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Abstract: Carotid atherosclerosis represents a relevant healthcare problem, since unstable plaques
are responsible for approximately 15% of neurologic events, namely transient ischemic attack and
stroke. Although statins treatment has proven effective in reducing LDL-cholesterol and the onset
of acute clinical events, a residual risk may persist suggesting the need for the detection of reliable
molecular markers useful for the identification of patients at higher risk regardless of optimal medical
therapy. In this regard, several lines of evidence show a relationship among specific biologically
active plasma lipids, atherosclerosis, and acute clinical events. We performed a Selected Reaction
Monitoring-based High Performance Liquid Chromatography-tandem Mass Spectrometry (SRM-
based HPLC-MS/MS) analysis on plasma HDL, LDL, and VLDL fractions purified, by isopycnic
salt gradient ultracentrifugation, from twenty-eight patients undergoing carotid endarterectomy,
having either a “hard” or a “soft” plaque, with the aim of characterizing the specific lipidomic
patterns associated with features of carotid plaque instability. One hundred and thirty lipid species
encompassing different lipid (sub)classes were monitored. Supervised multivariate analysis showed
that lipids belonging to phosphatidylethanolamine (PE), sphingomyelin (SM), and diacylglycerol (DG)
classes mostly contribute to discrimination within each lipoprotein fraction according to the plaque
typology. Differential analysis evidenced a significant dysregulation of LDL PE (38:6), SM (32:1), and
SM (32:2) between the two groups of patients (adj. p-value threshold = 0.05 and log2FC ≥ |0.58|).
Using this approach, some LDL-associated markers of plaque vulnerability have been identified, in
line with the current knowledge of the key roles of these phospholipids in lipoprotein metabolism
and cardiovascular disease. This proof-of-concept study reports promising results, showing that
lipoprotein lipidomics may present a valuable approach for identifying new biomarkers of potential
clinical relevance.

Keywords: carotid atherosclerosis; plaque vulnerability; lipoproteins; targeted lipidomics;
sphingomyelin; phosphatidylethanolamine

1. Introduction

Atherothrombosis resulting from carotid plaque rupture/erosion is the main contribu-
tor to major acute clinical events (https://vizhub.healthdata.org/gbd-compare/ (accessed
on 5 October 2022)) including stroke, which represents the second largest cause of mortality
and the third largest cause of disability globally, being responsible for 11.59% of total deaths
and 5.65% of total disability-adjusted life years (DALYs), respectively.

Although high LDL-cholesterol levels and low HDL-cholesterol levels are well-established
risk factors for cardiovascular disease (CVD), several lines of evidence indicate that a residual

Int. J. Mol. Sci. 2022, 23, 12449. https://doi.org/10.3390/ijms232012449 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232012449
https://doi.org/10.3390/ijms232012449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9268-9436
https://orcid.org/0000-0002-1619-401X
https://orcid.org/0000-0002-3192-755X
https://orcid.org/0000-0002-0067-2240
https://orcid.org/0000-0003-3831-4200
https://orcid.org/0000-0002-8356-894X
https://vizhub.healthdata.org/gbd-compare/
https://doi.org/10.3390/ijms232012449
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232012449?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 12449 2 of 12

risk exists in patients who do not fully benefit from statin treatment, suggesting the need
to identify novel markers of plaque development and evolution toward instability, useful
for selecting the most appropriate patient-centered therapy [1,2]. In the past twenty years,
large-scale MS/MS-based technologies have been applied to purified lipoprotein fractions for
unravelling their specific protein cargos, in association with CVD and some CVD-associated
pathological conditions including kidney disease and type 1 and 2 diabetes mellitus (an updated
list of references with the main results can be found in Supplementary Material 1 of [3]). As far
as our research group is concerned, we applied shotgun proteomics to the analysis of plasma
LDL and HDL, identifying some novel lipoprotein-associated proteins and showing specific
signatures for atherosclerotic patients with different types of carotid plaque [3,4], sorted by
ultrasonography into hypoechoic (types 1 and 2) or “soft” and hyperechoic (types 3, 4, and 5)
or “hard”, according to Gray–Weale classification [5]. Indeed, the improvement of imaging
techniques has allowed routine characterization and detection of the features of carotid plaque
vulnerability, also providing predictive information in both symptomatic and asymptomatic
carotid artery stenosis [6–9].

