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Abstract

Background: Understanding host response to influenza virus infection will facilitate development of better
diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for
human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these
systems has been studied extensively in isolation, but little effort has been directed toward systematically
characterizing the conservation of host response on a global level beyond known immune signaling cascades.

Results: In the present study, we employed a multivariate modeling approach to characterize and compare the
transcriptional regulatory networks between these three model systems after infection with a highly pathogenic
avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display
similar behavior and/or regulation including the well-studied impact on the interferon response and the
inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating
hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate
that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate
predictions about the behavior of important components of the innate immune system in tissues from whole
organisms.

Conclusions: This is the first demonstration of a global regulatory network modeling conserved host response
between in vitro and in vivo models.
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Background
The 1918 influenza virus pandemic was one of the most
devastating in history, and is estimated to have killed
over 50 million people worldwide [1]. The continued
circulation of highly pathogenic avian H5N1 viruses and
the emergence of the 2009 H1N1 pandemic virus has
revived concerns about another lethal pandemic [2,3].
Although H5N1 viruses are largely zoonotic, human
infections have occurred, with mortality approaching
60% [4], and there have been reports of limited human-
to-human transmission [5-8]. Thus, there is a

considerable need to understand the processes that
drive pathogenicity of influenza, both in terms of viral
dynamics and the host response to infection.
The selection of the appropriate model to study viral

pathogenicity is essential to maintain relevance with
human disease. Given their considerable similarity to
humans, macaques are an excellent choice for studying
the host response to influenza infection [9]. However,
they are expensive, genetically diverse, and not amenable
to certain types of downstream perturbation analysis (i.e.
genetic deletions of host response genes). Influenza
viruses also can infect and induce pathogenicity in mice,
but mice are not a natural host. Indeed, comparison of
H5N1 infections between mouse and macaque systems
has shown that some aspects of the host response are
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not entirely conserved [9,10]. In vitro cell culture sys-
tems have been used extensively to study influenza
infection [11] and have provided many insights into
viral dynamics and host response. However, cells in cul-
ture exist in a highly artificial environment, which does
not include any of the complex interactions between
cell types that dynamically alter the environment and
induce corresponding responses in the cell.
Profiling gene expression using microarrays has been

used extensively for characterizing the host response to
influenza infection [12-17]. Many of these studies have
compared different viral strains or mutants within in the
same experimental model, but few have directly com-
pared the same virus between model systems. In fact,
there is a general paucity of studies that compare similar
stimuli in different systems, especially with regard to in
vitro and in vivo models. One of the difficulties con-
fronting such studies is that processes occur on different
time scales in different models, and so simply compar-
ing responses between systems is not a straightforward
exercise.
The aim of our current work is to determine the

extent to which transcriptional regulation of the host
response during influenza infection is conserved
between in vitro and in vivo models, as well as across
species. In doing so our goal is to provide a computa-
tional framework for assessing similarities between
experimental systems. Three complementary approaches
are employed. An approach to compare dynamics at a
functional level, an approach that identifies conserved
patterns of coexpression, and an inference method that
identifies conserved regulatory influences between sys-
tems. We show significant functional, coexpression and
regulatory similarities between in vitro cell culture and
animal models responding to infection with influenza.
An important point is that none of these approaches
rely on matching comparable time points between
experiments, and thus we use them to compare data
from different systems with very different sampling
times and dynamics. We identify a number of conserved
processes, including those involved in hypercytokinemia
that have been previously identified as mediators of
pathogenesis in H5N1 infection, and implicate novel
genes in pathogenesis. For the first time we show how
computational analyses can be used to reconcile data
from cell culture and whole animal models of influenza
infection to gain insight into the biological responses to
infection and their dynamics in different systems.

Results
Overall approach
To compare host response to highly pathogenic avian
influenza virus infection, we examined global gene
expression response in human bronchial epithelial cells

(Calu-3 [18]), lungs of inbred mice, and lungs of maca-
ques [12] infected with influenza A/Vietnam/1203/2004
(referred to here as VN1203). This strain of influenza
was isolated from a fatal human infection, and has been
previously reported to be lethal in mice and at least par-
tially lethal in macaques [12]. Previously, experiments
were performed to follow the course of VN1203 infec-
tion by microarray analysis in Calu-3 cells at six time
points post-infection up to 24 hours [19], and in maca-
ques on days 1, 2, 4, and 7 days post infection (p.i.)
along with a seasonal H1N1 strain (Tx91) with low
pathogenesis and two reassortants of the 1918 virus
[12]. Additionally, to examine the response to VN1203
in another important system, we generated microarray
data from mice on days 1, 2, 4, and 7 days p.i. at three
different dosages. Together, these studies provide a
wealth of data about the host response to highly patho-
genic VN1203 across three very different systems, both
in vitro and in vivo. We note that though mouse and
macaque are not known natural hosts for influenza, they
are well-understood model systems that replicate many
features of pathogenesis in other hosts.
To characterize the similarities between in vitro and in

vivo models of influenza infection, we first used a func-
tional similarity approach to compare the dynamics of
response to infection in Calu-3 cells with that in maca-
ques. This approach is useful because it does not rely on
identification of homologs between the two species and
makes use of functional information for non-homologs
to determine similarity. We focused on comparison of
infection in Calu-3 cells and macaque because we were
primarily interested in determining the similarities and
differences between in vitro and in vivo systems. We next
compared the expression of homologs between Calu-3,
mouse and macaque infections using an approach that
determines similarities in co-expression patterns between
systems. Finally, we used a network inference approach
that employs multivariate regression and variable selec-
tion to formulate a model from the Calu-3 data that can
predict the behavior of functional groups or individual
genes in mice and macaques based on the expression
levels of a small number of putative regulatory influences.
To assess the ability of the Calu-3 model to provide
information about more complex systems, we applied it
to predict behavior in mouse and macaque. Comparison
between different systems sampled at different time
points is possible because our approaches do not require
matching comparable time points between systems, a
process that would be likely to introduce considerable
bias to the results. In this study we aim to gain a better
understanding of the conserved response to influenza
across species and grant us additional information about
the type of host responses to influenza in vivo that can be
predicted or validated using in vitro experimentation.
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Conserved functional processes in host response to
VN1203 in human Calu-3 cells and macaque
Comparisons of system responses in different organisms
are complicated by the lack of one-to-one correspon-
dence between genes in different species. To avoid this
complication, we compared the response to VN1203
using a function-centric approach, in which genes are
treated as members of different functional groups and
the response to the stimulus is assessed at a functional
level using gene ontology (GO) terms [20]. Comparisons
between functional processes across systems can be
informative about similarities and differences between
responses at a higher level of abstraction. Such a com-
parative analysis is made possible by the fact that genes
from different species are annotated using a common
set of GO terms. By identifying functional groups that
behave similarly between different organisms we can
begin to focus on processes common to response and to
get a better overall indication of how different organ-
isms respond to the same virus.
To identify functional groups and components of pro-

cesses that are conserved and unique between the
response in Calu-3 cell culture and lungs of macaques
infected with VN1203 we computed the statistical
enrichment for all GO biological process terms for dif-
ferentially expressed genes (p < 0.05, fold-change > 1.5
compared to mock) for each treatment. Here, a ‘treat-
ment’ refers to microarray data from a single host
(Calu-3 or macaque), virus (VN1203 or a non-patho-
genic H1N1 strain in macaque) and time post-infection.
We have included the non-pathogenic H1N1 (Tx91 sea-
sonal strain) infection data in macaque with the same
time points as the VN1203 infection as a control to
highlight what a minimal pathogenic response looks like
in this analysis. A total of 211 GO terms were signifi-
cant (p <= 1e-4) in at least one treatment looking across
all treatment groups. We removed terms that were
either too broad or too specific by selecting for terms
with an information content score [21] between 5 and
7.5, and this resulted in a final list of 76 enriched biolo-
gical process. In this application the information content
represents a measure of how specific the functional
category is in terms of number of genes it annotates.
Next, we clustered the different treatments based on
their enrichment scores [-log10(p)] for these 76 terms
using hierarchical clustering. By projecting the enrich-
ment scores of each treatment onto the principal com-
ponent coordinates of the 76-dimensional process term
space, we were able to partition the individual observa-
tions by treatment (Figure 1). These results indicate that
the early time points from the macaque-VN1203 infec-
tion (days 1 and 2; Mac-early), the macaque-VN1203
late day time point (day 7; Mac-late), and the late time
points from the Calu-3 VN1203 infection (12, 18 and 24

hour; Calu3-late) each formed separate clusters in the
process term space. The 7 hour time point from the
Calu-3 VN1203 infection, both 4 day replicates of the
Macaque-VN1203 infection and one of the 4 day repli-
cates from the Macaque-seasonal influenza virus infec-
tion cluster together (Both-mid). Interestingly, all of the
early (0 and 3 hour) time points from the Calu-3
VN1203 infection form a separate cluster that included
the Macaque-seasonal influenza virus infections span-
ning 1 to 7 days (Calu3-early). This analysis indicates
that treatments clustered by functional similarity reflect
the temporal progression through infection in both
systems.
To obtain a concise view of the processes that were

enriched in each of the treatment clusters, we con-
densed the list of 76 process terms to a set of 13 GO
term groups using the semantic similarity between GO
terms [22]. The geometric mean enrichment score for
each treatment cluster-GO group combination is pre-
sented in Table 1. As seen in Table 1 the Calu3-early

