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A method to determine the 
duration of the eclipse phase for 
in vitro infection with a highly 
pathogenic SHIV strain
Yusuke Kakizoe1, Shinji Nakaoka2,*, Catherine A. A. Beauchemin3,*, Satoru Morita4, 
Hiromi Mori5, Tatsuhiko Igarashi5, Kazuyuki Aihara6,7, Tomoyuki Miura5 & Shingo Iwami1,8,9

The time elapsed between successful cell infection and the start of virus production is called the 
eclipse phase. Its duration is specific to each virus strain and, along with an effective virus production 
rate, plays a key role in infection kinetics. How the eclipse phase varies amongst cells infected with 
the same virus strain and therefore how best to mathematically represent its duration is not clear. 
Most mathematical models either neglect this phase or assume it is exponentially distributed, such 
that at least some if not all cells can produce virus immediately upon infection. Biologically, this is 
unrealistic (one must allow for the translation, transcription, export, etc. to take place), but could 
be appropriate if the duration of the eclipse phase is negligible on the time-scale of the infection. If 
it is not, however, ignoring this delay affects the accuracy of the mathematical model, its parameter 
estimates, and predictions. Here, we introduce a new approach, consisting in a carefully designed 
experiment and simple analytical expressions, to determine the duration and distribution of the 
eclipse phase in vitro. We find that the eclipse phase of SHIV-KS661 lasts on average one day and is 
consistent with an Erlang distribution.

Mathematical modeling has made important contributions to our quantitative understanding of the 
course and outcome of viral infections, both in vitro and in vivo. The analysis of experimental infection 
data using mathematical models makes it possible to extract information encoded into the observed viral 
kinetics, and dissect it into the individual parameters driving the infection (e.g., the viral burst size or its 
clearance rate). These parameter estimates, in turn, can be used to determine the pathogenesis and trans-
missibility of the virus, predict the course of the disease, and evaluate the effect of antiviral therapy1–5. 
Virus kinetics can be described using the basic model1,6:
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where ( )T t  is the density of uninfected, susceptible target cells which are generated at rate λ, die at rate 
d, and become infected at a rate β times the concentration of virus, ( )V t . Once infected, ( )I t , these cells 
are assumed to produce virus at constant rate p per cell, until their death which is assumed to occur at 
an exponential rate of mean duration δ/1 . The virus progeny, produced at a constant rate, p, by infected 
cells, ( )I t , is lost or cleared exponentially over time at rate c.

This basic model, described by a set of ordinary differential equations (ODEs), implicitly assumes that 
a newly infected cell can produce and release virus instantly upon infection. In reality, however, there 
will inevitably always be a delay between the successful infection of a cell and the production of viral 
progeny, during which time the cell’s internal machinery is hijacked and organized for virus production. 
This delay is known as the eclipse phase because the input virion disappears (is eclipsed) when its nucleic 
acid is uncoated shortly after successful entry into the cell, and it will take some time before it is visible 
again in the form of its output virion progeny. The duration of the eclipse phase depends on a num-
ber of intracellular processes related to the synthesis of viral nucleic acid and proteins, viral assembly, 
maturation, budding, and successful release. The duration of each of these processes, and perhaps more 
importantly the variability in their duration, has not been studied in details7–9. The mean duration and 
average time distribution of the eclipse phase vary according to the virus species and even across strains 
of the same species. For example, the average length of the eclipse phase has been estimated to be around 
24 h for infections with the human immunodeficiency virus type 1 (HIV-1)10–14, and varied from 6 h to 
as much as 12 h for infections with different strains of influenza virus4,15–18.

One simple extension of the basic model is to include an eclipse phase class, ( )E t , such that
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wherein the duration of the eclipse phase is assumed to follow an exponential distribution15–17,19. While 
this extension does enforce an eclipse delay for at least some of the cells between infection and virus 
production (i.e., an eclipse phase lasting an average time of /k1 ), it still allows some cells to unrealistically 
begin virus production instantly upon infection. A variety of other, sometimes more realistic, probability 
distributions for the duration of the eclipse phase, including the Dirac delta, normal, log-normal, gamma, 
and Erlang distributions, have also been considered11,13,14,16–18,20–23.

The probability distribution for the duration of the eclipse phase corresponds biologically to the var-
iation in the duration of that phase from cell to cell within a culture, with some cells going smoothly 
through synthesis, assembly and release, while other cells of the same type and within the same cul-
ture can take longer in completing certain steps due to the error-prone nature of the various processes 
involved. The eclipse phase plays an important role in the infection kinetics, exerting most of its influence 
during early infection events. This is because early in the infection, the viral titers are typically relatively 
low, and the viral output produced by the first few cells to emerge from the eclipse phase determines 
the timing of the next round of replication, and the one after that, and so on, contributing directly to 
the infection growth rate4. The distribution of the eclipse phase, and the variability of the implicit set 
of mechanisms it stands for, also have important implications for the control of the infection because 
viral protein production in infected cells is associated with immune recognition and could relate to the 
establishment of a latent state in some infected cells8,18,24,25. As such, viral kinetics depends strongly on 
the shape of the probability distribution of the eclipse phase duration: the correct determination of the 
eclipse phase distribution, and not just its average duration, is of critical importance to viral infection 
kinetics.

