genetic, and angiographic data, our 
unsupervised cluster analysis identified 4 distinct sub-
groups of patients with CAD (Figures  2 and 3). This 
cluster number was selected based on being most 
frequently recommended by validation indices (Table 
S3). The baseline characteristics according to cluster 
identity are shown in Table 1. Importantly, in addition to 
cardiovascular risk factors, the identified clusters sig-
nificantly differed in characteristics that are not always 
captured by conventional risk assessment.

Cluster 1: Oldest/Most Comorbid Cluster
Individuals in cluster 1 were the oldest (mean±SD, 
70±11 years) and the most likely to be White (59%) and 
female (47%). A major feature of this cluster is that pa-
tients had the highest rates of several cardiovascular 
comorbidities, including congestive heart failure (CHF; 
15%), cardiac arrhythmias (24%), PAD (26%), and a his-
tory of stroke or transient ischemic attack (15%). They 
also had the lowest mean ABI (0.84) and the second- 
highest body mass index (29.4  kg/m2). In relation to 
lifestyle behavior, cluster 1 was most likely to be active 
smokers (13%) and had the greatest pack- year history 
(26 years) and the second- lowest frequency of weekly 
exercise (17%). This cluster also reported the greatest 
parental history of MI or coronary revascularization 
(25%) and second highest of stroke (14%). Assessment 
for the presence of select genomic markers revealed 
that cluster 1 included the highest proportion of car-
riers of an SNP associated with lower ABI (rs819750, 

Figure 2. Distinct subgroups of patients with coronary 
artery disease identified by unsupervised clustering.
Plot showing 4 distinct groups of patients identified by K- means 
clustering. Data are plotted based on the top 20 principal 
components across the first 2 discriminant functions to form a 
2- dimensional plot.
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16%) and the second- highest prevalence of an SNP 
in the chromosome 9p21 region (rs10757269, 51%), a 
pleiotropic risk variant associated with CAD,18,22 MI,19 
lower ABI, and PAD.21,23

Cluster 2: Youngest/Multiethnic Cluster
Cluster 2 included the youngest group of patients 
(64±10 years) composed primarily of racial minorities 
(71% non- White race). This cluster was the most eth-
nically diverse (30% Black, 19% Hispanic, 11% South 
Asian, 5% East Asian), and nearly all (99%) individu-
als were diabetic. Cluster 2 was the only group with a 
mean body mass index in the obese range (30.3±6 kg/
m2) and displayed the most severe pattern of sedentary 
behavior, as reflected by only 9% who reported engag-
ing in weekly exercise. They also were the least likely to 
complete education beyond high school. Serological 
analysis showed that they had the highest levels of 
serum CRP (8.2 mg/L). In addition, cluster 2 had by far 
the highest rates of triple- vessel or left main disease 
(50%), prior MI (29%), prior coronary revascularization 
(35%), lower extremity amputations (4.9%), and chronic 
kidney disease (28%). They had the second- highest 
rates of prior stroke or transient ischemic attack (19%) 
and reported the greatest parental history of stroke 
(18%). This group with the second- highest PAD rates 
(19%) also had the greatest proportion of a genetic 
variant associated with low ABI (rs9485528, 35%). 

However, likely reflecting differences in the genetic ar-
chitecture of this largely minority ethnic subgroup that 
were not captured in European genome- wide associa-
tion studies,36 cluster 2 showed the lowest frequency 
of carriers for several of the investigated genetic risk 
loci for CAD, PAD, and ABI discovered in European 
populations,20,23 including rs819750, rs2171209, and 
the 9p21 risk variant rs10757269.

Cluster 3: Middle- Aged/Lowest 
Medication Adherence Cluster
These individuals had lower rates of most comorbidi-
ties and cardiovascular risk factors than clusters 1 
and 2, such as diabetes (30%), CHF (3.9%), history of 
PAD (2.8%), prior stroke or transient ischemic attack 
(2.8%), and hypertension (71%). They had the least 
severe angiographic CAD, with the highest rates of 
1- vessel disease (35%) and the lowest rates of triple- 
vessel or left main disease (32%). Cluster 3 had the 
second- highest proportion of men (78%), White pa-
tients (56%), and individuals who completed college 
and graduate- level education (51%). They also had a 
lower body mass index (28.5 kg/m2) and the second- 
highest rate of weekly exercise (29%), although this 
group also had the second- highest smoking rate after 
cluster 1 (12.6%, 18.6 pack years). Despite relatively 
good health status, overall optimization and adher-
ence to cardiovascular medications was the poorest 

Figure 3. Schematic representation of the 4 CAD clusters and their major features.
ABI indicates ankle- brachial index; BMI, body mass index; CAD, coronary artery disease; CHF, congestive heart failure; CVA, 
cerebrovascular accident; LDL, low- density lipoprotein; MACCE, major adverse cardiovascular and cerebrovascular events; MI, 
myocardial infarction; and PAD, peripheral artery disease.
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Table 1. Demographic, Socioeconomic, Clinical, and Biological Factors Compared Across Clusters