Although these studies have proven to be very informative about the numerous
functions of each lipoprotein class in relation to CVD, additional information for risk
evaluation of acute clinical events onset is currently still missing. Indeed, the multiple
biological functions of lipoproteins, particularly of HDL, result from both protein and lipid
components, whose alterations are responsible for dysfunctional particles [10].

In the last years, plasma lipidomics have been gaining momentum, as several lines
of evidence have shown a relationship among specific plasma lipid species, atherosclero-
sis [11–18], and the onset of adverse clinical events [19–24]. However, only few studies
on the association between biologically active lipids, specifically associated with their
lipoprotein carriers, and CVD have been reported so far, as also recently reviewed by Ding
and Rexrode [25]. This is probably due, at least in part, to the difficulties in applying time-
consuming lipoprotein purification procedures requiring specific expertise to large scale
studies. Most of the published studies dealt with HDL showing alterations of the phospho-
and sphingo-lipidomes in type 1 diabetes [26], type 2 diabetes [27,28], obesity and metabolic
syndrome [29,30], dyslipidemia [31,32], and experimental atherosclerosis [33,34]. Some of
them reported normalization of the HDL lipidome in metabolic syndrome following either
Pitavastatin treatment [35] or weight loss and physical activity [36]. In addition, changes
in the LDL lipidome and a consequent reduction of cardiovascular risk were obtained
with statin treatment [37] or following phytosterol and omega-3 diet supplementation [38].
The HDL and LDL lipidomes were also analyzed in relation to coronary artery disease
(CAD) and acute coronary syndrome (ACS) [39,40]. Furthermore, the HDL phosphosphin-
golipidome was analyzed in a rare population of subjects with premature CAD having high
HDL-cholesterol levels, evidencing distinct signatures with respect to healthy subjects [41].
Very recently, Wang and coworkers developed high-resolution methods to study the rela-
tionship between proteome and lipidome of lipoproteins that applied to the analysis of
HDL from high-fat, high-cholesterol diet-fed rabbits and ACS patients [42]. Using this ap-
proach, they showed that the combined features obtained allowed for better discriminating
ACS from healthy individuals than direct proteome and/or lipidome quantification alone.

This study aims to characterize the specific lipidomic profiles of plasma HDL, LDL, and
VLDL fractions purified by isopycnic salt gradient ultracentrifugation from atherosclerotic
patients undergoing carotid endarterectomy. By applying SRM-based HPLC-MS/MS to
the analysis of 130 lipid species, some specific LDL-associated markers of potential clinical
relevance were found dysregulated in association with echographic features of carotid
plaque vulnerability.

2. Results
2.1. Lipoproteins Purification

Besides some alternative purification methods such as free solution isotachophoresis
and immunoaffinity or size exclusion chromatography, ultracentrifugation in high-salt
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media represents the most widely used approach [3]. Indeed, the different lipoprotein
classes have been historically classified according to their buoyant density. We performed
isopycnic salt gradient ultracentrifugation followed by a further step of fraction flotation
by high centrifugal fields to obtain highly purified HDL, LDL, and VLDL fractions, as
assessed by SDS-PAGE analysis [3,4]. In particular, the electrophoretic profiles of each
fraction did not show any gross contamination by plasma proteins, particularly albumin.
As expected, apolipoprotein B100 was the most abundant protein in both VLDL and LDL
fractions, whereas apolipoprotein AI represented over 80% of HDL apolipoproteins. No
HDL contamination by Apo B100-containing lipoproteins was evidenced, as demonstrated
by the absence of Apo B100 at the top of the HDL lane (Figure 1).
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Figure 1. Representative mono-dimensional profiles of HDL (a), LDL (b), and VLDL (c) fractions
purified by isopycnic salt gradient ultracentrifugation. Apolipoprotein profiles were obtained by
SDS-PAGE in either 12% T (for HDL, under reducing conditions) or 6% T (for both LDL and VLDL,
under non-reducing conditions) resolving gels.