Mac-late

Mac-early

Calu3-late

Calu3-early

Both-mid

0 73 12 18 24 1 42 7

Calu-3 hpi macaque dpi

Calu3-early
Calu3-late
Both-mid

Mac-early
Mac-late

Figure 1 Functional similarity between VN1203-infected Calu-3
cells and macaques. Differentially expressed genes in each
treatment were analyzed for their functional enrichment in GO
biological process terms. Treatments (system, virus and time
combinations) were clustered together based on the functional
enrichment scores for a set of 76 GO terms using hierarchical
clustering. A partitioning that results in 5 clusters is illustrated using
distinct colors for each of the clusters. Treatments are projected on
to the first three coordinates obtained via principal component
analysis of the matrix of enrichment scores, and are colored based
on their cluster membership. Lines indicate the temporal
progression of VN1203 infection in each system. Treatments present
in each cluster are listed at right.
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treatment cluster does not show strong enrichment in
any of the processes (enrichment score >1.3 corresponds
to p < 0.05), possibly because there are a small number
of genes differentially regulated at these early time
points. Processes related to viral response, chemotaxis,
muscle contraction, and innate immunity were found to
be highly enriched in all other treatment clusters. Some
of these functional groups represent systems-level pro-
cesses (e.g. muscle contraction), which are not relevant
to the in vitro cell culture system. However, these larger
functional groups reflect underlying cellular processes
that can be attributed to individual genes, even in the in
vitro system. The Calu3-late cluster is highly enriched
in processes related to translation, regulation of immune
response including cytokine production, cell adhesion,
and cell division and mitosis that is similar to what was
observed for both the Mac-early and Mac-late clusters.
A unique feature of the Calu3-late cluster is its enrich-
ment in protein degradation and anti-apoptosis. This
may be indicative of the marked cytopathic effects at 18
and 24 hours post-infection (data not shown) in the
Calu-3 cell cultures, and is a normal feature of pro-
grammed cell death processes [23]. The Mac-early and
Mac-late clusters are both strongly enriched in pro-
cesses related to leukocyte proliferation, indicating a key
function of immune cells in the in vivo model. This
response is not reflected in the in vitro transcription
data and this is likely due to the nature of the cell cul-
ture system, which contains only epithelial cells. Inter-
estingly, both these clusters are enriched in very similar
sets of functional groups, though with different levels of
significance. The different significance levels reflect dif-
ferent numbers of genes annotated with these categories
and so indicate the differences present between the two

clusters. Overall, these data suggest that there are con-
served aspects of response to VN1203 at a functional
level between the Calu-3 cell system and macaques,
despite the difference in the dynamics of these responses
between in vitro and in vivo systems.

Conserved expression dynamics of response to influenza
virus infection in human Calu-3 cells, mouse and
macaque
We were interested in investigating the correlation of
functional responses among the Calu-3 cells, and maca-
que and mouse on a gene-by-gene basis, but were faced
with the fundamental problem that the time scales
between the in vitro and in vivo studies were very differ-
ent. A traditional correlation measure (for example,
Pearson correlation) between gene expression profiles in
both datasets can be used if the conditions are matched
with each other (here called inter-correlation), however
this does not account for genes that may have different
dynamics in both systems or comparisons for which the
time points are different. To address these limitations
we developed an alternative approach, called cross-coex-
pression analysis, which can identify groups of genes
that have similar expression patterns and are likely to be
co-regulated but display different temporal dynamics or
dynamic range, the minimum and maximum levels mea-
sured, caused by drift in the technology platform.
For cross-coexpression analysis, we constructed a

coexpression matrix for each dataset independently by
calculating the correlation between the expression pro-
files for all pairs of genes. We define the cross-coexpres-
sion matrix as the mean of the individual matrices, and
pairs of genes in this matrix with values close to 1 are
highly correlated in both datasets. We then applied a

Table 1 Functional similarity between in vitro and in vivo models of influenza infection

Biological Process Enrichment Scorea

Calu3-early Calu3-late Both-mid Mac-early Mac-late

muscle contraction/circulatory system process 0.16 1.39* 2.23 1.40 2.03

chemotaxis 0.18 2.62 5.01 11.07 6.16

response to virus/innate immune response 0.24 2.06 2.54 7.78 2.96

response to external stimulus/locomotion 0.29 2.03 2.83 6.31 2.43

muscle system process/smell perception 0.20 0.95 1.49 1.75 2.92

mRNA processing/translation 0.18 3.96 0.73 1.47 1.85

regulation of immune response 0.21 1.69 1.04 3.54 1.57

mitosis/cell cycle phase 0.24 1.90 0.78 1.54 2.69

cytokine production/secretion 0.19 1.73 0.80 1.98 1.05

cell adhesion/division/microtubule-based process 0.30 1.99 0.80 0.95 2.00

transcription reguln/protein degradation/anti-apoptosis 0.17 2.73 0.62 1.07 0.88

proteasomal protein catabolic process 0.23 3.34 0.69 0.98 0.93

regulation of leukocyte proliferation 0.18 1.09 0.73 3.68 1.46
a The geometric mean enrichment score was calculated for each treatment cluster-GO group combination. Enrichment score >1.3 corresponds to p < 0.05.

*bold type indicates statistically significant values
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background correction in which the cross-coexpression
matrix was normalized against a set of randomized
matrices. This normalized matrix was used to calculate
Z scores for the cross-coexpression values. In this
matrix, pairs of genes that have high mean correlation
values are considered to be coexpressed in each dataset.
This does not mean that the pair of genes necessarily
exhibit the same expression pattern in all three datasets;
they may have different dynamics, magnitude and direc-
tionality of changes in each organism, but remain highly
correlated to each other in the organisms independently.
To ascertain how much extra information could be

obtained using our cross-coexpression approach versus
traditional comparative methods, we initially compared
the number of genes that could be identified as having
coordinated regulation across two systems. For this ana-
lysis we compared VN1203 infection in mouse (MOI
104) and macaque because there are identical time
points (see Additional Files 1 and 2). This analysis
showed that only 9% of homologs could be shown to
have highly correlated expression profiles between sys-
tems, but that 98% of the homologs display coordinated
behavior in both systems. Coexpression can provide an
estimate of true co-regulation, as more observations of
the system are added the prediction of co-regulated
genes becomes more confident. Since the original maca-
que experiment included several strains of influenza, we
included data from these strains to provide better dis-
crimination of co-regulated genes. Our final analysis

therefore includes 104 observations of the system
(including biological replicates for macaque and mouse);
the Calu-3 cell infection data (two sets of 6 time
points), data from each viral strain in macaque (four
time points, four viruses, two replicates), and each
dosage in mouse (four time points, three dosages, five
replicates). This comparison revealed that 64% of homo-
logs displayed coordinated behavior in each system.
This is a significant finding because it allows detection
of coordinated transcripts between experiments, which
have different time points, viral dosages, and strain
differences.
To identify functions enriched in cross-coexpressed

groups of genes, we clustered the combined correlation
matrix (cross-coexpression matrix) using hierarchical
clustering and then performed functional enrichment on
the resulting clusters. Figure 2 shows a matrix of the
subset of transcripts with high correlation values with at
least one other transcript as a heatmap, identification of
six clusters based on this heatmap, functional labels for
the clusters, and expression profiles of the four largest
clusters in Calu-3 cells, mouse, and macaque for
VN1203 infection. The transcripts in the shared clusters
and functional enrichment for the clusters are provided
in Additional File 3.
One of the four clusters in Figure 2 shows similar pat-

terns and is enriched in mitosis and meiosis processes.
In contrast, the other clusters display different dynamics
in overall response across the three systems. There are
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Figure 2 Cross-coexpression analysis of avian influenza response in Calu-3, mouse and macaque. The heatmap shows the cross-
coexpression matrix of homologs in the Calu-3, mouse and macaque datasets representing the mean coexpression of each pair of genes
(columns indicate one gene of a pair and rows indicate the other) from all three sets. A dendrogram from hierarchical clustering is shown at left
and was used to divide the genes into six clusters (indicated by bars at right). Plots show the expression levels (log2 fold-change versus mock
infected) of all genes in each of the four largest clusters (grey lines) and cluster means are represented by colored lines for Calu-3 (red),
macaque (blue) and mouse (green). Significantly enriched functions for each cluster are listed on the right. This figure shows that our cross-
coexpression analysis identifies groups of genes that are coexpressed in each organism but have different dynamics in each.
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two clusters that are enriched in immune response func-
tions, and each is consistently regulated in mouse and
macaque, but they show differential regulation in the
Calu-3 cells. The response to virus cluster (top in Figure
2) is upregulated over time, but the more general
immune response cluster is down-regulated. The general
immune response cluster contains the CASP1 and
PYCARD/ASC genes, two of the three components of
the inflammasome, a multi-protein complex responsible
for activation of the inflammatory response [24]. The
third component, NLRP3 is not identified in this analysis
since it was not classified as differentially regulated in
the mouse experiment, but it shows a similar pattern of
expression as this cluster. The functions identified in
these clusters are similar to those identified in our func-
tional analysis, showing that the two approaches are
complementary. Importantly, the cross-coexpression
analysis allows identification of the dynamic trends of
the groups of transcripts in each dataset that comprise
these functional groups, which was not possible using
the functional analysis approach.