Cluster 1  
(oldest/most 
comorbid), N=271

Cluster 2 (youngest/
multiethnic), N=164

Cluster 3 (middle- aged/
lowest medication 
adherence), N=316

Cluster 4 (middle- 
aged/healthiest 
behaviors), N=578

Adjusted p 
value

Demographics

Age, y 70±11 64±10 67±10 66±11 8.7 × 10- 10

Male sex 53 57 78 80 8 × 10- 16

Race and ethnicity

White race 59 29 56 59 1.2 × 10- 10

Black race 13 30 8 9.5 4.2 × 10- 11

South Asian race 4 11 7 7 0.049

East Asian race 4 5 8 8 NS

Hispanic ethnicity 11 19 11 9 0.007

Socioeconomics

Income

<$35 000 17 13 22 16 NS

$35 000– $99 000 8 12 18 15 0.005

>$100 000 8 2 15 21 1.9 × 10- 10

Prefer not to answer 66 71 44 47 2.8 × 10- 12

Highest education level

High school or less 45 54 41 31 9.4 × 10- 8

College 34 31 29 34 NS

Graduate school 11 7 22 28 8.7 × 10- 11

Lifestyle

Current smoker 13 8.0 12.6 7.3 0.01

Cumulative pack y 26.1±30 16.8±28 18.6±26 15.6±24 7.0 × 10- 6

Engages in exercise at least once 
per wk

17 9.0 29 35 6.4 × 10- 12

Physical

BMI, kg/m2 29.4±6 30.3±6 28.5±6 28.4±5 0.0009

Ankle- brachial index 0.84±0.3 0.91±0.3 1.04±0.2 1.05±0.1 8 × 10- 16

Systolic blood pressure, mm Hg 141±20 148±21 137±19 137±20 1 × 10- 5

Coronary angiography

One- vessel disease 26 23 35 27 0.006

Two- vessel disease 30 26 29 31 NS

Triple vessel or left main 43 50 32 41 0.003

Clinical history

Prior MI 0.4 29 2.2 0.7 8 × 10- 16

Prior CABG or PCI 1.8 35 1.8 0.2 8 × 10- 16

Prior valve surgery 2.9 0 1.3 3.4 0.06

CHF 15 11 3.9 3.3 4.5 × 10- 10

Stroke or TIA 15 14 2.8 2.4 3.8 × 10- 15

PAD 26 19 2.9 1.6 8 × 10- 16

Lower extremity amputation 1.5 5 0 0 2.1 × 10- 7

Cardiac arrhythmia 24 15 19 17 NS

Chronic kidney disease 0.4 28 1.9 0.5 3.7 × 10- 15

Diabetes 41 99 30 27 8 × 10- 16

Biological, mean

β- 2 microglobulin,* µg/mL 3.3±4.5 4.7±7.4 4.2±8.6 3.5±6.9 0.02

Cystatin C,* mg/L 1.0±0.7 1.3±1.1 1.1±1.3 1.0±1.0 0.04

 (Continued)
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in cluster 3. For example, individuals in cluster 3 were 
the least likely to be taking aspirin (37%) or clopi-
dogrel (15%). There were also significant differences 

in the relative number of individuals who were pre-
scribed antihypertensives and lipid- lowering medica-
tions compared with those who reported maintaining 

Cluster 1  
(oldest/most 
comorbid), N=271

Cluster 2 (youngest/
multiethnic), N=164

Cluster 3 (middle- aged/
lowest medication 
adherence), N=316

Cluster 4 (middle- 
aged/healthiest 
behaviors), N=578

Adjusted p 
value

CRP,† mg/L 7.5±18 8.2±25 4.7±19 2.4±5 1.9 × 10- 7

Glucose, maximum mg/dL 120±47 188±218 119±65 115±60 8 × 10- 16

Total cholesterol, mg/dL 136±38 138±35 146±43 130±33 1 × 10- 6

LDL, mg/dL 72±30 73±28 85±50 69±26 9.5 × 10- 8

Creatinine, mg/dL 1.3±1.2 2.1±2.0 1.1±0.8 1.1±0.6 1.4 × 10- 8

Medications

Antihypertensive

Current 90 90 38 96 8 × 10- 16

Ever taken 86 93 71 88 1.8 × 10- 12

Insulin or hypoglycemic agents

Current 27 85 11 20 8 × 10- 16

Ever taken 32 99 23 20 8 × 10- 16

Cholesterol- lowering medications

Current 78 71 9 99 8 × 10- 16

Ever taken 86 86 52 96 8 × 10- 16

Aspirin

Current 72 69 37 84 2.8 × 10- 7

Clopidogrel

Current 48 50 15 47 2.2 × 10- 12

Statin

Current 75 65 7.6 93 8 × 10- 16

β- blockers

Current 59 64 45 68 5.2 × 10- 7

Family history (biological mother or father)