2.2. Targeted Lipidomics

Targeted lipidomics were performed using a SRM-based HPLC-MS/MS method
on HDL, LDL and VLDL lipids fractions extracted with 2:1 chloroform-methanol (v/v)
following the Folch procedure [43]. Parameters used for SRM analysis are reported in Sup-
plementary Table S1. Using this approach, one hundred and thirty lipid species belonging to
cholesteryl ester (CE), ceramide (Cer), phosphatidylcholine (PC), phosphatidylethanolamine
(PE), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), sphingomyelin
(SM), triacylglycerol (TG), and diacylglycerol (DG) (sub)classes were compared (Supple-
mentary Materials, Table S2). Quality control and data visualization were performed to
assess total lipid content in samples before and after normalization, distribution for each
lipid (sub)class, and variation coefficients (CV%) for single lipid species, as reported in
Supplementary Materials (Figure S1).
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As expected, HDL, LDL, and VLDL fractions differed from each other in terms of
distribution of lipid classes, with few exceptions (Figure 2). Indeed, both LDL and HDL
showed higher CE levels with respect to VLDL, according to their well-known metabolic
roles as CE carriers to the tissues (LDL) or from the tissues to the liver in the reverse
cholesterol transport (HDL), whereas VLDL, which is known to be the main plasma carrier
of TG from the liver to the tissues, displayed the highest TG contents.
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Figure 2. Box plot reporting the distribution of the nine different lipid classes (cholesteryl ester (CE),
ceramide (Cer), phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylcholine
(LPC), lysophosphatidylethanolamine (LPE), sphingomyelin (SM), triacylglycerol (TG), and diacyl-
glycerol (DG)) among HDL, LDL, and VLDL. ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001,
ns not significant.

We performed a comparative analysis within each lipoprotein fraction sorted according
to the plaque typology (“soft” or “hard”), which was determined by ultrasonography. Using
this non-invasive routine method, some key characteristics of the lesion such as the fibrous
cap thickness, the lipid-core size, the presence of calcifications and/or ulcerations, as well as
the degree of stenosis were evaluated, providing useful information on plaque vulnerability.
Overall, plaques are defined as “soft” if predominantly hypoechoic (characterized by a
large lipid core), or “hard” in the presence of hyperechoic features (mostly fibrotic and/or
calcific). Hereafter, for the sake of simplicity, each lipoprotein fraction will be referred to as
“hard” or “soft” according to the plaque typology (e.g., HDL “hard”).

Following sorting for the plaque typology, no differences were evidenced between
“hard” and “soft” fractions, except for DGs, which were higher in LDL “soft” (Supplemen-
tary Materials, Figure S2).

Supervised multivariate analysis showed that lipids belonging to PE, SM, and DG
classes mostly contributed to discrimination within each lipoprotein fraction according to
the plaque typology (Supplementary Materials, Figure S3).
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Differential analysis of lipid profiles among “hard” and “soft” fractions evidenced a
significant dysregulation of three lipid species, namely PE (38:6), SM (32:1), and SM (32:2),
between LDL “soft” vs. LDL “hard” (adj. p-value threshold = 0.05 and log2FC ≥ |0.58|)
(Figure 3 and Supplementary Materials, Table S3). Details on relative abundances of the
three lipid species significantly dysregulated between LDL “soft” and LDL “hard” are
reported in Figure 4.
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as a single purple spot (adjusted p value = 0.03 for both of them; Supplementary Materials, Table S3).
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3. Discussion

In the last years, the complexity of the wide array of bioactive lipids carried by
lipoproteins is beginning to reveal itself thanks to the emerging MS/MS-based technologies
applied to lipidomics [25,44].