Recently, Petravic et al.25 determined that the duration of the eclipse phase for an HIV infection 
follows a fat-tailed distribution by using an HIV-EGFP reporter virus in a single-cycle (SC) in vitro 
experiment. While this work provides important insights into the detailed intracellular dynamics of HIV 
infection, it relied experimentally on measurements of EGFP content in infected cells rather than direct 
measurement of viral proteins, it relied mathematically on an analysis using a non-mechanistic model 
rather than a more complete kinetic model of infection, and was not further validated through additional, 
time-course measurements of extracellular viral concentration. Herein, we determined the duration and 
distribution of the eclipse phase for the infection of HSC-F cells (T lymphocyte cell line) with a highly 
pathogenic simian/human immunodeficiency virus strain (SHIV-KS66126–29) in vitro30. We were able to 
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directly observe the cells’ distributed transition from the eclipse to the virus-producing infectious phase 
experimentally by measuring the increasing, cumulative fraction of infected cells which were positive for 
the Nef SHIV protein. We determined that the eclipse phase in this system lasted on average one day, 
and varied from cell to cell in a manner consistent with an Erlang distribution. Using our model with 
an accurate eclipse phase along with extensive infection data, we determined that previous parameter 
estimates obtained by models which neglect the eclipse phase6,29 overestimated the virus production rate 
and the duration of the infectious cell lifespan, and underestimated the rate of cell infection by SHIV. 
The limitations of our findings and future directions for this synergistic approach combining cell culture 
experiments and mathematical models are also discussed. Although our results rely on SHIV-KS661 and 
HSC-F cells, our approach for quantitatively understanding of virus dynamics, especially with regards to 
the eclipse phase distribution, is applicable to a broad range of other virus strains and species.

Results
Modeling the eclipse phase in virus infection dynamics.  To generalize the basic model and 
account for the duration of the eclipse phase, we introduce the age of infection, a, corresponding to the 
time elapsed since the successful infection of a cell, i.e. since the start of the eclipse phase (Fig.  1). 
Following others, we will refer to cells which have the same age of infection, a, as a cohort31. Let φ ( , )t aE  
denote the cohort of cells which have reached age a in the eclipse (non-infectious) phase at present time 
t. The population of target and infectious (virus-producing) cells and the virus concentration, at time t, 
continue to be represented by ( )T t , ( )I t , and ( )V t , respectively. We assume that the rate of transition 
from the eclipse to the infectious phase for a cell that has already spent an age a in the eclipse phase, is 
given by the hazard rate µ ( )aE , whose definition32 is such that

∫µ( ) = ( ) . ( )
µ− ( )f a a e 6E

s ds
a

E0

Here, ( )f a  is a probability density function such that ∫ ( )
∆+

f s ds
a

a a  is the probability that a cell which 
has already spent an age a in the eclipse phase will transition to the infectious phase in the interval of 

Figure 1.  A schematic representation of the mathematical model. After a virion, V , successfully enters 
and infects a susceptible target cell, T , at infection rate, β, the newly infected cell progresses through 
different stages of cell populations, φ ( )aE , which are structured according to the time elapsed, a, since virus 
entry. Each of these stages has a corresponding age-dependent hazard rate, µ ( )aE , for the probability that the 
newly infected cell in the eclipse phase transitions to the infectious state (i.e., becomes infectious, I) and 
begins virus production. An infectious, virus-producing cell, I , produces progeny virions at constant rate p, 
and dies at rate δ. The virions are cleared at rate c.

(6)
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time a to ∆+a a. As such, ∫ ( ) = − ∫ µ− ( )f s ds 1 e
a s s

0
da

E0 , its associated cumulative distribution func-
tion, is the probability that a cell has transitioned to the infectious state by age a. Its complementary 
cumulative distribution function, ∫− ( ) = ∫ µ− ( )f s ds1 e

a s s
0

da
E0 , is the probability that a cell has remained 

in the eclipse phase at least up to age a33,34. Using this framework, the basic model can be extended into 
an age-structured model with an explicit eclipse phase described by the following partial differential 
equations (PDEs),
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whose boundary condition for φ ( , )t 0E  is given by

φ β( , ) = ( ) ( ). ( )t T t V t0 11E

Parameters β, δ, p and c , have the same meaning and dimensions as in the basic model. Because, in 
our cell culture experiments, the initial cell concentration is close to the carrying capacity of well plates, 
and target cells replicate slowly, the population of target cells changes very little on the timescale of our 
experiment (data not shown). We therefore neglected the effects of potential regeneration of target cells 
in our analysis and in constructing the mathematical model.

We assume the infection is initiated via a virus inoculum, ( )V 0 , such that initially all cells are in the 
uninfected, target state, ( ) =T N0 , with no initially infected cells, i.e. no cells in the eclipse, namely 
φ ( , ) =a0 0E . Consequently, Eqs. (7–10) can be simplified further by the method of characteristics35. 
That is, φ ( , )t aE  can be written as

∫φ β( , ) =


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which, when substituted into Eq. (9), simplifies the latter to

∫ µ β δ= ( ) ( − ) ( − ) − ( )∫ µ( ) − ( )a T t a V t a da I tedI t
dt

t
E

s s
0

da
E0

∫β δ= ( ) ( − ) ( − ) − ( ) . ( )f a T t a V t a da I t 13
t

0

Here the age, a, corresponds to the duration of the eclipse phase, and is distributed according to proba-
bility density function ( )f a , also called the delay kernel. Thus, the age-structured model Eqs.(7–10) 
reduces to the above (Eqs. (7), (10), and (13)) delay differential equations (DDEs). Similar mathematical 
models have been derived in previous studies20,23. Note that if ( )f a  is an exponential distribution, the 
DDEs reduces, as expected, to the basic model with an explicit exponentially distributed eclipse phase15–

17,19.