Modeling regulatory influences involved in response to
influenza infection across systems
The results from our functional comparison analysis and
cross-coexpression analysis show that there are limited
but significant similarities in the transcriptomic response
to influenza infection in a human cell line, and mouse
and primate model systems. We next applied a predic-
tive transcriptomic modeling approach to determine if
data from the human cell culture system can predict
behavior in an in vivo system. We then used the model
to identify the best regulatory predictions across the
three data sets.
The modeling approach that was used is based on a

previously published multivariate regression method
[25,26] that we have successfully applied to eukaryotic
systems [27,28]. In this approach multivariate regression
with variable selection using the lasso algorithm [29] is
used to learn relationships between the expression levels
of regulators and groups of genes from a set of tran-
scriptomic measurements (e.g. a time course response),
which are the targets of the regulators. Using this
approach, we can make predictions about which regula-
tory influences may be responsible for the behavior of
co-regulated gene groups and generate a model that can
be used to predict the behavior of co-expressed groups
under novel conditions. We initially inferred a regula-
tory influence model using two Calu-3 expression data-
sets (Figure 3). We then evaluated model performance
using a cross-validation approach in which multiple
models are inferred from datasets with one time point
held out. The performance of the model was then evalu-
ated as the correlation of the predicted expression value

for that cluster (Y) with the observed expression value
(O) for the excluded time point.
Using all the differentially expressed transcripts (8471)

from the dataset of Calu-3 cells infected with VN1203,
we evaluated the overall performance of a series of
cross-validated models using varying numbers of clus-
ters defined by hierarchical clustering, from 5-120. We
found that maximal performance was achieved with 10
or 15 clusters (Figure 4A), and chose to focus on the
simpler 10 cluster model as the base for our predictive
modeling. The gene-normalized mean correlation
between the predicted expression profiles and observed
expression profiles over all time points was 0.96. We
showed overall good performance (Y axis) of most target
clusters (categories), ordered by performance in Figure
4B. In Table 2 we provide a list of the functional cate-
gories that are statistically enriched in each of these 10
clusters, as well as the performance of the model for
each cluster (Calu-3 column). To ascertain whether
these results are likely to have arisen by chance we ran-
domly permuted the cluster membership for each clus-
ter 25 times and used this information to calculate a p-
value. Statistically significant (p-value < 0.05) perfor-
mance results are indicated in Table 2 with an asterisk.
Figure 4C shows the performance of an early up-regu-
lated cluster (cluster 8) in the two experiments. The
relative expression levels (Y axis) predicted by the
model (green line) are shown compared to the mean
gene expression from the cluster (red line), for each of
the time points in one experiment (X axis). This plot
shows that the predictions, made using cross-validation,
are very close to the observed expression in this simple
time course which suggested that the overall perfor-
mance of this model was very good based on cross-vali-
dation. The trained model was then applied to the
macaque and mouse data to ascertain which portions of
the Calu-3 model are consistent with the regulator-tar-
get relationships in these in vivo systems.

Macaque response to infection with influenza can be
predicted using a Calu-3 regulatory model
We next explored what portions of the host response to
influenza in vitro were predictive of transcriptomic
behavior in vivo using the regulatory model trained on
Calu-3 data to predict expression data from macaque
lungs. As the case with the cross-coexpression analysis
above, we included data from macaque infections with
VN1203 as well as other strains of influenza (H1N1, see
Methods) in order to increase confidence that our
results represent real regulatory influence relationships.
We filtered the Calu-3 model to include inferred regula-
tors present in macaque and genes in target clusters
present in macaques. Regulators not present in macaque
are ignored for predictions (see Methods) and
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1. Cluster Calu-3 expression data

2. Infer regulatory influence network
a. Predicted influences predict the 
 expression of cluster i (Yi) given the 
 expression (X) of inferred regulatory 
 influences

3. Cross-validation on Calu-3 infection data
a. Leave out time point
b. Build predictive model
c. Evaluate performance (P) of predictive model as
 correlation of predicted (Y) versus 
 observed (O) expression for all points
d. Repeat with next time point

4. Cross-prediction on macaque or mouse infection data
a. Use regulatory influence relationship weights (W) 
 from Calu-3 infection
b. Apply to expression values (X) from 
 macaque or mouse infection data
c. Evaluate performance (P) of predictive model

Potential regulatory
influences

Regulatory ‘target’
(cluster)

WA
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WC

cluster i

A

B

C

WA WB WCXA +XB +XCYi =
P = cor(Y, O)
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P = cor(Y, O)
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0h 3h 7h 12h 18h 24h0h 3h 7h 12h 24h

Yi

Oi

Figure 3 Overview of cross-predictive modeling approach. To allow cross-predictive comparison of response to influenza infection between
Calu-3 and in vivo systems, we first clustered the Calu-3 expression data (1) from two similar experiments using hierarchical clustering. The
clusters (colored boxes) are used to summarize system behavior and serve as the ‘targets’ for inference. A regulatory influence network is
inferred (2) that relates the expression of inferred regulatory influences (X) to the mean expression (Y) of each target cluster (i). Cross-validation
(3) is carried out by leaving out expression data from each time point in turn, inferring a model, then using the model to predict the behavior
of each cluster for the left out time point. Performance of the model is assessed as the gene-weighted mean correlation between the predicted
(Y) and observed (O) expression of all clusters. Finally, the weights from the Calu-3 model are applied to the macaque/mouse data and
performance assessed by evaluating the gene-weighted mean correlation between the predicted expression and the observed expression in
macaque/mouse for each cluster.
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Figure 4 Performance of Calu-3 regulatory influence model in cross-validation. A. Performance of inferred models with varying
numbers of target clusters. The cross-validation approach described was used to infer models based on varying numbers of target clusters (X
axis) from the Calu-3 response to avian influenza infection. Performance is expressed as the mean correlation (Y axis) of predicted expression to
the observed expression normalized to the number of genes in each target. B. Performance inferred model at predicting expression of co-
expressed clusters. The cross-validation approach described was used to infer a model based on ten co-expressed clusters (X axis) from the
Calu-3 response to avian influenza infection. Performance is expressed as the mean correlation (Y axis) of predicted expression to the observed
expression for each cross-validated time point. Details about each cluster are provided in Table 2. C. Predicted and observed expression
patterns for an innate immune-related cluster. The predicted expression levels (green line) from cross-validation are shown over the six time
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Table 2 Functional enrichment of Calu-3 clusters

Cluster Top biological functions enrichment within each cluster Predictive abilitya

Functional Pathways p-valueb # molecules Calu-3 Macaque Mouse

1 None 0.89* 0.23 0.98*

2 cell surface receptor linked signal transduction 1.56E-02 6 0.88* -0.44 0.28

activation of eukaryotic cells 1.56E-02 9

developmental process of antigen presenting cells 1.56E-02 5

aggregation of blood cells 3.09E-02 4

growth of leukocytes 3.09E-02 4

replication of virus 3.09E-02 6

3 binding of blood cells 5.22E-07 16 0.96* 0.44 0.98*

activation of granulocytes 5.28E-07 11

stimulation of normal cells 6.52E-07 13

inflammatory response 6.56E-07 23

maturation of leukocytes 6.98E-07 14

chemotaxis of cells 9.01E-07 20

activation of monocytes 9.65E-07 9

activation of phagocytes 9.65E-07 13

activation of T lymphocytes 1.09E-06 16

immune response 2.82E-06 28

4 developmental process of blood cells 2.38E-04 41 0.99* -0.13 -0.99*

function of lymphatic system cells 1.95E-03 5

recruitment of normal cells 4.40E-03 14

differentiation of lymphocytes 4.47E-03 20

function of leukocytes (including function of granulocytes) 5.51E-03 9

quantity of leukocytes 5.76E-03 25

5 development of intercellular junctions 8.80E-04 10 0.83 -0.21 0.92*

6 cell division process 2.98E-03 253 0.96 0.25 -0.97*

metabolism of carbohydrate 3.52E-02 80

transactivation 3.52E-02 127

cell death of connective tissue cells 3.83E-02 66

modification of DNA 5.02E-02 58

7 secretion of cytokine/recognition of cells 2.97E-02 1 0.64 0.32 0.58

methylation of protein or DNA 2.97E-02 1

8 accumulation of calcium 3.13E-02 6 0.97* 0.68* -0.86

contraction of tissue 3.69E-02 16

neurotransmission 3.78E-02 20

blood pressure 3.78E-02 13

response of cells 3.78E-02 24

synthesis of cyclic AMP 3.78E-02 7

9 None 0.72 0.25 0.86

10 transcription 1.67E-08 150 0.99* 0.72* 0.33

protein kinase cascade (including IKKB/NFkB cascades) 4.25E-03 33

activation of cyclin-dependent protein kinase 5.06E-03 11

developmental process of organism 1.62E-02 81

cell cycle progression 2.79E-02 67

activation of protein 4.00E-02 20
a asterisk indicates statistical significance versus random for predictive ability
b Benjamini-Hochberg adjusted
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expression of target clusters is calculated as the mean
expression of genes present in macaque, ignoring non-
homologs. We evaluated the models generated from the
Calu-3 with different numbers of clusters (5-120), and
as in the case of our cross-validation, found that the
model containing ten clusters had the best cross-predic-
tion performance with a correlation of 0.39. The results
of the cross-predictions suggest that although most of
the clusters were not well-predicted in macaque (Table
2; Macaque column; membership of all DE genes found
in Additional File 4), clusters 8, and 10, show statisti-
cally significant correlations, 0.68 and 0.72, respectively
(Table 2), versus randomly permuted clusters. These
two clusters represent 982 and 1576 genes, respectively,
accounting for approximately 30% of all differentially
expressed transcripts. The functional enrichment of
these two clusters (Table 2) is dominated by immune
response and regulation of transcription processes, simi-
lar to our functional comparison in Table 1. It is inter-
esting, however, that cluster 2, which represents T-cell
activation and interleukin-2 production is negatively
correlated with predictions, suggesting that these pro-
cesses are regulated differently between macaque lung
and Calu-3 cells, though this is not statistically signifi-
cant. The same is true for clusters 4 and 5, which con-
tains negative regulators of transcription, inflammatory
response and cell migration processes. Numbers of
genes and mouse and macaque homologs in each cluster
are listed in Additional File 5.