Glycerophospholipids and sphingolipids are important regulators of lipoproteins
metabolism including the activities of the involved enzymes. Some of them are precursors
to several bioactive metabolites including lysophosphatidylcholines and ceramides, which
are also involved in cell signaling [45–47]. Indeed, dysfunctional sphingolipid metabolism
has been implicated in CVD, highlighting the need to delve deeper into lipid biochemistry
for a better understanding of the molecular basis of these pathologies [48].

SMs are major structural phospholipids that determine surface pressure in lipoproteins,
enhancing rigidity and influencing the activity of enzymes involved in lipid metabolism.
In this respect, it is known that SMs strongly inhibit lipoprotein lipase (LPL)-mediated
lipolysis [49] and play a key role in determining the lipoprotein CE content by acting as
physiological inhibitors of cholesterol esterification by lecithin-cholesterol acyltransferase
(LCAT) [50,51], mainly by hindering the binding of the enzyme to the lipoprotein sur-
face [52]. Furthermore, SMs inhibit (whereas Cers activate) the hydrolytic activity of sPLA2,
which liberates arachidonic acid from the lipoprotein surface [53].

Interestingly, it has been shown that an increased SMs to PCs ratio makes LDL more
susceptible to secretory sphingomyelinase action, leading to the formation of aggregated
LDL with high atherogenic potential [54], whereas enrichment of PCs and SMs in HDL
strongly influences the rate of reverse cholesterol transport at multiple steps in the pro-
cess [55,56]. SM levels in HDL have been reported to change in different pathological
conditions including CAD [57], in which a reduction has been observed, and hyperten-
sion [58], in which an increase has been reported.

Ruut et al., have found that aggregation-prone LDL were enriched in sphingolipids,
modifiable and predictive of future cardiovascular deaths [59]. Interestingly, LDL are the
main carrier of SMs in circulation (50 mol% of total plasma SMs) [60]. Regarding PEs,
Dang et al. have found an important positive association between atherosclerosis extension
and progression in an extensive analysis of plasma lipids in ApoE−/− mice [12].

Phospholipids have also proved valuable prognostic markers of cardiovascular disease
and total mortality in the Ludwigshafen Risk and Cardiovascular Health study [61].

Recently, we identified a set of plasma lipids composed of seven SMs and three PEs
that, even under optimal cholesterol-lowering treatments, allow for discrimination between
high-risk CAD patients and controls, suggesting a role for these lipid classes in disease
development [17].

In the present study, we applied targeted lipidomics to purified plasma lipoprotein
fractions and we report a dysregulation of LDL-associated PE (38:6), SM (32:1), and SM (32:2)
between two groups of patients with “hard” or “soft” carotid plaques, homogenous in terms
of lipid profile, glycemia, blood pressure, and pharmacological treatments, suggesting their
usefulness as potential biomarkers of plaque vulnerability. In any case, these results are in
line with the above-mentioned studies showing a contributory role for these phospholipids
in lipoprotein metabolism and CVD. Procedures for lipoprotein purification are relatively
time-consuming, and, hence, not immediately amenable to application to large casuistries.
However, we demonstrated in this proof-of-concept study that targeted lipidomics on
purified lipoproteins may have a distinctive advantage over other bulk measurements
in the identification of new biomarkers of clinical relevance, which would otherwise be
masked by other plasma components. Thus, the evaluation of lipid composition at the
lipoprotein level could represent, in perspective, an important tool in precision medicine
and diagnostics. Further efforts must be made to validate the obtained results on a large
cohort of patients as well as to assess their potential usefulness in risk evaluation of acute
clinical events onset.
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4. Materials and Methods
4.1. Sample Collection

Lipoprotein lipidomics was performed on twenty-eight patients undergoing carotid
endarterectomy, enrolled in previously published studies [4,62]. Plaques were classified
as soft (n. 16), having hypoechoic features, or hard (n. 12), having hyperechoic features,
according to Gray–Weale classification [5]. To reduce confounders, stringent criteria of
eligibility for enrolment were used, allowing for the selection of two groups of patients to be
as homogenous as possible. Informed consent was obtained before enrolment. Institutional
Review Board approval was obtained. The study was conducted in accordance with the
ethical principles of the current Declaration of Helsinki. The main clinical parameters of the
two groups of patients are summarized in Table 1. Fasting blood samples were harvested
before surgery and immediately centrifuged at 2000× g for 10 min at 4 ◦C to collect plasma
fractions, which were stored at −80 ◦C until analysis.