Estimating the distribution and mean duration of the eclipse phase.  To identify the eclipse 
phase distribution, ( )f a , we carried out a single-cycle (SC) viral yield assay 17,18,36. In a SC experiment, 
cells are infected at a very high multiplicity of infection (MOI), wherein the inoculation consists in sev-
eral infectious virus per cell. This enables us to reasonably assume that almost all cells are infected 
simultaneously at the start of the experiment such that φ ( = , = ) =t a N0 0E , i.e. 100% of cells are in 
age zero of the eclipse phase at the start of the infection. Since ( )f a ad  is the probability that a cell which 
has reached age a in the eclipse phase will transition into the infectious phase between age a and +a ad ,  
it follows that ∫( ) = ( )C a f s sd

a

0
, its associated cumulative distribution function (CDF), corresponds to 

the fraction of cells which have transitioned out of the eclipse phase and into the infectious phase by age 
a, or by time t post-infection since all cells were in age =a 0 of the eclipse phase at time =t 0. In this 
experiment, ( )C a , the CDF for the duration of the eclipse phase, can then be observed as the variation 
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in the times at which the simultaneously infected cells begin virus production. In past work, this has 
typically been observed indirectly as an increase in the virus yield released into the cell culture medium17,18. 
Here, we observe this delay in a more direct way by monitoring cells which are positive for a particular 
virus protein as a marker for the initiation virus production, i.e. transition from the eclipse to the infec-
tious phase. Specifically, we infected HSC-F (monkey CD4 +  T cells) with 4.2 TCID50/cell of SHIV-KS661, 
measured the cumulative fraction of cells positive for the Nef SHIV protein, and thus directly observed 
the CDF of the eclipse phase duration (see Methods). Because the Nef protein is synthesized after the 
integration of SHIV genome into the host genome37, we assume cells expressing the Nef protein are 
infectious cells which have actively begun virus production and release. We exploited this direct 
experimental-to-mathematical correspondence, ∫( ) = ( )C a f s ds

a

0
, to evaluate four common candidate 

probability distribution functions for the true duration of the eclipse phase: the exponential, normal, 
Weibull, and gamma distributions. The goodness-of-fit and best-fit distribution parameters for each of 
these four distributions are presented in Table 1. The fit of each distribution to the experimental data are 
shown in Fig. 2.

Interestingly, an exponential distribution, i.e., the basic model with or without an explicit exponen-
tially distributed eclipse phase15–17,19, yields a very poor fit (highest AICC, see Methods) to the experi-
mental data (Fig.  2A). Furthermore, it estimates a mean value for the duration of the eclipse phase of 
1.86 d (days), almost twice the 1 d duration from previous estimates10–14. This overestimation of the 
eclipse phase duration when assuming it is exponentially-distributed has also been reported in previous 
work based on indirect observation of the eclipse phase via analysis of viral titer time-course data in SC 
experiments17.

The remaining three, non-exponential distributions reproduced the experimental data similarly well 
(Fig. 2B,C,D). Additionally, the mean duration of the eclipse phase estimated from all three distributions 
was consistently around 1 day (Table  1), in agreement with previous estimates10–14. Although the very 
best fit (smallest AICC, see Methods) was obtained with the gamma distribution, all three distributions 
provide an adequate description of the data. Our SC experimental results and statistical analysis indicate 
that the eclipse phase distribution obeys a non-exponential distribution7,25, consistent with a gamma dis-
tributed eclipse phase duration. It is well known that the gamma distribution can reproduce a variety of 
biological delay distributions38, and for this reason it is commonly used in several mathematical models 
for virus infection dynamics20,21,23.

Deriving a simple mathematical model with a realistic eclipse phase.  Hereafter, for our 
detailed analyses and validations of previous empirical assumption, we choose a gamma distribution as 
the non-exponential distribution to represent the eclipse phase duration, and investigate SHIV-KS661 
infection dynamics. More accurately, for convenience in the remainder of this work, we make use of 
the Erlang distribution, which is equivalent to the gamma distribution but with the requirement that 
the shape parameter of the distribution be an integer. The equivalence between the expression for, and 
the parameters of, the probability density functions of the gamma and Erlang distributions is as follows

( )γ η
( ) =

Γ( ) ( − ) !
.