Calu-3 regulatory model predicts mouse response to
influenza at different dosages
To assess how consistent the model derived from
human cell culture experiment would be with the host
response to influenza in a different animal model, we
next evaluated the performance of the Calu-3 model on
data from inbred mice. In the mouse experiment three
different dosages of V1203 were used to infect groups of
mice, and high correlation results from predictions
would indicate that our model is capturing dose differ-
ences across the data set. Because the numbers of differ-
entially expressed homologs were significantly lower
than in macaque (Additional File 5) we examined the
significance of the performance value for each cluster
relative to 25 random permutations of genes for that
cluster. Table 2 indicates significant performance results
with an asterisk (Mouse column). From this analysis
were able to detect both similarities and differences in
response to the virus across models. Clusters 1, 5 and 9
accurately predicted the mouse data but not as well in
the macaque data. Interestingly, these three clusters
have few enriched functions, indicating that they may
represent a diverse set of responses. The results for clus-
ter 3 are notable as it represents portions of the

immune response that are conserved in all three sys-
tems, and in this case the predictions in macaque are
reasonable (0.44 correlation), but predictions in the
mouse are much better. We further found that our
model correctly identified the trend in overall expression
between doses for those clusters that are significantly
predicted (data not shown). This further supports the
notion that a Calu-3 model may be able to accurately
predict some regulatory influences on influenza
response. It is also interesting that clusters 4, 6, and 8
are highly anti-correlated in their regulatory predictions
in mouse, reflecting significant differences between spe-
cies. In all cases with the mouse clusters the number of
homologous genes is low (see Additional File 5) and few
regulatory influences used for the model were identified
as homologous, suggesting that these results should be
taken as preliminary. However, the fact that these clus-
ters perform significantly better than the random con-
trols provides support for our results.

Prediction of important immunological responses in
macaque and mouse
Our regulatory models suggest conserved regulation
between the Calu-3, mouse, and macaque, following
closely our results from function-centric and cross-
coexpression analyses. To develop a model with finer-
grained detail about groups of genes being commonly
regulated, we identified the best predictions made by
the Calu-3 model to the macaque data from a large
number of possible cluster sizes using hierarchical clus-
tering (see Additional Files 1 and 6). To reduce the like-
lihood of false positives, we randomly clustered genes
25 times and used this to provide a significance esti-
mate for predictions of individual genes. Using this
method, we identified a group of top scoring gene pre-
dictions that are unlikely to have occurred by chance
(Table 3).
Table 3 shows the genes that have the most consistent
relationships with their inferred regulators from Calu-3
to macaque and Calu-3 to mouse. This table lists the
gene symbol, identifier and description of genes with
high cross-prediction scores (Xpred score; see Methods)
to macaque relative to the randomized background
(bold indicates statistical significance p-value < 0.05).
The Xpred score indicates how well the behavior of
individual genes is predicted across organisms. We also
show the Xpred scores for prediction to the mouse
infection data for those genes with differentially
expressed homologs in mouse. This group represents
the transcripts that appear to be regulated in similar
ways in Calu-3 and macaque, presenting a hypothesis
that the same regulatory influences are responsible for
regulation of similar genes or sets of genes in both
organisms.
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We next used Ingenuity Pathway Analysis (IPA; Inge-
nuity Systems) to determine the biological functions
most significantly associated with this highly predicted
set of genes. In Additional File 7 we list the most signifi-
cant biological functions enriched within this highly pre-
dicted gene set as identified by IPA. This functional
analysis again suggests a conservation of immunomodu-
latory pathways including growth-, metabolism-, and
inflammatory- related genes. It is interesting to note

that among the top functional pathways, we found that
many of the highly predicted genes play roles in the
mediation of multiple aspects of response. IPA was next
used to determine the top canonical pathways repre-
sented within these highly predicted genes. These ana-
lyses indicated a highly statistical enrichment of genes
within the hypercytokinemia and hyperchemokinemia in
influenza pathway (Figure 5A). Hypercytokinemia is
thought to play an important role in the pathogenesis of

Table 3 Genes exhibiting consistent relationships with inferred regulatory influences between the Calu-3 model,
macaque, and mouse response data

Symbol ID Description Macaquea Mouse

ABI3 NM_016428 ABI gene family, member 3 0.35

MXD1 NM_002357 MAX dimerization protein 1 0.35 0.53

ALOX5 NM_000698 arachidonate 5-lipoxygenase 0.36

COL4A3 NM_000091 collagen, type IV, alpha 3 (Goodpasture antigen) 0.36

C1QTNF3 NM_181435 C1q and tumor necrosis factor related protein 3 0.38

CH25H NM_003956 cholesterol 25-hydroxylase 0.38 0.86

FOS NM_005252 v-fos FBJ murine osteosarcoma viral oncogene homolog 0.39

TNFSF13B NM_006573 tumor necrosis factor (ligand) superfamily, member 13b 0.40

IL1R2 NM_004633 interleukin 1 receptor, type II 0.40 0.88

CD86 NM_006889 CD86 molecule 0.40 0.87

TNFAIP3 NM_006290 tumor necrosis factor, alpha-induced protein 3 0.41 0.70

ASCL2 NM_005170 achaete-scute complex homolog 2 (Drosophila) 0.41

IRX4 NM_016358 iroquois homeobox 4 0.41

BATF2 NM_138456 basic leucine zipper transcription factor, ATF-like 2 0.41 0.88

SCNN1G X87160 sodium channel, nonvoltage-gated 1, gamma 0.42

PARP11 NM_020367 poly (ADP-ribose) polymerase family, member 11 0.42 0.83

CMTM2 NM_144673 CKLF-like MARVEL transmembrane domain containing 2 0.42

ADM NM_001124 Adrenomedullin 0.43 0.77

PRSS12 NM_003619 protease, serine, 12 (neurotrypsin, motopsin) 0.44

USP18 NM_017414 ubiquitin specific peptidase 18 0.48 0.94

PI3 NM_002638 peptidase inhibitor 3, skin-derived (SKALP) 0.48

IL29 NM_172140 interleukin 29 (interferon, lambda 1) 0.54

UPP1 NM_181597 uridine phosphorylase 1 0.57 0.84

INDO NM_002164 indoleamine-pyrrole 2,3 dioxygenase 0.58 0.90

LDHC NM_002301 lactate dehydrogenase C 0.58

CXCL10 NM_001565 chemokine (C-X-C motif) ligand 10 0.58 0.96

RND1 NM_014470 Rho family GTPase 1 0.59 0.85

IFIT2 NM_001547 interferon-induced protein with tetratricopeptide repeats 2 0.60 0.97

IFIT1 NM_001548 interferon-induced protein with tetratricopeptide repeats 1 0.62 0.96

IFIT3 NM_001549 interferon-induced protein with tetratricopeptide repeats 3 0.64 0.97