MI, CABG, or PCI (mother) 25 20 17 24 0.01

Stroke (father) 14 18 12 12 0.01

Lower extremity revascularization 
(father)

1.5 0.6 0.9 0.9 0.004

AAA rupture or repair (father) 0.4 0 0.9 1.6 0.0008

Genetics‡

rs10757269 51 38 40 57 0.01

rs819750 16 7 14 14 0.01

rs94855286 28 35 32 34 0.04

rs2171209 43 35 39 48 NS

rs7100623 24 22 21 29 NS

rs16824978 45 46 37 48 NS

rs7003385 40 34 29 45 NS

rs4659996 46 38 33 45 NS

rs3745274 30 30 38 30 NS

rs290481 28 25 32 28 NS

Values are mean±SD or percentage. AAA indicates abdominal aortic aneurysm; BMI, body mass index; CABG, coronary artery bypass graft; CAD, coronary 
artery disease; CHF, congestive heart failure; CRP, C- reactive protein; LDL, low- density lipoprotein; MI, myocardial infarction; NS, nonsignificant; PAD, peripheral 
artery disease; PCI, percutaneous coronary intervention; and TIA, transient ischemic attack.

*Based on subsample of 268 individuals.
†Based on subsample of 459 individuals.
‡Heterozygous or homozygous carriers.

Table 1. Continued
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their current use. This cohort also had the highest 
average levels of total cholesterol (146  mg/dL) and 
low- density lipoprotein (85 mg/dL).

Cluster 4: Middle- Aged/Healthiest 
Behaviors
Similar to cluster 1, this cluster included a relatively high 
percentage of White patients (59%). However, they were 
the most likely to be men (80%) and had the overall best 
health status of all the clusters. For example, they re-
ported weekly exercise most frequently (35%), had the 
lowest body mass index (28.4 kg/m2), and had the low-
est smoking rate of all the clusters (7.3%). Although they 
had the highest rates of previous valve surgery (3.4%), 
these individuals had significantly lower rates of most 
cardiovascular risk factors and other comorbidities, 
such as prior coronary revascularization (0.2%), CHF 
(3.3%), PAD (1.6%), stroke or transient ischemic attack 
history (2.4%), and chronic kidney disease (0.5%). They 
also most frequently reported a high income (21% re-
porting >$100 000 annually) and completed college or 
graduate- level education (62%). Furthermore, cluster 4 
had the lowest levels of total cholesterol (130 mg/dL), 
low- density lipoprotein (69 mg/dL), and CRP (2.4 mg/L) 
as well as the highest rates of antiplatelet use (84% 
taking aspirin). In this cluster, 41% had triple- vessel or 
left main disease, which was greater than cluster 3. 
Regarding their familial histories and genetic profiles, 
cluster 4 included the second- highest parental history 
of MI or coronary revascularization (24%) and the great-
est proportion of carriers (57%) of the chromosome 
9p21 cardiovascular risk variant (rs10757269).

Within Cluster Feature Weight Analysis
Although our unsupervised learning models discov-
ered 4 phenotypically distinct, clinically relevant co-
horts, we aimed to gain insight into which features 
were used most heavily in creating the low- rank model 
that was subsequently used for clustering. Although 
direct derivation of feature importance is difficult, we 
examined the relative importance of features in our 
models by multiplying cluster centroids by the low- 
rank matrix Y. This analysis demonstrated that features 
most heavily weighted in cluster 1 (oldest/most comor-
bid) were age, features related to poor walking toler-
ance (eg, angina, dyspnea, difficulty walking 1 block 
at average speed), sedentary behavior (eg, daily time 
spent sitting), cumulative pack years, and the major-
ity of comorbidities including PAD, CHF, valve disease, 
arrhythmias, and rheumatologic conditions (Figure S2). 
Cluster 2 (youngest/multiethnic) was most weighted for 
physical and laboratory measures (eg, height, weight, 
CRP, fasting glucose, creatinine), diabetes and asso-
ciated complications (CKD, retinopathy, neuropathy), 

medications for diabetes, hypertension, and hyper-
lipidemia, history of MI or coronary revascularization, 
and parental cardiovascular history. Cluster 3 (middle- 
aged/lowest medication adherence) was most driven 
by aspirin, clopidogrel, and β- blocker use as well as 
racial minority status. Features most heavily weighted 
in cluster 4 (middle- aged/healthiest behaviors) were 
ABI measurements, each of the 3 Walking Impairment 
category scores (walking distance, speed, stair climb-
ing), and features related to the amount and intensity 
of physical activity. Clusters 2 and 4 were the clusters 
that were most heavily influenced by SNPs associated 
with CAD, PAD, and ABI.