( )

γ

γ
η

τ
τ

−
−

− −
( / )~f a a e a

n
e

1 14

a n

E n
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a
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1 1E

E

E

E
E E

The shape (γ = .3 5) and scale (η = .0 28 d) parameters reported in Table 1 for the gamma distribu-
tion correspond to the equivalent shape (γ = nE) and scale (η τ /~ nE E) parameters of the Erlang 

Probability 
distribution

Cumulative 
distribution function Parameters Mean SSR AICC

Exponential − λ−e1 a λ†1

1.86 d 1.34 − 7.89
0.54 d−1

Normal


 +




ρ

σ

−1 erf a1
2 2 2

ρ†2 σ†3

0.89 d 0.26 − 15.4
0.89 d 0.40 d

Weibull ( )− η
γ

−e1
a γ†4 η†5

0.96 d 0.28 − 14.8
2.1 1.08 d

Gamma ∫γ ηγ
γ η

Γ( )
− −s e ds

a s1
0

1 γ η
0.98 d 0.25 − 15.9

3.5 0.28 d

Table 1.   Estimated parameter values of the probability distribution functions †1Scale parameter (units 
d =  days), †2Mean, †3Standard deviation, †4Shape parameter, †5Scale parameter

(14)
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distribution of mean τ γη= = .0 98E  d (~24 h). Since nE must be an integer, we chose =n 3E  ( =n 4E  
yields equivalent results, not shown) and uphold τ γη= = .0 98E  d such that η τ / = .~ n 0 32E E  d. 
Figure 3A,B illustrates that the changes in going from the gamma to the Erlang distribution are negligi-
ble.

Our choice to use the Erlang distribution over the gamma distribution is motivated by the fact that 
the former offers the following convenient simplification over the latter. As previously described in20,38, 
if one defines

( )
∫ β( ) =

( − ) !
( − ) ( − ) ,

( )
τ

τ
∞ −

−
−E t a

k
e T t a V t a da

1 15

k

k

n

k

n
a

0

1

1
E

E

E
E

for = , , …,k n1 2 E, then integro-differential equation (13) when =n 3E  in the above is equivalent to 
the following set of ODEs

β
τ
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= ( ) ( ) − ( ),
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dE t
dt

T t V t
n

E t
16

E

E

1
1

τ
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= ( ( ) − ( )),
( )

dE t
dt

n
E t E t

17
E

E

2
1 2

τ
( )

= ( ( ) − ( )),
( )

dE t
dt

n
E t E t

18
E

E

3
2 3

Figure 2.  Fits of several probability distributions to a single-cycle viral yield experiment. During the SC 
experiments at an MOI of 4.2 TCID50/cell, the ratio of Nef positive, infectious, virus-producing cells to total 
cells was measured over time. The symbols denote experimental time course data and the solid line displays 
the best fit of the cumulative distribution function for the (A) exponential, (B) normal, (C) Weibull and (D) 
gamma distributions to the experimental data. The overlaid (E) cumulative distribution functions and their 
associated (F) probability density functions are also shown for comparison.
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τ
δ

( )
= ( ) − ( ).
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dI t
dt

n
E t I t

19
E

E
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Therefore, the age-structured model Eqs.(7–10) can be replaced with Eqs.(7)(10)(16–19). Similar 
mathematical models have been empirically proposed in previous studies18,21. The method used to con-
vert our DDEs into ODEs is called the “linear-chain-trick” and is discussed in details elsewhere20,38.

Analytical expression for infection kinetics in a single-cycle assay.  Interestingly, if one only 
wishes to reproduce infection kinetics in a SC assay, Eqs.(7)(10)(16–19) can be simplified further by 
realizing that in a true SC assay, nearly all cells are infected by the initial virus inoculum. Assuming that 
an MOI of 4.2 is sufficient to infect nearly all cells, we can set ( ) =T 0 0, ( ) =E N01 0 and 

( ) = ( ) = ( ) =E E I0 0 0 02 3 , where N 0 is the initial cell concentration. Then, Eq.(16) becomes

τ
( )

= − ( ),
dE t

dt
n

E tE

E

1
1

Figure 3.  Reconstruction of the single-cycle viral yield experiment. The (A) probability density function 
and (B) cumulative distribution function for our gamma distribution with a shape parameter of 3.5 and our 
Erlang distribution with a shape parameter of 3, both with a mean of 0.98 days are shown side-by-side for 
comparison. Prediction of the (C) fraction of infectious cells, I , and (D) extracellular viral load, V , from the 
analytical expressions, Eqs. (21–22). Using a typical model with no eclipse phase (no E) and a previously 
estimated infectious cell death rate of δ = .1 75/d results in an incorrect prediction for the viral load time 
course. Using this same infectious cell death rate in Eqs.(21–22) results a much larger fraction of cells 
infected and appearing much later compared to the model without an eclipse phase, and overestimates the 
viral load. Adjusting the infectious cell death rate to δ = 14/d results in fewer infected cells peaking earlier, 
and agrees well with the experimental viral load.

(19)
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Eqs.(16′ )(17–19) decouple from Eq.(7), and the following analytical solution can be found for Eqs.(10)
(16′ )(17–19):
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These solutions extend previous analytical approximations of virus infection dynamics14,39, and can be 
validated through comparison with the experimental data from our SC SHIV infection assay.

We can compare the cumulative fraction of cells positive for the Nef SHIV protein, expressed above 
as ∫( ) = ( )C a f s ds

a

0
, with that predicted by the analytical model by realizing that it corresponds to the 

cumulative fraction of cells which, by time t, have transferred into the infectious phase and are now 
either still infectious and producing virus, ( )I t , or have since ceased virus production (i.e., died), 
∫δ ( )I s ds

t

0
, namely
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n
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E  can be replaced by their analytical solution Eq.(20) such that for =n 3E , 
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Note that this does in fact correspond exactly to the cumulative distribution function of the Erlang 
distribution with shape parameter =n 3E  and scale parameter τ /nE E, illustrated in Fig. 3B.