ATF3 NM_004024 activating transcription factor 3 0.66 0.86

OASL NM_003733 2’-5’-oligoadenylate synthetase-like 0.67

CCL4 NM_002984 chemokine (C-C motif) ligand 4 0.67 0.92

JUNB NM_002229 jun B proto-oncogene 0.68 0.66

MX2 NM_002463 myxovirus (influenza virus) resistance 2 0.69 0.90

XAF1 NM_017523 XIAP associated factor-1 0.70

IL6 NM_000600 interleukin 6 (interferon, beta 2) 0.71 0.92

RSAD2 NM_080657 radical S-adenosyl methionine domain containing 2 0.89 0.85

OAS2 NM_016817 2’-5’-oligoadenylate synthetase 2, 69/71kDa 0.92 0.84
a Xpred scores from Calu-3 model cross-predictions in macaque and mouse. Bold indicates statistical significance (p-value < 0.05)
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VN1203 [30,31]. The hypercytokinemia during influenza
infection includes the over-expression of immune mod-
ulators including CCL4, LI29, CXCL10 and IL6. These
molecules were identified in our analysis and their
expression in Calu-3 cells and macaque lung cells dur-
ing VN1203 infection is shown in Figure 5B. All of
these genes show a very early response in Calu-3 cells
beginning at hours 3-7 hours post-infection, indicating a
robust, early response to VN1203 infection. Since our
approach does not rely on matched time points between
the different systems examined the results show the dif-
ferent dynamics of genes that are predicted to have

similar regulation in both systems. This result indicates
that the marked upregulation of these mediators is pre-
served in Calu-3 cells despite the notable absence of
immune cell infiltration and that this transcriptional
profile is predictive of cytokine overexpression in the
whole lung of macaques.
Assessment of the relationships between these molecules
using the IPA knowledge base illustrates that among the
highly predictive genes we find a small network of mole-
cules that were both directly and indirectly functionally
related. This illustrates a coordinated prediction of regu-
lators of chemotactic and inflammatory response such
as IL6 and CXCL10, interferon and antiviral response
(Additional File 8). The conserved regulation of
upstream mediators of transcription may account in
part for the conservation in cytokine transcript expres-
sion across species. This network also suggests the link
between IL-6 gene expression and many other down-
stream mediators of response.
IL-6 is a cytokine that is a primary mediator of

inflammatory response in influenza infection, and is
involved in driving the hypercytokinemia response in
VN1203 infection [30,31]. Figure 6A shows the expres-
sion of IL6 observed in the macaque study (red line)
and predicted by our model trained in Calu-3 human
epithelial cells (green line). The Calu-3 model is also
capable of predicting IL-6 expression in the mouse sys-
tem with a high degree of accuracy (Additional File 9).
In addition to the factors known to play a role in

hypercytokinemia, this analysis also identified several
other regulators of host response that have been less
well characterized with respect to influenza including
XAF1, ATF3, ALOX5, and CH25H. All these genes,
except ALOX5, are upregulated during infection with
VN1203. XAF1 is a pro-apoptotic factor that works by
inhibiting the anti-apoptotic XIAP protein [32]. Apopto-
sis has been suggested to be a factor in the pathogenesis
of influenza-induced encephalopathy [33], as well as
pathogenesis in the lung and lung epithelium [12,34,35].
The transcription factor ATF-3 has been shown to be
involved in apoptosis and cell cycle regulation, though
its role as a pro- or anti- apoptotic factor is unclear
[36]. It was also found to negatively regulate TLR signal-
ing pathways in influenza infection [37], and ATF-3 -/-
mice were more susceptible to hypercytokinemia [36].
Additionally, the arachidonate 5-lipoxygenase enzyme
ALOX5, is downregulated in all systems and catalyzes an
important step in the leukotriene synthesis pathway.
Leukotrienes are important mediators of inflammation,
but have not been extensively investigated with regard
to influenza infection. Finally, the cholesterol 25-hydro-
xylase enzyme CH25H, regulates lipid metabolism and
immune activation in response to interferon and is
speculated to modulate the intensity of subsequent
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responses [38]. This raises the possibility that CH25H
may be contributing to cytokine amplification by making
the cells more sensitive to further stimulation. This
offers a hypothesis for a possible mechanism of hypercy-
tokinemia that can be further investigated.
Many of the predictions for these genes display minor

inconsistencies with the observed profiles in the macaque
data, but generally capture the trends in the data (data not
shown). However, two genes, the 2’-5’-oligoadenylate
synthetase paralog OASL, and the radical S-adenosyl
methionine domain protein, RSAD2, are nearly perfectly
predicted in the macaque. In Figure 6B we show the pre-
dicted expression pattern (green line) and observed

expression patterns (red lines) for OASL and RSAD2 over
the four different virus strains examined (X axis). As men-
tioned above, we did not specifically focus on the other
viral strains in the macaque experiment with regard to
their pathogenesis, but include the prediction results here
to show support for the regulatory influences we have
inferred. Both OASL and RSAD2 are interferon-induced
genes and have been shown to have antiviral activity
[39,40]. These genes represent a signature of a larger inter-
feron response present in the highly predicted set of genes.
This is supported by the presence of IRF1/2 transcription
factor binding sites in the upstream regions of 16 of the 39
highly predicted genes, a significant enrichment (p-value
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0) according to the cREMaG webserver [41]. The role of
the interferon response in influenza infection has been
extensively studied [30], but our finding that portions of
the response are conserved between human cell culture
and macaque infection models is novel.

Predictive modeling reveals patterns of regulatory
influence driving VN1203 response
One of the primary motivations in developing a predic-
tive model of VN1203 response was to elucidate poten-
tial regulatory influences that drive host response. The
group of highly predicted genes between the Calu-3 and
macaque VN1203 response displayed similar patterns of
expression in both systems, and in the mouse model.
We next examined the predicted regulatory influences

from our model. As described above, we chose a set of
potential regulatory influences from genes annotated as
transcription factors and those annotated as immune
effectors from the differentially expressed genes used to
construct the model. In Table 4 we show the top
inferred regulatory influences for the highly cross-pre-
dicted gene list (from Table 3) in terms of numbers of
genes predicted to be influenced. This analysis highlights
several potential drivers of immune response to highly
pathogenic influenza infection that are further discussed
in the Discussion section, below.

Discussion
In this study we have used several different but comple-
mentary approaches to characterize the similarities and

Table 4 Top inferred regulatory influences for highly cross-predicted genes.

Predicted Regulatory Influencea

Gene Symbol GTF2B ATF4 IFI44 IFNGR2 FOXE1 BRF1 ELF1 ELF2 IRF2

MXD1 - + - + -

C1QTNF3 + - - -

CH25H - + - + -

FOS - + -

TNFSF13B + +

CD86 - + - + -

TNFAIP3 - + - + -

ASCL2 + +

IRX4 + +

BATF2 + +

PARP11 - - + + +

CMTM2 + +

ADM - +

USP18 + +

PI3 - - + -

IL29 - - + + + - -

UPP1 - - + -

INDO - - +

LDHC - - + -

CXCL10 - - +

RND1 - + -

IFIT2 - - + + + -

IFIT1 - - + -

IFIT3 - - + -

OASL - - +

CCL4 - + -

MX2 - - +

XAF1 - - +

IL6 - + -

RSAD2 - - + + -

OAS2 - - + + -

Count 29 23 20 17 12 11 10 11 10

Trend - - + + + - + - -
a “+” indicates positive and “-” negative regulation. Genes that are only regulated by one of these regulators are not shown.
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differences in the transcriptomic response of an in vitro
human cell culture, inbred mice, and the outbred cyno-
molgus macaque to infection with a highly pathogenic
avian influenza virus. This analysis represents a signifi-
cant advance in the study of complex systems using
simple in vitro models. Our approach is novel in that it
compares transcription between systems at the level of
regulation, in addition to a direct comparison of up or
down trends in expression in response to influenza
infection. A key feature of our approach is that it does
not require comparable time points to be matched
between systems, which may be very difficult or impos-
sible when comparing in vitro and in vivo models. The
approach uses several methods to evaluate functional
similarities, and putative coregulation patterns to define
the similarities and differences between expression
dynamics across organisms and between in vitro and in
vivo models of influenza infection. Our combined analy-
sis and predictive regulatory model indicate that por-
tions of the regulatory structure are preserved from in
vitro cell culture to whole animal response to VN1203
infection. Our results support the notion that lung
epithelial cells are involved in initiating hypercytokine-
mia [9], which is a primary component of pathogenesis
of VN1203.
Our first approach to characterizing the responses to

influenza infection involved identifying similar func-
tional categories in differentially expressed genes
between systems (Figure 1 and Table 1). This method
has the advantage of utilizing all the data available from
each system as it does not require identification of
homologs between the two organisms. Our results
showed that the human Calu-3 cell line exhibited similar
dynamics as macaque lungs in response to influenza, at
least for a subset of functional categories. Of specific
interest is the high level of agreement in biological pro-
cess categories containing genes involved in the innate
response to viral infection, cytokine production and
secretion, and chemotaxis. We have previously shown a
high level of correlation among specific subgroups of
genes represented by these categories after infection
with VN1203 in Calu-3 cells and mouse lungs [19].
Thus, here we extend these observations to the maca-
que, an in vivo model that may more closely reflect
human disease associated with VN1203 infection.
Because VN1203 pathogenicity is likely partially regu-
lated by dysregulation of immune signaling and hypercy-
tokinemia, the observed commonalities between the
three model systems strongly suggest a role for airway
epithelium in VN1203 pathogenesis.
We found that evaluating the correspondence between

the mouse and macaque infections by simple correlation
between identical time points identified a small number
of genes that displayed similar behavior between the

two systems. This approach could not be applied to
compare the Calu-3 expression data, since this experi-
ment used very different time points than did the maca-
que and mouse experiments. Our cross-coexpression
approach, on the other hand identified a large number
of gene pairs that were correlated in each data set inde-
pendently, and this revealed that a substantial portion of
the homologs shared between the three systems display
coordinated behavior. This coordinated behavior, as
seen in Figure 2, has different dynamics in the different
systems in some cases. Note that we do not expect to
see identical patterns of expression in each system for
the clusters shown since our approach does not directly
compare expression patterns between different systems,
but rather identifies patterns of coexpression that are
conserved. The observation that some groups of genes
display similar coordinated response to the same stimuli
in different organisms is expected but has rarely been
demonstrated at this level of detail. In fact similarity of
response is an assumption made by all studies per-
formed in in vitro cell culture or model organisms. We
have shown that in the case of human cell culture,
mouse and macaque responding to avian influenza this
assumption holds for certain sets of functions and
genes. This presents a powerful tool to guide future stu-
dies since experiments can be designed to investigate
responses that are most similar between cell culture and
samples from multicellular tissues in whole organisms.
To further characterize the putative conserved regula-