Association of Cluster Identity With 
Clinical Outcomes
To assess the ability of cluster analysis to detect phe-
notypes that are clinically meaningful, we evaluated the 
association between cluster membership and long- 
term outcomes. The median duration of follow- up was 
5.05 years (interquartile range, 3.8– 6.1 years). Figure 4 
shows Kaplan– Meier curves for MACCE and all- cause 
mortality. As illustrated, MACCE occurrence differed 
significantly across clusters (log- rank P value=2.0e- 04; 
Figure 4A). Compared with cluster 3 (middle- aged/lowest 
medication adherence) with the lowest risk of MACCE, 
the MACCE risk was greatest in cluster 2 (youngest/mul-
tiethnic diabetics; HR, 2.2; 95% CI, 1.5– 3.1), followed by 
cluster 1 (oldest/most comorbid; HR, 1.8; 95% CI, 1.3– 
2.5) and cluster 4 (middle- aged/healthiest behavior; HR, 
1.5; 95% CI, 1.1– 2.0). Although the individual rates of MI 
and stroke were similar across clusters, the occurrence 
of coronary and peripheral revascularization significantly 
differed (Table  2). The oldest/most comorbid cluster 
(cluster 1) had the highest rates of incident peripheral 
revascularization (5.1%). Rates of coronary revasculari-
zation were significantly higher among the youngest/
multiethnic diabetic cluster 2 (33%), followed by the old-
est/most comorbid cluster 1 (28%) and middle- aged 
group with healthiest behaviors in cluster 4 (27%).

With regard to all- cause mortality (Figure 4B), com-
pared with cluster 4, the oldest/most comorbid cluster 
1 was at the greatest risk of death (HR, 3.3; 95%, 2.3– 
4.8), followed by the youngest/multiethnic cluster 2 (HR, 
2.6; 95% CI, 1.7– 4.1; log- rank P value=2.0e- 04). Of note, 
although cluster 4 had greater rates of MACCE com-
pared with cluster 3, their mortality rates did not differ.

Unsupervised Clustering Enhances Risk 
Stratification Compared With Standard 
Risk Prediction

Lastly, to explore how an unsupervised learning 
framework compares with traditional risk assess-
ment, we compared the estimated hazards of a more 
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restrictive MACCE definition and all- cause mortal-
ity determined by cluster membership and PCE. As 
shown in Figure 5, classification based on the conven-
tional PCE did not result in significant discrimination of 
MACCE risk between high- risk (HR, 1.1; 95% CI, 0.8– 
1.6), intermediate- risk (HR, 0.82; 95%, CI 0.5– 1.4), or 
low- risk individuals in this cohort (Table S4). Similarly, 
the granular PCE model did not discriminate MACCE 
risk across 4 groups (Table S5). This is in contrast to 
the cluster models, which each demonstrated informa-
tive discrimination. Of the 4 clusters from our main un-
supervised analysis, there were 3 distinct groups with 
significantly different MACCE risks (cluster 1 versus 
cluster 2 versus cluster 3/4; Figure 5, Table S6). The 
cluster sensitivity analysis including 5 clusters provided 
the most refined risk characterization with 4 unique 
MACCE risk groups (clusters 1/2 versus cluster 3 ver-
sus cluster 4 versus cluster 5); however, the clusters 
showed poorer between- cluster separation (Table S7). 
The 3- cluster model included 2 significantly different 
high versus low MACCE risk groups (clusters 1/3 ver-
sus cluster 2; Table S8).

In evaluating all- cause mortality alone, PCE classifica-
tion similarly did not differentiate mortality risk in both 
the standard and granular PCE models (Tables S9 and 
10). The only comparison that approached significance 
was with the high- risk PCE group (HR, 1.5; 95% CI, 
0.98– 2.3; P=0.06). Cluster affiliation distinguished 3 
unique mortality risk groups in the main 4 cluster mod-
els (cluster 1 versus cluster 2 versus clusters 3/4) as 
well as in the 5- cluster model. The 3- cluster model dis-
tinguished 2 distinct mortality risk groups (Tables S11 
through S13).

DISCUSSION
In this longitudinal analysis of individuals with ASCVD, 
we applied contemporary unsupervised machine 
learning methods to discover subgroups with distinct 
sociodemographic, clinical, biological, and genetic 
characteristics. We demonstrate that unsupervised 
learning algorithms may be used to handle clinical data 
with heterogeneous and missing entries and generate 

Figure 4. Long- term outcomes of the 4 coronary artery disease clusters.
Kaplan– Meier curves showing (A) MACCE* and (B) all- cause mortality. *Primary MACCE composite included myocardial infarction, 
stroke, coronary revascularization, and peripheral revascularization. MACCE indicates major adverse cardiovascular and 
cerebrovascular events.