Interestingly, we can compare the analytical expression in Eq.(22) for the virus concentration over 
time, ( )V t , against actual virus concentration measurements which were sampled alongside the fraction 
of Nef-positive cells during our SC experiment (see Methods). Beyond the eclipse distribution parame-
ters ( =n 3E  and τ = .0 98E  d), the analytical expression for ( )V t  also depends on the virus decay rate 
(c), the rate of virus production by infectious cells (p), and the rate of infectious cell death (δ). These 
parameters have been estimated previously for the same virus strain in the same cell culture under sim-
ilar conditions ( = .c 0 039/d, = ,p 32 600 RNA copies/cell/d, δ = .1 75/d)6,29. We substituted these values 
and our known initial conditions ( ( ) ( ) = . ×~V V0 8 h 1 29 109 RNA copies/ml and =N 100

6 cells/
ml) into our analytical expressions for ( )V t  and ( )I t , and present the prediction (not a fit) of Eqs.(21–22) 
for the viral concentration over time alongside the experimentally measured values in Fig.  3C,D. The 
significant disagreement between our prediction and the experimental viral load are due to the fact that 
the parameters used in making our prediction were estimated in previous work from a model which 
ignored the eclipse phase and assumed newly infected cell could instantly begin producing virus. Perhaps 
most critically, the value estimated previously for the rate of infectious cell death corresponds to an 
infectious cell lifespan of ~14 h whereas here we have found that the eclipse phase alone, even prior to 
cells being infectious and producing virus, lasts ~24 h. By using the old infectious lifespan in combination 
with the newly determined eclipse phase duration, we are assuming that our infected cells live ~38 h (see 
Fig. 3C). Therefore, in Fig. 3C,D, we evaluated different values for the infectious cell lifespan and found 
that reducing its duration to ~1.7 h (δ = 14/d) produces a good agreement with the experimental data. 
This corresponds to a burst size ( δ/p ) of 2,300 RNA copies/cell (8-fold less). Naturally, we would expect 
that the introduction of an Erlang-distributed eclipse phase into the model requires the adjustment of 
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not just how long cells produce virus for ( δ/1 ), but also of how much virus they produce per unit time 
(p). We address this point in the next section.

Analyzing in vitro multiple-cycle infection of SHIV-KS661 in HSC-F cells.  In contrast with SC 
experiments, if infection is initiated with fewer infectious virus than there are cells (an MOI  1 TCID50/
cell), only a few cells are infected by the inoculum, and these cells go on to infect other cells, leading to 
successive cycles of infection6,16–19,29. This is called a multiple-cycle (MC) viral yield experiment and is 
believed to be the typical mode of infection progression for natural virus infections in humans and ani-
mals. In addition to the SC experiment introduced above and performed at a MOI of 4.2 TCID50 per 
cell, we have simultaneously carried out SC and MC experiments at four additional MOIs (2.1, 1.05, 
0.525 and 0.2625 TCID50/cell) for the infection of HSC-F cells with SHIV-KS661, measuring both the 
total virus yield in the supernatant (RNA copies/ml) and the cumulative fraction of cells positive for the 
Nef SHIV protein (see Methods). Using model Eqs. (7)(10)(16–19), we simultaneously fitted our 80 
experimental data points to reproduce these SC and MC experiments and extract the remaining model 
parameters, namely the virus infectivity (β), virus production rate (p), and infectious cell lifespan ( δ/1 ). 
The fits were performed as described in the Methods section, and are shown in Fig. 4, with the estimated 
parameters presented in Table  2, and the initial conditions in Table  3. The model Eqs.(7)(10)(16–19), 
reproduces the infection kinetics of both the SC and MC experiments very well.

More interesting, however, is the impact of the introduction of a one day, Erlang-distributed eclipse 
phase on the extracted parameters. Compared to values estimated previously by fitting similar data to a 
model without an explicit eclipse phase6,29, our new model estimates a virus production rate (p =  11,000 
RNA copies/cell/d versus 22,00029 and 33,0006) and an infectious cell lifespan ( δ/1  =  5.9 h, versus 14 h 6 
and 20 h 29) that are both 2-3 fold smaller than that previously reported. This, in turn, results in an esti-
mated viral burst size ( δ/p  =  2,700 RNA copies/cell versus 19,0006 and 22,00029) 7-8 fold smaller than 
previous estimates, and consistent with our above estimate (2,300 RNA copies/cell) from predictions 
made by our analytical expression, Eq.(22). This decrease in the viral burst size is compensated by an 
equivalent 7-8 fold increase in the estimated virus infectivity (β = . × −6 4 10 10 (RNA/ml · d)−1, versus 
. × −8 6 10 116), such that our estimate for the basic reproductive number ( β δ= /R pN c0 0  =  44, versus 41 

6) is consistent with previous estimates from models which did not incorporate an eclipse phase.