tion between the different systems we employed a regu-
latory network inference approach. In this approach we
used a multivariate regression method with variable
selection to establish the minimal set of regulatory influ-
ences whose expression levels maximally explain the
behavior of the target cluster (Figures 3 and 4 and Table
2). We first inferred a model from the cell culture
experiment data then applied it to the in vivo data sets.
We found several clusters whose expression levels in
macaque and mouse infection were accurately described
by the model. In this approach the Calu-3 data was
used to train the model, then the macaque and mouse
lung tissue data was used to validate the model. We
assessed the significance of this finding using rando-
mized validation sets and found that portions of the
model were validated in each of these datasets.
Though these results are promising, there are several

caveats that must be recognized with this method. The
first is that we have used clustering to identify groups of
genes with coordinated expression, and these clusters
are used as the targets in the model. It is certainly true
that individual genes in each cluster may have expres-
sion patterns that differ significantly from the average
behavior of the cluster. This means that the resulting
model can be considered to be fairly coarse-grained. To
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provide a more fine-grained model we used an approach
to attempt to focus more on the regulation of small
groups of genes, and implement a performance measure
that incorporates the agreement of the prediction with
the specific gene in the cluster (Xpred score, Figure 6
and Table 3). In this approach we identify small groups
of genes in the model for which we can very accurately
predict expression behavior in the in vivo systems. Strik-
ingly, these patterns capture both dose effects in the
mouse experiment and strain differences in the macaque
experiment.
Additionally, the Calu-3 experiment used to train the

model is extremely limited in size and number of dif-
ferent perturbations. We have shown that even with
this limitation we can achieve a surprising level of
accuracy in our model and future inclusion of more
diverse data from cell cultures is likely to improve our
model considerably. We are currently generating tran-
scriptomic data from Calu-3 cells infected with differ-
ent viral mutants. These data represent significant
perturbations of the system that will improve our abil-
ity to discriminate true causal regulatory relationships
from false-positive correlations. Additionally, the
results presented in this study can be used to guide
which responses might be most informative to study in
the Calu-3 cell system.
This method depends almost entirely on measurement

of mRNA levels by microarrays. Therefore it is unlikely
to provide good predictions unless the expression levels
of the regulatory influences reflect the activity of the
cognate protein (e.g. a transcription factor). If the activ-
ity of a transcription factor is regulated solely by phos-
phorylation, for example, this approach will not be able
to identify it as a regulatory influence on its target
genes. However, using our cross-validated performance
metric allows identification of clusters and their regula-
tory influences for which this assumption holds.
It is certainly possible that some of the predicted regu-

latory influences may be false positive predictions, and
may not be causal influences. We have used a cross-vali-
dation approach to ensure that the regression method is
not over fitting the data, and identifying false-positives
in this way. Additionally, evaluation of the model on an
entirely different system (e.g. the mouse or macaque
data) allows identification of regulator and targets that
exhibit the same relationship in the other system.
Though this still does not answer the question of caus-
ality, it strengthens the claim that the relationship is not
spurious and the result of conditions in one experiment.
Finally, we have included genes that encode proteins
capable of exerting indirect downstream regulatory
influence (e.g. immune effectors). Further experiments
will have to be performed to validate these predictions
and to determine those that are truly causal.

We showed that a model trained on data from the
Calu-3 cell line infected with VN1203 could accurately
predict expression of a number of genes in lung tissue
of infected inbred mice and in outbred macaques (Table
3). One of these genes, IL6, encodes an important acute
phase cytokine that mediates transcriptional upregula-
tion of many pro-inflammatory genes. Humans infected
with VN1203 viruses exhibit abnormally high levels of
IL-6 in serum [42,43], and aberrant upregulation of IL-6
is observed in primary human alveolar and bronchial
epithelial cells in response to VN1203 infection, relative
to infection with a low pathogenicity H1N1 isolate [44].
Levels of IL-6 in the serum and epithelial tissues were
shown to be significantly higher in macaques infected
with VN1203 relative to those infected with reassortant
H1N1 viruses possessing the HA/NA, or HA/NA/NS
genes of the pandemic 1918 strain, reflecting the higher
pathogenicity of VN1203 in this study [see Figure S2 in
[12]]. Expression levels of the IL-6 gene correlate well
with the levels of the cytokine in macaque epithelium
[12]. Mice lacking the IL-6 gene still succumbed to leth-
ality induced by a VN1203 virus, suggesting that IL-6
effects are not sufficient to induce VN1203 pathogeni-
city [45]. Since high IL6 expression seems to be particu-
larly correlated with VN1203 pathogenesis our model,
IL6 could be useful for predicting pathogenicity of viral
strains and mutations using data generated in cell cul-
ture, though direct comparison of these results with
responses to non-pathogenic virus infection will be
required to accomplish this. Though the numbers of
genes that could be accurately predicted is quite modest,
many are known to be important components of the
immune system and will be useful in understanding the
relationship between pathogenesis in different model
systems.
VN1203 pathogenesis may be due in part to the early

and robust immune cell infiltration in the lung [9]. Our
data show that the initial targets of infection, the airway
epithelial cells, are secreting factors that facilitate this, i.
e. cytokines and chemokines. The expression of genes
involved in hypercytokinemia in cultured epithelial cells
at very early time points (3-7 hours p.i.; see Figure 5B)
is clearly reflected in their expression in lung tissue
(highest levels at day 1), strengthening the notion that
the epithelial response may be contributing to hypercy-
tokinemia in vivo. An exacerbated response by the
epithelial cells in addition to resident immune cells may
set the stage to augment recruitment and influence the
inflammatory response of infiltrating leukocytes when
they arrive in the lung. In the context of VN1203, this
robust response may overwhelm the host leading to
increases in lung tissue damage, decreased respiratory
function and overall increases in pathogenesis linked to
fatality.
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In addition to the known components of the hypercy-
tokinemia response in influenza infection (IL6, IL29,
CXCL10, CCL4) we have identified several other genes
that our model can predict across species, which could
be playing roles in initiating and/or sustaining this
response. These include components of the NLRP3
inflammasome (CASP1, NLRP3, and PYCARD) that are
coordinately expressed in human cell culture, mouse
and macaque in response to VN1203. The inflamma-
some functions through the action of CASP1, which
cleaves the inactive precursor to IL-1b and IL-18,
inflammatory cytokines involved in hypercytokinemia. It
has been shown to play an essential role in response
against influenza virus infection (for a review see [24]),
and we have previously shown that it is expressed very
early in VN1203 infection in mice [13]. Interestingly,
highly pathogenic avian VN1203 viruses are typically
lethal in mice, but not uniformly lethal in macaques and
humans [12,46]. The trends shown in Figure 2 indicate
that the inflammasome may be significantly induced
during more lethal infections and might show a more
modest response in macaques. The same cluster also
contains genes of several transcription factors (IRF2,
IRF5, and STAT1) known to play roles in immune
response [47]. STAT1 and the JAK/STAT signaling
pathway is known to be targeted by influenza virus [48],
but IRF2 and IRF5 have not been demonstrated to play
a role in response to influenza infection previously and
thus represent novel predictions for further experimen-
tal investigation. The inflammasome is known to be an
important driver of anthrax toxin-mediated hypercytoki-
nemia [49], and our results here and in a previous study
place it in a position to be contributing to VN1203
pathogenesis [13].
Other factors that may be playing a role in hypercyto-

kinemia include factors involved in apoptosis (XAF1 and
ATF3), leukotriene synthesis (ALOX5), and lipid meta-
bolism (CH25H). We have previously noted that levels
of ALOX5 were decreased in VN1203 infection in mice,
and suggested that this may reflect the increased disease
[13], supporting our observations in this study. How-
ever, XAF1 and ATF3 have no reported roles in
response to influenza infection and thus represent valu-
able predictions for further investigation.
Our analysis of common predicted regulatory influ-

ences for the most highly cross-predicted genes from
our model (Table 4) also provided a number of interest-
ing candidates for further investigation. The most repre-
sented predicted regulatory influence, GTF2B, influences
over half of the genes. GTF2B, also called TFIIB, is
essential for transcriptional preinitiation and guides
RNA polymerase II to begin elongation [50]. Interest-
ingly, this general factor is targeted by a variety of
viruses to subvert transcriptional initiation for a variety

of reasons [51-54]. Additionally, BRF1 is a component
of the initiation complex of RNA polymerase III, which
is responsible for transcription of ribosomal and other
small RNAs, and is known to be modulated by several
viruses [55]. Previous reports have shown that influenza
virus specifically targets RNA polymerases [56,57], but
GTF2B and BRF1 were not specifically identified. Simi-
larly, ATF4 is involved in endoplasmic stress response
but is known to be specifically modulated by several
viruses [58]. ELF1 and ELF2 are both ETS transcription
factors, and FOXE1 is a forkhead family transcription
factor involved in thyroid morphogenesis. These factors
have no known roles in response to virus, and thus
represent novel predictions for further investigation.
IFI44 and IFNGR2 are both interferon-related genes and
neither is a transcriptional regulator. However, in our
model we consider genes that would have indirect
effects on transcription as potential influences, and our
analysis suggests that these genes may play a role in
host response to VN1203. Finally, IRF2 is a known med-
iator of the interferon response, acting as an attenuator
of STAT1 function, and it has been established that
influenza virus specifically targets the interferon
response through inhibition of the STAT family of acti-
vators [48]. However, a specific role for IRF-2 in
response to influenza infection has not been established.