Table 2. Crude Outcome Rates, Stratified by Clusters

Cluster 1 (oldest/
most comorbid), 
N=254

Cluster 2 
(youngest/
multiethnic), N=150

Cluster 3 (middle- aged/
lowest medication 
adherence), N=261

Cluster 4 (middle- 
aged/healthiest 
behaviors), N=565

Adjusted P 
value

MACCE 34.6 41.3 22.6 30.4 1 × 10- 4

Myocardial infarction 2 2 2.7 1.6 NS

Stroke 2 3.3 1.1 1.6 NS

Coronary revascularization 27.6 33.3 19 26.5 0.0008

Peripheral revascularization 5.1 4 1.1 1.2 0.002

All- cause mortality 26.3 20 11 9 9.2 × 10- 10

Primary MACCE was defined as a composite of myocardial infarction, stroke, coronary and/or peripheral revascularization. MACCE indicates major adverse 
cardiovascular and cerebrovascular events; and NS, nonsignificant.
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clinically important subclassifications with varying risks 
for long- term cardiovascular events. Furthermore, 
compared with traditional methods of risk assessment 
that employ a handful of known risk factors, our results 
highlight the potential of more refined cardiovascular 
risk stratification based on machine learning– based 
classification algorithms.

We took advantage of the extensive individual- level 
data in our ASCVD cohort to identify patient subgroups 
and obtain a composite view of their cross- group vari-
ation. What is progressive about our approach is that 
we did not provide specifications about how to parti-
tion the data based on data type or our expertise, but 
instead used agnostic approaches to process highly 
heterogenous data types (including missing entries) 
and successfully identified 4 phenotypically and prog-
nostically distinct patient groups. As clinical, biological, 
and imaging data continue to grow at an exponential 
pace and are widely deposited into electronic health 
records, clustering frameworks using low- rank model-
ing techniques may be increasingly important as they 
are particularly suited for processing heterogenous pa-
tient data.

The resulting clusters may be used to further im-
prove understanding of unique cohorts. For example, 
clusters 1 and 2 had characteristics that intuitively 
make sense to the cardiovascular practitioner— such as 
an older group of individuals with extensive histories of 
smoking and significant cardiovascular comorbidities 
including PAD and CHF.37 However, our unsupervised 
learning algorithm also helped distinguish 2 groups 
that appeared otherwise similar. Although clusters 3 
and 4 had apparently similar cardiovascular health (as 
reflected by conventional clinical and lifestyle risk fac-
tors), cluster 3 was defined by very low rates of adher-
ence to preventive therapies, which might explain why 
this “healthy appearing” cluster had the highest choles-
terol levels of all subgroups. Furthermore, in assessing 
within- cluster feature weighting, the most prominent 
features used for low- rank modeling in cluster 4 was 
family history of ASCVD events and the presence of 
the widely replicated 9p21 locus for CAD and MI.18,19,22 
Given these characteristics, it is interesting to note 
that cluster 4 had higher rates of MACCE, a prognosis 
that may be contextualized with relatively higher rates 
of triple- vessel/left main disease and a nearly 2- fold 

Figure 5. Comparison of clustering to PCE risk groups for prediction of MACCE* and all- cause mortality.
*PCE- consistent MACCE included myocardial infarction, stroke, and death. MACCE indicates major adverse cardiovascular and 
cerebrovascular events; and PCE, pooled cohort equations.
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increase in incident rates of coronary revascularization. 
It is possible that the elevated long- term MACCE risk 
in cluster 4 could be attributed to a greater prevalence 
of individuals in cluster 3 who had already been revas-
cularized before study enrollment (1.8% versus 0.2%). 
However, despite healthier behaviors, knowledge that 
a group such as cluster 4 carries higher genetic risk 
can contribute importantly to targeting more aggres-
sive primary and secondary prevention strategies.38– 41

As exemplified by the discovered clusters of patients 
with CAD, a major advantage to unsupervised learn-
ing is that it can help reveal population health patterns 
and at the same time assist in developing tailored care 
strategies to specific groups. For example, recent ad-
vances in cardiovascular medicine include the demon-
strated benefit of proprotein convertase subtilisin/kexin 
type 9 serine protease (PCSK9) inhibitors42 and rivar-
oxaban,43 however, broad use of these therapies is 
limited by cost and an associated increase in bleeding 
risk, respectively.44 Our cluster analysis identified an 
“unfavorable phenotype” of younger patients who had 
a high prevalence of PAD and prior MI and mean low- 
density lipoprotein above target goals and were at the 
greatest long- term risk for cardiovascular events (clus-
ter 2). Particularly in patients with prior MACCE history 
or concomitant arrhythmias, the optimal management 
strategy may include subsidization of therapies such 
as PCSK9 inhibitors or intensified antithrombotic regi-
mens such as anticoagulant therapy. It is also import-
ant to note that this cluster was largely composed of 
minorities with lower socioeconomic status compared 
with other subgroups. Such a finding could reflect the 
need to better address social determinants of health 
that contribute to adverse outcomes in this group of 
individuals, such as improving access to health care 
and health- enhancing resources. Improving outcomes 
for cluster 2 may thus require different interventions 
for outreach and education. This is an especially im-
portant point as we found that many of these patients 
were prescribed appropriate medical therapy for their 
comorbidities yet still had poorer outcomes.