Table 1. The main clinical parameters of patients after sorting according to the plaque typology
(hyperechoic or “hard” plaques and hypoechoic or “soft” plaques).

“Hard” (n = 12) “Soft” (n = 16)

Age (Years) * 66 ± 7.5 72.2 ± 7.3
Male Gender 8 (66.7%) 13 (81.2%)
BMI 26.5 ± 3.1 25.6 ± 3.4
Triglycerides (mg/dL) 102.1 ± 24 125.2 ± 43.8
Total Cholesterol (mg/dL) 190.3 ± 41.9 178.6 ± 47.4
HDL Cholesterol (mg/dL) 44.8 ± 9.3 44.1 ± 17.1
nonHDL Cholesterol (mg/dL) 145.5 ± 40.2 134.5 ± 46.1
LDL Cholesterol (mg/dL) 125.3 ± 37.5 106.8 ± 37.1
TG/HDL-C * 2.3 ± 0.4 3.2 ± 1.6
Cholesterol Lowering Therapy 9 (75%) 15 (93.8%)
Glycemia (mg/dL) 105.6 ± 14.3 115.6 ± 25.1
HbA1C 5.84 ± 0.472 6.482 ± 0.875
Diabetes 2 (16.7%) 5 (41.7%)
Glucose Lowering Therapy 1 (8.3%) 5 (31.2%)
Systolic Blood Pressure (mmHg) 139.1 ± 11.6 135.5 ± 19.4
Diastolic Blood Pressure (mmHg) 76.2 ± 11.2 72.2 ± 8.6
Anti-hypertensive Therapy 9 (75%) 12 (75%)

* p value < 0.05.

4.2. Lipoprotein Isolation and Purity Assessment

Lipoprotein fractions were purified by isopycnic salt gradient ultracentrifugation
(Figure 5) [3,4]. Briefly, 0.9 mL of plasma sample, brought to d = 1.3 g/mL with solid
NaBr (472.2 mg NaBr/mL plasma), were gently overlaid with 2.1 mL of a d = 1.006 g/mL
solution (0.6% NaCl) (Figure 5a), and centrifuged at 541,000× g for 3 h at 4 ◦C in a TL-
100 series ultracentrifuge equipped with a TLA-100 fixed-angle rotor (Beckman Coulter,
Indianapolis, IN, USA) (Figure 5b). Afterwards, VLDL (d = 1.006–1.063 g/mL), LDL
(d = 1.063–1.19 g/mL) and HDL (d = 1.19–1.21 g/mL) fractions were collected and further
purified by a second centrifugation step, performed at 541,000× g for 2 h in saline solutions
at density 1.006, 1.063, and 1.21 g/mL (Figure 5c), respectively, followed by desalting and
concentration using Amicon Ultra-0.5 mL centrifugal filter units (10 KDa MWCO, Merck-
Millipore, Darmstadt, Germany). The degree of purity was assessed by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), as previously described [3].
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Figure 5. Ultracentrifugation procedure for lipoprotein purification. (a) Ultracentrifugation tube
containing 0.9 mL of plasma sample added with NaBr, overlaid with 2.1 mL of a 0.6% NaCl solution;
(b) self-generated density gradient following isopycnic ultracentrifugation, showing the three lipopro-
tein fractions under study; (c) LDL on the top of the tube following a washing step at d = 1.063 g/mL.