Conclusions
The manipulation of these regulators can be simulated
in our model by adjusting their expression levels in
silico, and simulations used to make specific prediction
about the expression of their target genes. Further inves-
tigation will be necessary to determine if these factors
are important mediators of host response to influenza.
These predictions can be first validated in the Calu-3
cell line with minimal effort, for example by examining
the consistency of the predictions from perturbed mod-
els with experimental results. The results presented here
demonstrate that the results should be consistent with
what will be observed in the in vivo systems, enabling a
much quicker and easier experimental validation.
Our findings represent a significant step in the charac-

terization of the relationship between in vitro and in
vivo systems for studying influenza pathogenesis. Addi-
tionally, the study presents results showing that portions
of the functional response to influenza infection are
well-conserved across human cell culture, mouse and
macaque in terms of regulatory dynamics. Finally we
have identified components of the hypercytokinemia
response, which is postulated to cause pathogenesis in
VN1203 infection, whose expression can be confidently
predicted across species and we have expanded the ana-
lysis to implicate several other genes in this important
process.
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Methods
Datasets
We used two transcriptomic data sets for the Calu-3
cells responding to VN1203 influenza infection. The
first one has been previously described in [19]. To
increase statistical power for the current study, we per-
formed a second Calu-3 experiment, which has a similar
design. Calu-3 cells cultured in a 1:1 mixture of Dulbec-
co’s modified Eagle’s medium and Ham’s F12 nutrient
medium (DF12; Invitrogen, Carlsbad, CA) supplemented
with 10% fetal bovine serum were washed twice with
DF12 containing 0.3% bovine serum albumin (DF12-
BSA), and inoculated with influenza A/Vietnam/1203/
2004 (VN1203) at a multiplicity of infection (MOI) of 1
plaque forming unit (PFU) per cell, for 50 minutes at
37°C. Following inoculation, monolayers were washed
once with DF12-BSA and total cellular RNA was har-
vested at 0 (immediately after inoculation), 3, 7, 12, 18
and 24 hours post-infection. Duplicate samples were
collected from each time point along with time-matched
mock-infected controls. RNA was hybridized to Agilent
4X44K human HG (Design ID 014850) arrays and
scanned on an Agilent DNA microarray scanner (Model
G2505B) using the XDR setting. Extracted raw data
were background corrected using the norm-exp method
and quantile normalized using Agi4x44PreProcess and
RMA Bioconductor packages. Replicate probes were
mean-summarized and all probes were required to pass
Agilent QC flags for all replicates of at least one infected
time point (27,912 probes passed). For modeling the
8471 probes passing QC filtering, a False Discovery Rate
(FDR) adjusted p-value < 0.05, and with fold-change
expression greater than 1.5 were used.
The transcriptomic data for the macaque study were

previously described [12]. Briefly, cynomolgus macaques
(Macaca fascicularis) were infected with the VN1203,
1918HA/NA:A/Texas/36/91 (1918HANA), 1918HA/NA/
NS:A/Texas/36/91 (1918HANAS), and the H1N1 A/
Texas/36/91 (Texas91) viruses and response was
assessed in lung tissue from two animals on days 1, 2, 4,
and 7 postinfection by microarray. Relative expression
was assessed by comparing results from infected maca-
ques with pooled samples from seven uninfected
macaques.
Twenty-week-old C57BL/6 mice were infected by

intranasal instillation of 103, 104 or 105 PFU of VN1203
in 50 μl of PBS or mock-infected with PBS alone. At
days 1, 2, 4 and 7 days post-infection, lungs were har-
vested and total RNA was isolated as previously
described [19]. RNA was hybridized to Agilent mouse
GE 4x44K v2 microarrays. Data acquisition, quality con-
trol and differential expression analysis were identical to
the Calu-3 experiments described [19]. In the current
study we excluded probes that had p-values greater than

0.05 or a maximum fold-change of less than 2.0, leaving
a total of 3026 probes for analysis including 523 homo-
logs that were also differentially expressed in the Calu-3
dataset (Additional File 5).
Microarray data described in this study has been

deposited in the GEO database under accession num-
bers GSE33142 and GSE28166 (Calu-3 data), GSE33263
(mouse data), and GSE33351 (macaque data).

Ethics Statement
All mice were used at 20 weeks of age according to the
protocol approved by the University of Wisconsin
School of Veterinary Medicine Institutional Animal Care
and Use Committee (IACUC). The animal committee
mandates that institutions and individuals using animals
for research, teaching, and/or testing must acknowledge
and accept both legal and ethical responsibility for the
animals under their care, as specified in the Animal
Welfare Act (AWA) and associated Animal Welfare
Regulations (AWRs) and Public Health Service (PHS)
Policy. Animal experimentation was done as per the
PHS Policy on Humane Care and Use of Laboratory
Animals as described in the Guide for the Care and Use
of Laboratory Animals.

Functional enrichment analysis
We used a biological function-centric approach to com-
pare the responses of different experimental models to
influenza infection. Three distinct studies were used in
the functional comparison; Calu3-cells exposed to
VN1203 avian influenza and macaques infected with
either VN1203 or a seasonal H1N1variant, with multiple
time points in each study. In all, there were 22 distinct
treatments (host; virus; time; biological replicate) being
compared. For each treatment we determined a list of
differentially expressed genes, which were both statisti-
cally significant and had a greater than 2-fold change
compared to control. We compared each differentially
expressed gene list with the list of all the genes in the
respective microarrays to determine the functional
enrichment p-values for all biological process terms in
the gene ontology (GO). Requiring that a GO-term have
a p-value < 10-4 in at least one of the treatments
resulted in a set of 211 biological process terms that
were spread across the various levels of the ontology,
and thus vastly differed in the amount of information
that they conveyed. In order to remove terms that were
too broad or too specific from this list, we quantified
the information content for each GO term as ICn =
-log2(Nn/Ntot-) where ICn is the information content of
the nth GO term, Nn is the number of genes annotated
with this term, and Ntot is the total number of genes
with biological process term annotations [21]. We com-
puted IC values for the 211 GO terms using the human
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genome annotations, and obtained a list of 76 moder-
ately-specific terms with IC in the range from 5 to 7.5.
We constructed a 76 × 22 enrichment score [-log10(p) ]
matrix, E to quantify the enrichment of the various pro-
cess terms (rows) across the various treatments (col-
umns). We then used the dimensionality reduction
approach described below to obtain a concise picture of
the similarities and differences between the treatments
with respect to the biological processes that they affect.
We first clustered the columns of E to obtain treat-

ment groups that resulted in similar process enrichment
profiles. We employed hierarchical clustering with
Ward’s method of average linkage [59] and clustered the
treatments into 5 distinct groups based on the dendro-
gram. We note that Ward’s method uses the increase in
the within-cluster sum of squares in evaluating whether
two clusters should be joined, and consequently leads to
the smallest increase in k-means cost during clustering.
Performing k-means clustering of the treatments to
obtain 5 clusters results in the exact same treatment
grouping as obtained through hierarchical clustering
with Ward’s linkage. We projected the enrichment
scores for the various treatments onto the coordinates
for the top three principal components (reduced repre-
sentation of the 76-dimensional biological process
space) to visually evaluate the treatment clustering.
In order to further reduce the dimensionality of the

enrichment score matrix we clustered the GO terms
(rows of E) based on semantic similarity using the
method described by Speer, et al. [22]. Briefly we com-
puted a 76 × 76 semantic similarity matrix S with ele-
ments given by S(ti,tj) = 2ICA/(ICi + ICj), where S(ti,tj)
is the similarity between GO terms ti and tj; ICi-, ICj

and ICA are respectively the information content values
of term i, term j, and the most informative shared
ancestor of these two terms on the GO tree. We then
applied the following algorithm based on the spectral
clustering approach of Ng, et al. [60] to group the GO
terms:

1. From the n×n matrix S and its derived diagonal
matrix D, compute the Laplacian matrix L = D-1/2 S
D-1/2

2. Select a desired number of clusters K
3. Find v1, v2,.... vK, the eigenvectors of L, corre-
sponding to the K largest eigenvalues
4. Form the matrix Vn×k = [v1, v2,.... vK] with these
eigenvectors as columns
5. Form the matrix Y from V by renormalizing each
of the rows of V to have unit norm
6. Use k-means clustering to cluster the n rows of Y
into K clusters by treating each of the rows as points
in a K-dimensional space

7. Assign the original GO term object i to cluster j if
and only if row i of the matrix of the matrix Y was
assigned to cluster j.