Lastly, compared with the American College of 
Cardiology/American Heart Association PCEs, we 
found that unsupervised clustering yields improved 
characterization of cardiovascular risk in a diverse and 
heterogeneous cohort of patients with ASCVD. Unlike 
the conventional PCE subgroups, clusters had statis-
tically distinct risks for MI, stroke, and death. Cluster 
affiliations continued to be more informative than PCE 
scores in cluster sensitivity analyses and in comparison 
with a more granular PCE model with 4 risk categories, 
which suggests that the enhanced cluster performance 
was not primarily attributed to having more subgroups. 
Taken together, these results suggest that unsuper-
vised clustering may be used to support integration of 
multiple types of patient data to better capture differing 

trajectories of disease risk. Although the application of 
machine learning in medicine has yet to fully materialize 
in clinical use, our data support their ability to identify 
clinically important ASCVD strata. Indeed, implement-
ing these data- driven methods may enable automated 
clinical scoring systems and generation of meaningful 
clinical insights from data already captured throughout 
the health care system.

Study Limitations
Our findings should be interpreted in the context of 
several limitations. First, the generalizability of the cur-
rent study may be limited by inclusion of patients from 2 
tertiary academic centers where study enrollment was 
conditioned on need for angiography. Thus our partici-
pant group is likely higher risk given that angiography 
is generally performed in individuals with a high prob-
ability of having hemodynamically significant disease. 
Our findings could have been biased by variables that 
influenced being selected for the study and were also 
associated with experiencing MACCE (eg, Berkson’s 
bias).45 These factors may include health care ac-
cess, symptom severity, and symptom recognition and 
could have induced distorted associations between 
variables that may explain the unexpected finding of 
elevated MACCE risk in cluster 4 compared with clus-
ter 3. Furthermore, the phenotypic differences in the 
cohort were likely influenced by population structure, 
including social strata and genetic variation related to 
geographic distribution. Thus, our clustering algorithm 
should be evaluated in broader populations and in data 
sets of differing structures to explore reliability (eg, with 
more bias or missingness than a carefully maintained 
clinical trial registry). Evaluation in larger cohorts is 
also important to validate the within- cluster phenom-
enon observed in our study, including characteristics 
that appear to increase or attenuate risk. Similarly, we 
acknowledge that patient groupings and thus defin-
ing features may differ depending on available clini-
cal variables. Lastly, the model included a select list 
of SNPs used as markers of systemic atherosclerosis 
(including PAD) and therefore provided a limited as-
sessment of the cohort’s genetic risk of cardiovascular 
disease and events. Because of the complex nature of 
ASCVD, combining deep phenotypic information with 
a broader reflection of genetic risk, such as through a 
polygenic risk score, may provide more powerful risk 
estimation.38 It is also noteworthy that in the multieth-
nic cluster 2, the allele frequency was low for many of 
the included genome- wide association study variants. 
This observation may reflect the limited transferability 
of variants derived from European genome- wide asso-
ciation studies36 and highlight the importance of ongo-
ing genetic discovery in non- European populations to 
permit broad and equitable implementation of genetic 
risk prediction tools.
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CONCLUSIONS
By applying contemporary unsupervised learning 
techniques to ASCVD, we identify 4 groups of patients 
that differ across a wide range of health variables and 
subsequent risk of adverse outcomes. We show that 
flexible clustering analysis of heterogeneous data (in-
cluding mixed and missing values) is feasible and is 
able to identify prognostically distinct clusters that par-
tition at greater resolution than groups formed solely 
based on standard risk factors. Our results confirm the 
heterogeneity of ASCVD and highlight the possibility 
that flexible and unbiased machine learning algorithms 
can be used to identify important subpopulations 
based on data that are collected in clinical practice.
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SUPPLEMENTAL MATERIAL 
 
 



 

Table S1. Original variables used in the generalized low rank model approximation. 