Figure 4.  Fits of mathematical model to single- and multiple-cycle viral yield experiment. During the 
SC and MC experiments at five different MOIs (TCID50/cell), the ratio of virus-producing cells to total cells 
and the amount of extracellular viral RNA in the supernatant were measured. The symbols denote the ratio 
of virus-producing cells in (A) and viral load in (B) respectively, and the solid lines are the best fit of the 
mathematical model, Eqs. (7)(10)(16–19), to the data.
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Discussion
Herein, we investigated the duration and distribution of the eclipse phase for the infection of HSC-F cells 
(T lymphocytes) with the virulent SHIV-KS661 strain in vitro. We directly observed the cells’ distributed 
transition out of the eclipse phase experimentally by measuring the monotonically increasing, cumulative 
fraction of cells positive for the Nef SHIV protein, demarking infected cells which have transitioned from 
the eclipse phase to the virus-producing, infectious phase. Using this data, we evaluated four different 
candidate distributions for the duration of the eclipse phase: exponential, normal, Weibull, and gamma/
Erlang distributions. We found that an exponentially-distributed eclipse phase could not reproduce the 
experimental SHIV infection data, as others have previously shown for the eclipse phase duration of an 
influenza infection in vitro 17. The other three distributions, however, reproduced the experimental data 
well. This is not surprising if one considers that the eclipse phase duration depends on a sequence of 
processes. Biologically, each of the processes which make up the eclipse phase has a stochastic duration 
which follows a particular distribution. Although the number of such processes operating serially might 
not be very large, the central limit theorem suggests that the sum of their duration, namely the duration 
of the eclipse phase, should have converged, at least partly, towards a normal distribution whose general 
shape is also largely consistent with the Weibull and gamma/Erlang distributions. Based on our direct 
measurements, all three distributions estimated a consistent average duration of one day for the eclipse 
phase of SHIV infection of HSC-F cells in vitro. Although this is the first report based on the direct, 
experimental measurement of cell transition out of the eclipse phase, our findings regarding the distri-
bution and duration of the eclipse phase are consistent with previous reports7,18,20,21,23,25.

It is interesting to consider how the distribution of the eclipse phase relates to the particular details 
of virus replication for different viruses. For example, recently, it has been reported that in primary 
CD4+  T cells, HIV-1 reverse transcription is initiated approximately 3 h post-infection, its integration 
into the host DNA occurs around 8.5 h after infection, and that all viral transcripts have emerged by 15 h 
post-infection7. It is worth noting that the integration of synthesized HIV-1 DNA into the host genome 
is a stochastic process, and its distribution obeys a long fat-tailed distribution 7–9. Since transcription 
is generally coupled with translation, the fat-tail characteristic of our distribution for the duration of 
the SHIV-KS661 eclipse phase is consistent with these longer stochastic delays which one would expect 
given the known HIV-1 life cycle. In contrast, for viruses such as the influenza virus40 and the hepatitis 
C virus41, the viral components are reproduced from the viral genome immediately after viral invasion 
into the host cytoplasm. Consequently, for such viruses, the distributions found for the duration of the 
eclipse phase are more narrowly distributed and shorter in duration4,18. Thus, the specific life cycle of a 
virus regulates and explains the distribution and duration of the eclipse phase.

Variable Unit
Fitted initial conditions at experimental MOIs (TCID50/cell) of

4.2 2.1 1.05 0.525 0.2625

( )T 0 cells/ml 2.58 187.6 2.69 × 103 2.11 × 105 5.77 × 105

( )E 01 cells/ml 9.99 × 105 9.99 × 105 9.73 × 105 7.89 × 105 4.23 × 105

( )V 0 RNA 
copies/ml 1.64 × 109 1.09 × 109 7.55 × 108 1.98 × 108 7.02 × 107

Table 3.   Initial values for the single- and multiple-cycle viral yield experiment.

Parameter Name Symbol Unit Value

Parameters obtained from simultaneous fit to full in vitro dataset

Rate constant for infection β (RNA/ml · day)−1 6.40 × 10−10

Death rate of virus-producing cells δ day−1 4.09

Production rate of total virus p RNA copies/cell · day−1 1.10 × 104

Quantities derived from fitted values

Half-life of virus producing cells δ/log 2 days 0.17

Viral burst size δ/p RNA copies/cell 2.68 × 103

Basic reproductive number of virus R0 — 44.0

Table 2.   Parameters values and derived quantities for the single- and multiple-cycle viral yield experiment.
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Using a minimal number of reasonable assumptions, we also derived a set of three, independent ana-
lytical expressions describing the number of infected cells in the eclipse (Eq. (20)) or infectious phase 
(Eq.(21)), and the concentration of extracellular virus (Eq.(22)), at any time over the course of a SC virus 
infection. These expressions extend previously proposed analytical approximations of virus infection 
dynamics14,39. Using our experimental data, we verified that these novel analytical expressions indeed 
correctly reproduced the cumulative fraction of cells positive for the Nef SHIV protein. We sought to 
further validate these expressions by using them to predict our experimentally measured extracellular 
virus concentration over time. We found that the expressions’ predictions did not reproduce the experi-
mental data well when using parameter estimates from past work wherein a model with no eclipse phase 
was used6,29. When we accounted for that by allowing the infectious cell lifespan to decrease from that 
previously estimated, we found that our expressions could indeed faithfully reproduce the experimentally 
measured virus concentration time-course.