We repeated the above algorithm for K values ranging
from 5 to 15 in step 2, and chose the most parsimo-
nious clustering that gave us a Davies-Bouldin index
within 10% of the minimum value. The Davies-Bouldin
index for a given value of K was computed as

DB(K) = 1/
K

∑k
i=1

{
�(Ci) + (Cj)

δ(Ci, Cj)

}
where Δ (Ci) represents the

sum of distances from the objects within cluster i to the
centroid of cluster i, and δ(Ci, Cj) represents the dis-
tance between the centroids of cluster i and j. Using this
approach we clustered the 76 process terms into 13 dis-
tinct semantically similar groups. For a given process
group-treatment cluster combination with m processes
and n treatments we used the geometric mean value of
the m×n individual enrichment scores as a summarizing
metric. Overall, hierarchical clustering of treatments
based on their biological process signatures, and spectral
clustering of GO terms based on semantic similarity
enabled us to condense the initial 76 × 22 enrichment
score matrix to a 13 × 5 matrix of mean enrichment
scores.

Cross-coexpression analysis
Similar to the previously described differential clustering
analysis [61], cross-coexpression analysis first determines
the correlation between the expression vectors of all
pairs of the n genes in one dataset, which can be repre-
sented as an nxn matrix G. This process is then
repeated for the second dataset to give matrix H of the
correlation between mxm gene expression vectors. Both
matrices are filtered to leave only homologs between the
two organisms and give matrices G1 and H1. The cross-
coexpression matrix I is given as the mean:

I = (G1 + H1)/2

This analysis can easily be extended to more datasets
by determining a core set of homologs and taking the
mean of all individual coexpression matrices. High
values in the matrix I mean that the pair of genes indi-
cated has high correlation in both datasets examined.
Differences in the number of observations between the

two datasets may bias the results, for example in the
case that one or both datasets have a small number of
observations. To control for this our cross-correlation
approach includes a background correction step. The
process above is repeated using expression vectors that
have been randomly resorted 100 times. This process is
used to assign a p-value to a particular correlation value
with a detection limit of 0.01.
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Predictive modeling and cross-validation
Our approach to inference of regulatory influence net-
works using a multivariate regression approach have
been reported previously for other systems [27,28]. Our
cross-validation approach used here (Figure 3) was very
similar. In the following we refer to the set of target
clusters, inferred regulatory influences, and the equa-
tions that describe the relationships between their
expression levels as a ‘predictive model’. Filtered tran-
scriptomic data was clustered using hierarchical cluster-
ing (Euclidean distance, complete linkage) and divided
into clusters based on the resulting dendrogram. The
resulting clusters were used as targets for inference of
regulatory influences using the Inferelator [25,26], which
uses multivariate regression with the L1 penalty, least
angle regression. This approach infers a parsimonious
set of potential regulatory influences that provide the
best description of the mean gene expression, over time
and/or under different conditions, of each target as an
ordinary differential equation (ODE).
The final ‘trained’ model represents the relationship

between the expression level of a target (y) and the
expression levels of regulators with influences on y (X)
as an ODE with the form:

τ
dy
dt

= −y +
∑

βjXj (1)

Here, τ is the time step used in model construction
and ß is the weight for relationship × on y as deter-
mined by L1 shrinkage using least angle regression [62].
To predict the expression level of a target cluster eq. 1
can be solved for y. Assuming equilibrium conditions
the derivative dy/dt is 0 and so equation (1) can be
represented simply as a linear weighted sum:

y =
∑

βjXj (2)

In this study we have used an assumption of equili-
brium conditions. This assumption then treats each
observation as independent from the others (for exam-
ple, proximal time steps), but simplifies calculations
and does not result in a loss of performance for this
application (data not shown). For determination of reg-
ulatory influences we considered only regulators with
expression patterns that were correlated with the tar-
get at levels below 0.9. This threshold was used to
reduce the number of predicted regulatory influences
that are based on correlation, but are not true causal
influences.
To ensure that the learned model is able to generalize

to novel conditions, we used a cross-validation approach
in which each set of related conditions, or individual
time points, are removed from the data used for infer-
ence. A model inferred from the data set lacking this

group of observations is then used to predict the expres-
sion of target clusters by applying the model to the
held-out data. The performance of the model on that
cluster is assessed as the correlation between the pre-
dicted expression profile over all conditions versus the
observed expression. An overall performance measure
for the entire model is obtained as the mean of the per-
formance for each target normalized for the number of
genes in that target, giving a mean correlation per gene.

Cross-predictive application of inferred models across
species
The predictive models learned from the Calu-3 expres-
sion data were applied to the macaque transcriptional
data in a process we refer to as ‘cross-prediction’. The
predicted expression level for each target cluster,
defined by clustering the Calu-3 data as described in the
macaque experiment is given by combining the expres-
sion levels of the inferred regulators in the macaque
experiment with the weights of its influence relationship
as inferred from the Calu-3 data (see Figure 3, point 4).
This can be expressed as:

YMi =
k∑

i=1
XMAWCAi + XMBWCBi + XMNWNi

where Y is the predicted expression in macaque (M)
of target i, K is the number of target clusters consid-
ered, and W is the weight of the inferred relationship
of inferred regulatory influences (A,B,N) on target i,
derived from Calu-3 data (C). The performance of the
model is assessed as for cross-validation, as the corre-
lation of the predicted and observed expression profiles
over all conditions in the macaque data. Overall per-
formance is calculated as the mean correlation of pre-
dicted and observed expression profiles over all
conditions, in all target clusters, normalized to the
number of genes.
We attempted to better define true regulatory mod-

ules that were cross-predictive. To do this we con-
structed models using between 10 and 120 clusters. For
each gene in this analysis we then identified the cluster
(from 1495 clusters total) that gives the maximum
Xpred score.
We define the Xpred score as a combination of two

measures. The first is the correlation of the predicted
and observed expression profiles in a given target cluster
(P). The second is the correlation of the expression pro-
file from the individual gene with the predicted expres-
sion for that target cluster (E). The Xpred score is
calculated as:

Xpred score =
PE : if P and E > 0
−PE : if P || E < 0
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This measure provides a way of ranking the predic-
tions based on the performance of the target, and also
on the behavior of the individual gene in that target.
We show plots of the distribution of these three mea-
sures (P, E, and Xpred score) from all genes in Addi-
tional File 10.
To assess the significance of the Xpred score we per-

formed 25 randomizations of the genes in each target
cluster, then calculated a Zscore for the real prediction
as the number of standard deviations from the mean of
the randomized scores.

Canonical Pathway Analysis
Analysis of canonical pathways was performed with
Ingenuity Pathways Analysis (Ingenuity Systems). This
software analyzes molecular data in the context of
known biological response and regulatory networks as
well as other higher-order response pathways. Ingenuity
functional analysis identified biological functions and/or
diseases that were most significant enriched and gener-
ated p-value to determine the probability that each bio-
logical function assigned to that data set was due to
chance alone. Enrichment p-values of <0.05 were con-
sidered statistically significant. In the functional net-
works, genes are represented as nodes, and the
biological relationship between two nodes is represented
as an edge (line). All edges are supported by at least one
published reference or from canonical information
stored in the Ingenuity Pathways Knowledge Base.

Additional material

Additional file 1: Supplemental information; Supplemental methods
and results for the manuscript.

Additional file 2: Table S1; Cross-coexpression analysis of mouse,
macaque and human Calu-3 cell response to influenza infection.

Additional file 3: Table S2; Supplemental table showing transcripts with
conserved dynamics in Calu-3 cells, mouse and macaque responding to
VN1203 infection.

Additional file 4: Table S3; Supplemental table showing cluster
membership of the 10 cluster model with macaque information.

Additional file 5: Table S4; Numbers of genes and mouse or macaque
homologs differentially expressed in each cluster.

Additional file 6: Hierarchical prediction of macaque expression
using Calu-3 model. The Calu-3 expression data was clustered into
different numbers of clusters (X axis) and used to infer models that were
used to cross-predict expression in macaque. Individual genes are shown
as rows and their performance in cross-prediction is indicated by color,
from blue, -1.0, to yellow, 1.0 correlation between predicted and
observed expression in macaques.

Additional file 7: Table S5; Top biological functions (as determined
by IPA). Most statistically significant functions for set were determined
and then sorted by # of genes within function. Redundant biological
functions (with redundant gene content) were removed and table was
limited to 10 biological functions.

Additional file 8: Known relationships between highly predicted
genes. This network depicts all of the molecules within the gene set
that were directly or indirectly related using information in the IPA

knowledge base. Molecules shaded in grey are represented within the
gene set that could be highly predicted in macaques by the Calu-3-
based model. This illustrates the interactions between upstream
regulators response (ATF3, FOS, JUN), several cytokines and chemokines,
interferon-regulated molecules.

Additional file 9: Predicted versus observed expression profiles for
IL-6 in mouse.

Additional file 10: Distribution of prediction scores. A. Histogram of
cluster prediction correlations. The correlation of predicted to
observed expression profiles was calculated for each cluster considered
and is plotted as a histogram, where the frequency indicates the number
of genes with that correlation. B. Histogram of gene correlation with
predicted expression. The correlation of individual gene expression
profiles with the predicted expression profile for the cluster that the
gene is a member was calculated and is plotted as a histogram. C.
Histogram of the cross-prediction scores. Cross-prediction scores
(cluster prediction × gene correlation) were calculated for all genes in all
clusters and are plotted as a histogram. The top × axis indicates the Z
scores.
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