Categories Variables 

Demographics Age, sex, self-reported race/ethnicity 

Physical measures Height, weight, blood pressure, heart rate, BMI, ABI 

Laboratory results Total Cholesterol, LDL, HDL, non-HDL, total cholesterol to 

HDL ratio, LDL to HDL level, serum glucose 

Creatinine, glomerular filtration rate 

Biomarkers: C-Reactive Protein, Cystatin C, -2 

microglobulin 

Imaging Coronary angiography findings (graded by one-vessel, two-

vessel, or triple-vessel/left main disease) 

Medical history CAD, MI, PAD, carotid stenosis, stroke, CHF, arrhythmias, 

AAA 

Diabetes, CKD, diabetic neuropathy, menopause 

Surgical history Coronary revascularization (coronary bypass or percutaneous 

coronary intervention), abdominal aortic aneurysm repair, 

lower extremity amputation, valve surgery 

Reported symptoms Angina, shortness of breath, claudication, joint pain 

Physical activity 

assessment 

Walking Impairment Questionnaire (walking distance, walking 

speed, and stair climbing) 

Physical activity questionnaire (lifetime physical activity 

patterns) 



 

Family history History of cardiovascular diseases in parents including MI and 

coronary revascularization, stroke, lower extremity 

revascularization, and AAA rupture or surgery 

Medications Anti-platelet therapy: Aspirin, clopidogrel 

Lipid-lowering therapy: statins, other 

Anti-hypertensive: ACE inhibitor, ARB, diuretics, other 

Beta-blockers, insulin or hypoglycemic agents 

Polypharmacy (total number of medications taking at baseline) 

Genetic variants 

associated with CAD, 

PAD, or lower ABI 

rs290481, rs819750, rs7100623, rs7003385, rs94855286, 

rs4659996, rs3745274, rs2171209, rs16824978, rs10757269 

Social factors Ever married, living situation, total education, current income, 

employment status 

Lifestyle behavior Smoking: Ever smoked, current smoker, cumulative pack 

years 

Alcohol: weekly alcohol consumption, alcohol consumption 

pattern over lifetime 

 

AAA, abdominal aortic aneurysm. ABI, ankle-brachial index. ACE, angiotensin converting 

enzyme. ARB, angiotensin II receptor blocker. BMI, body mass index. CAD, coronary artery 

disease. CHF, congestive heart failure. CKD, chronic kidney disease. HDL, high-density 

lipoprotein. LDL, low-density lipoprotein. MI, myocardial infarction.  

 

 

 



 

Table S2. Missingness for variables used in the generalized low rank model approximation.  

Variable % Missing 

Demographics 

Age,  0.45% 

Sex 0.07% 

Race/ethnicity 0.15% 

Socioeconomics 

Income 1.2% 

Highest education level 0.38% 

Lifestyle 

Current smoker 1.3% 

Cumulative pack years 4.9% 

Engages in exercise at least once per week 7.3% 

Clinical 

BMI 0.98% 

Ankle-Brachial Index 0.83% 

Systolic blood pressure 0.07% 

CAD angiography grading  1.9% 

Clinical History 

Prior MI 1.2% 

Prior CABG or PCI 1.3% 

Prior valve surgery 1.3% 



 

CHF 1.3% 

Stroke or TIA 0% 

PAD 0.7% 

Lower extremity amputation 0.98% 

Cardiac arrhythmia 1.3% 

Chronic kidney disease 1.2% 

Diabetes 2.6% 

Biological 

-2 microglobulin* 79% 

Cystatin C* 79% 

CRP† 65% 

Glucose, maximum  2.1% 

Total Cholesterol 1.4% 

LDL 2.6% 

Creatinine 0.98% 

Medications 

Anti-hypertensive  0.15% 

Insulin or hypoglycemic agents   0.15% 

Cholesterol-lowering meds 0.15% 

Aspirin 12.3% 

Clopidogrel 12.3% 

Statin  12.3% 



 

-blockers  12.3% 

Genetics  

rs10757269  12% 

rs819750 11% 

rs94855286 11% 

rs2171209 11% 

rs7100623 13% 

rs16824978 12% 

rs7003385 11% 

rs4659996 11% 

rs3745274 13% 

rs290481 11% 

*Based on subsample of 268 individuals; †Based on subsample of 459 

individuals; BMI, body mass index. CABG, coronary artery bypass graft. 

CAD, coronary artery disease. CHF, congestive heart failure. CRP, C-

reactive protein. LDL, low-density lipoprotein. MI, myocardial infarction. 

NS, non-significant P value. PAD, peripheral arterial disease. PCI, 

percutaneous coronary intervention. TIA, transient ischemic attack.  

 

 

 
 
 
 
 
 
 
 



 

Table S3. Cluster validation statistics. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Measure Result 
Cluster number 

recommendation 

Stability measures 

Average distance 2.6 6 

Figure of Merit 0.27 6 

Average proportion of non-overlap 0 4 

Average distance between means 0.0 4 

Internal measures 

Dunn index 0.77 4 

Connectivity 2.9 2 

Silhouette width 0.65 2 

Results of cluster validation statistics on generalized linear model approximations. 

Cluster number was chosen based on the majority recommendation. 