Having demonstrated with our analytical expressions that parameters estimated from mathematical 
models which do not include an eclipse phase lead to incorrect predictions, we also determined new 
estimates using more extensive experimental data from five separate virus dilution experiments. Our 
corrected, full ODE model incorporating our newly derived eclipse phase distribution reproduced all 
data well, and we identified 3 infection parameters affected by the introduction of the biologically-accurate 
eclipse phase. Our new estimates for both the virus production rate (SHIV RNA copies/cell/d) and the 
duration of the infectious cell lifespan (days) were 2-3 fold smaller compared to our previous estimates, 
leading to an overall 8-fold decrease in the viral burst size (total virus produced by a cell over its infec-
tious lifespan, SHIV RNA copies/cell)6,29. The decrease in these two estimates was countered by a 7-8-fold 
increase in our estimate of the virus infectivity compare to that previously reported, such that our new 
estimate for the basic reproductive number (R0) is consistent with previous reports11,13,14. The incorrect 
estimation of parameters by models which do not faithfully capture the eclipse phase can have important 
implications for the accuracy of these models’ predictions when used to evaluate antiviral efficacy or 
relative strain fitness14,16,17,20,22,23,42.

To conclude, we have determined that failure to properly account for the duration and distribution 
of the eclipse phase will lead to incorrect estimates of key viral replication parameters, affecting also the 
accuracy of any work derived from the incorrectly parameterized models. To remedy this situation, we 
have introduced a set of three independent analytical expressions which accurately capture the fraction 
of infected cells in the eclipse and infectious phases, and the extracellular virus concentration at any time 
over the course of a single-cycle virus infection in vitro. We believe that, along with a carefully designed 
in vitro experimental system like that described herein, these three expressions constitute a unique and 
invaluable tool for characterizing the distribution and mean duration of the eclipse phase in various 
virus strains and species. Importantly, these analytical expressions are relatively general, and should be 
applicable to a variety of SC virus infection experiments. The only foreseeable challenge in applying these 
approaches more generally to other viral strains or species would be the identification of a virus protein 
(like the Nef SHIV protein used herein) which can act as an appropriate marker for the transition of 
cells from the eclipse to the infectious phase. The experimental-mathematical approach adopted here 
has quantitatively revealed the replication dynamics of retroviruses6,7,25,29 and other viruses16,18,19 in cell 
culture systems. A data-driven mathematical approach can elucidate viral infection dynamics in ways 
that are impossible by conventional experimental strategies alone.

Methods
Viruses and cell culture.  The virus stock of SHIV-KS66143 was prepared in a CD4+  human T lym-
phoid cell line, M8166 (a subclone of C8166)44 and concentrated using Amicon ultra-4 centrifugal filter 
devices (UFC810024; Merck Millipore Ltd., Tullagreen/Carrigtwohill/Co. Cork, Ireland). The stock was 
sterilized by 0.45 μ m filtration and stored in liquid nitrogen until use. Establishment of the HSC-F cell 
line has been previously described in30. This is a cynomolgous monkey CD4+  T-cell line from fetal sple-
nocyte that was immortalized by infection with Herpesvirus saimiri subtype C. The cells were cultured 
in RPMI-1640 medium supplemented with 10% fetal calf serum at 37 °C and 5% CO2 in humidified 
condition.

In vitro experiment.  HSC-F cells were inoculated in 1.5 ml micro centrifugation tube at different 
MOIs (4.2, 2.1, 1.05, 0.525 and 0.2625; MOI =  TCID50/cell) of SHIV-KS661 and centrifuged at 4,000 rpm 
for 1 h at 25 °C. After the inoculation, cells were washed three times to remove the infection medium 
and suspended in 850 μ l of fresh medium and divided to four wells (210 μ l per well and an initial cell 
concentration of 1.2 ×  106 cells/ml in each well) of a 96 well plate and cultured. They were used for the 
measurement one by one in turn. This experiment was performed in dividing into twice. One experiment 
was measurement for 8, 12, 16 and 20 hours after inoculation and another experiment was measurement 
for 24, 28, 32 and 73 hours after inoculation. At each measuring point, 50 μ l of the culture supernatant 
of one well was harvested. Harvested culture supernatants were frozen and stored at –80 °C until they 
were assayed via RT-PCR as described below. The remaining cells were re-suspended after addition of 
50 μ l of fresh medium and used for cell count and FACS analysis.
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Quantification of viable and infected cells.  Virus infection of the HSC-F cells was measured by 
FACS analysis using markers for surface CD4 and intracellular SIV Nef antigen expression. The number 
of total and viable cells were first determined using an automated blood cell counter (F-820; Sysmex, 
Kobe, Japan). Viable HSC-F cells (gated by forward- and side-scatter results) were examined by flow 
cytometry to measure the surface CD4 and intracellular SIV Nef antigen expression. Cells were permea-
bilized with detergent-containing buffer (Permeabilizing Solution 2, BD Biosciences, San Jose, CA). The 
permeabilized cells were stained with phycoerythrin conjugated anti-human CD4 monoclonal antibody 
(Clone Nu-TH/I; Nichirei, Tokyo, Japan) and anti-SIV Nef monoclonal antibody (04-001, Santa Cruz 
Biotechnology, Santa Cruz, CA) labeled by Zenon Alexa Fluor 488 (Invitrogen, Carlsbad, CA), and ana-
lyzed on FACSCalibur (BD Biosciences, San Jose, CA).

Quantification of viral load.  We followed the kinetics of the total SHIV-KS661 viral load. The total 
viral load was measured with a real-time PCR quantification assay, as described previously6,29. Briefly, 
total RNA was isolated from the 100 fold diluted culture supernatants (140 μ l) of virus-infected HSC-F 
cells with a QIAamp Viral RNA Mini kit (QIAGEN, Hilden, Germany). RT reactions and PCR were 
performed by a QuantiTect probe RT-PCR Kit (QIAGEN, Hilden, Germany) using the following primers 
for the gag region; SIV2-696 F (5′ -GGA AAT TAC CCA GTA CAA CAA ATAGG-3′ ) and SIV2-784 R 
(5′ -TCT ATC AAT TTT ACC CAGGCA TTT A-3′ ). A labeled probe, SIV2-731T (5′ -Fam-TGTCCA 
CCT GCC ATT AAG CCC G-Tamra-3′ ), was used for detection of the PCR products. These reactions 
were performed with a Prism 7500 Sequence Detector (Applied Biosystems, Foster City, CA) and ana-
lyzed using the manufacturer’s software. For each run, a standard curve was generated from dilutions 
whose copy numbers were known, and the RNA in the culture supernatant samples was quantified based 
on the standard curve.

Comparison of the goodness-of-fit for eclipse phase distributions.  The cumulative fraction of 
cells positive for the Nef SHIV protein was collected at eight different times post-infection ( =t i 8 h, 12 h, 
16 h, 20 h, 24 h, 28 h, 32 h, 73 h) over the course of infection of HSC-F cells initiated with SHIV-KS661 
inocula at an MOI of 4.2 TCID50/cell. For each of our four candidate probability distributions functions 
for the duration of the eclipse phase (Exponential, Weibull, Normal, Gamma), we performed a fit of their 
associated distributions, ( )C teqn , to our experimental data, ( )C tdat , using the Mathematica function 
FindMinimum to minimize the following objective function
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i i
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8
eqn dat 2

where ( )C ti
eqn  is the cumulative distribution function corresponding to one of our four candidate prob-

ability distribution functions (i.e., either the exponential, normal, Weibull, or gamma distribution; see 
Table 1) and ( )C ti

dat  is the measured cumulative fraction of infectious (virus-producing) cells (i.e. cells 
positive for the Nef SHIV protein) at the i th experimental sampling time, t i.

To quantify the goodness-of-fit between the distributions for the eclipse phase duration and the 
experimental SC data for the cumulative fraction of cells positive for the Nef virus protein, we calculated 
the second-order Akaike’s “an information criterion” (AICc) for each fit using
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where Npar is the number of parameters of each probability distribution (Npar = 1 for the exponential 
distribution, and 2 for the other distributions considered), Npts is the number of data points (i.e., Npts = 8),  
and SSR is the sum of squared residuals between the experimental data and the best-fitted CDF of each 
probability distribution16.

Identification of best-fit parameters from single- and multiple-cycle data.  The total virus con-
centration in the supernatant and the cumulative fraction of cells positive for the Nef SHIV protein were 
collected at eight different times post-infection (ti  =  8 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 73 h) over the 
course of five separate infections of HSC-F cells initiated with decreasing SHIV-KS661 inocula (MOI of 
4.2, 2.1, 1.05, 0.525 and 0.2625 TCID50/cell). A nonlinear least-square fit was performed simultaneously 
against all experimental data using the Mathematica function FindMinimum to minimize the following 
objective function:
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is the cumulative fraction of infectious (virus-producing) cells (i.e. cells positive for the Nef SHIV pro-
tein) and ( )V tj i  the SHIV concentration in the supernatant (RNA copies/ml) at the i th experimental 
sampling time, t i. Index j corresponds to one of the five experiments performed at a given MOI, and 
superscripts “eqn” and “dat” designate data points that were either generated from the model Eqs.(7)(10)
(16–19) or measured experimentally, respectively.

Model (7)(10)(16-19) has a total of 6 parameters (β, p, δ, c, τ E, nE) which will be shared by the 5 
different experiments. We fix τ = .0 98E  d and =n 3E  as these have been established already from the 
MOI =  4.2 TCID50/cell experiment, and fix = .c 0 039/d as determined in previous work6,29. There are 
also 30 different initial conditions, i.e. 6 per MOI experiment ( ( )T 0j , ( ),E 0j1 , ( ),E 0j2 , ( ),E 0j3 , ( )I 0j , ( )V 0j ),  
which we reduce by setting ( )( ) = −T f N0 1j j 0, ( ) =,E f N0j j1 0 and ( ) = ( ) = ( ) =, ,E E I0 0 0 0j j j2 3 , 
where =N 100

6 cells/ml is the initial cell concentration, and f j
 is the fraction of cells successfully 

infected by the j th inoculum MOI by the end of the 1 h incubation period. This leaves a total of 13 quan-
tities (β, p, δ, = …f j 1 5, ( )= …V 0j 1 5 ) to be estimated from our 80 experimental measurements.
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