 

Table S4. Hazard ratios for risk of PCE-consistent MACCE composite by Pooled Cohort 

Equations group: Standard PCE model (<2.5% considered low risk, 2.5-4.9% considered 

intermediate risk, >5% considered high risk) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MACCE risk by Pooled Cohort Equations group 

 Hazard Ratio 95% CI Adjusted P value 

Low Risk Ref - - 

Intermediate Risk 0.82 0.5-1.4 NS 

High Risk  1.1 0.8-1.6 NS 



 

Table S5. Hazard ratios for risk of PCE-consistent MACCE composite by Pooled Cohort 

Equations group: Granular PCE model (<2.5% considered low risk, 2.5-3.74% as intermediate 

low risk, 3.75-4.9% as intermediate high risk, and >5% considered high risk) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MACCE risk by Pooled Cohort Equations group 

 Hazard Ratio 95% CI Adjusted P value 

Low Risk Ref - - 

Intermediate Low 0.89 0.44-1.8 NS 

Intermediate High  0.74 0.33-1.6 NS 

High Risk  1.1 0.82-1.6 NS 



 

Table S6. Hazard ratios for risk of PCE-consistent MACCE composite by Clusters:  

Main four cluster model 

MACCE risk by 4 clusters 

 Hazard Ratio 95% CI Adjusted P value 

Cluster 1 2.2 1.5-3.3 0.004 

Cluster 2 1.9 1.2-2.9 0.03 

Cluster 3 Ref - - 

Cluster 4 0.77 0-1.2 NS  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 

Table S7. Cluster sensitivity analysis including 5 clusters 

 
 

MACCE risk by Cluster 5 (sensitivity analysis) 

 Hazard Ratio 95% CI Adjusted P value 

Cluster 1 Ref   

Cluster 2 1.3 0.86-1.9 0.2 

Cluster 3 1.7 1.1-2.6 0.02 

Cluster 4 2.6 1.8-3.8 1.5e-7 

Cluster 5 2.8 1.8-4.3 6.6e-6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S8. Cluster sensitivity analysis including 3 clusters 

 
MACCE risk by 3 clusters 

 Hazard Ratio 95% CI Adjusted P value 

Cluster 1 Ref - - 

Cluster 2 2.4 1.8-3.3 1.6e-8 

Cluster 3 1.2 0.86-1.8 NS 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S9. Hazard ratios for all-cause mortality risk by Clusters or Pooled Cohort 

Equations group: Standard PCE model (<2.5% considered low risk, 2.5-4.9% considered 

intermediate risk, >5% considered high risk) 

All-cause mortality risk by Pooled Cohort Equations group 

 Hazard Ratio 95% CI Adjusted P value 

Low Risk Ref - - 

Intermediate Risk 1.1 0.57-1.9 NS 

High Risk  1.5 0.98-2.2 0.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S10. Hazard ratios for all-cause mortality risk by Clusters or Pooled Cohort 

Equations group: Granular PCE model (<2.5% considered low risk, 2.5-3.74% as intermediate 

low risk, 3.75-4.9% as intermediate high risk, and >5% considered high risk) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All-cause mortality risk by Pooled Cohort Equations group 

 Hazard Ratio 95% CI Adjusted P value 

Low Risk Ref - - 

Intermediate Low 1.2 0.55-2.4 NS 

Intermediate High  0.9 0.40-2.2 NS 

High Risk  1.5 0.98-2.2 0.06 



 

Table S11. Hazard ratios for risk of all-cause mortality by Clusters: Main four cluster model 

All-cause mortality risk by Cluster 4 (main analysis) 

 Hazard Ratio 95% CI Adjusted P value 

Cluster 1 3.3 2.3-4.8 1.3e-09 

Cluster 2 2.6 1.7-4.1 1.6e-04 

Cluster 3 1.3 0.8-2.0 NS 

Cluster 4 Ref - - 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S12. Hazard ratios for risk of all-cause mortality by Clusters: Five cluster model 

All-cause mortality risk by Cluster 5 (sensitivity analysis) 

 Hazard Ratio 95% CI Adjusted P value 

Cluster 1 Ref - - 

Cluster 2 1.4 0.80-2.5 0.2 

Cluster 3 2.5 1.5-4 0.002 

Cluster 4 2.1 1.2-3.7 0.008 

Cluster 5 0.75 0.47-1.2 0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S13. Hazard ratios for risk of all-cause mortality by Clusters: Three cluster model 

All-cause mortality risk by Cluster 3 (sensitivity analysis) 

 Hazard Ratio 95% CI Adjusted P value 

Cluster 1 Ref - - 

Cluster 2 2.8 2.0-3.9 1.2e-9 

Cluster 3 1.2 0.8-1.9 0.27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1. Plot of rank vs. training error used to select the rank for the GLRM. Model rank 

was set to 50 to maximize the respective decrease in training error, while preventing the risk of 

overfitting at higher rank. x-axis: rank. y-axis: training error.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure S2. Heatmap of feature weight in the low rank model used for clustering. Darker 

colors represent features most heavily weighted and used to build a centroid for each cluster. 

 