4.3. HDL, LDL, and VLDL Fractions Processing for HPLC-MS/MS Analysis

HDL, LDL, and VLDL fractions, stored at −20 ◦C, were thawed at room temperature
and immediately subjected to lipid extraction [43]. Each sample was brought to a final volume
of 150 µL with 150 mM NaCl, transferred in a 1.5 mL microcentrifuge tube and 600 µL of
0.0625 µM DMS (N,N-dimethylsphingosine (d18:1)), selected as internal standard (ISTD), in
MeOH/CHCl3 1/2 (v/v) were added. The biphasic solution thus formed was sonicated for
10 min at room temperature, incubated at 25 ◦C for 30 min at 1000 rpm in a Thermomixer
Compact (Eppendorf, Hamburg, Germany), and then centrifuged at 16,000× g for 10 min at
10 ◦C in a Microcentrifuge Heraeus Biofuge Fresco (Thermo Scientific, Waltham, MA, USA).
From each sample, an aliquot of the lower phase was transferred into a glass HPLC vial, and
the HPLC-MS/MS analysis was performed immediately.

4.4. HPLC-MS/MS Analysis

An SRM-based HPLC-MS/MS method was used to analyze the lipid extracts. The
HPLC system was a Nexera X2 (Shimadzu, Kyoto, Japan) and the mass spectrometer
was a QTrap 5500 (SCIEX, Concord, ON, Canada) equipped with a Turbo V ESI source.
Vials were put in a refrigerated autosampler at 5 ◦C and each sample was injected in
duplicate (injection volume 0.5 µL). To prevent carry-over, two needle wash solutions were
used: MeOH/i-PrOH 50/50 (v/v) and MeOH/CHCl3 1/2 (v/v). Gradient elution at a
flow rate of 0.2 mL/min was performed on a Kinetex column packed with a C8 phase
(100 × 2.1 mm, 1.7 µm, 100 Å by Phenomenex, Torrance, CA, USA). Mobile phase A was
MeOH/H2O/i-PrOH 50/45/5 (v/v) and phase B was MeOH/i-PrOH 50/50 (v/v), both
containing 5 mM ammonium formate. The gradient elution program was: 0 min, 65%
B; 0.5 min, 65% B; 10 min, 100% B; 15 min, 100% B; 15.1 min, 65% B; 20 min, 65% B. The
column temperature was 45 ◦C. The mass spectrometer was set in positive ion mode and
the operating conditions were as follows: curtain gas 30 psi, ion spray voltage 5 kV, probe
temperature 200 ◦C, ion source gas 1 and gas 2 30 psi, declustering potential 100 V, entrance
potential 10 V, collision cell exit potential 19 V, collisional gas N2. A study by direct infusion
was previously carried out [17] in order to optimize the collision energies for each lipid
class and to choose the relative product ions to be used in the SRM analysis (Table S1). A
dwell time of 20 msec was used for each transition Q1/Q3. Analyst Software 1.6.3 (SCIEX,
Concord, ON, Canada) was used to collect data while lipid peak areas were calculated with
MultiQuant 2.1 software (SCIEX, Concord, ON, Canada).
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4.5. Lipidomics Data Analysis

Lipidomic experimental data were analyzed using the lipidr package (version 2.8.0) [63]
of R software (version 4.1.1). Firstly, lipidomics data were subjected to quality control,
then normalized using the Probabilistic Quotient Normalization (PQN) method (lipid areas
were compared across samples for each lipid species and then corrected for dilution errors
by determining a dilution factor for each sample) [64] and log2 transformed.

Lipid species distributions for each lipid (sub)class were compared between different
lipoprotein fractions, irrespective of plaque typology, as well as between the two groups of
patients, within the same lipoprotein fraction. Pairwise comparisons between fractions (LDL
vs. HDL, VLDL vs. HDL, VLDL vs. LDL) or between plaque typology (“soft” vs. “hard”)
were conducted using the estimated marginal means followed by Bonferroni correction.

Considering the whole lipidomics profile, orthogonal partial least-squares discrim-
inant analysis (OPLS-DA), a multivariate supervised method, was performed for each
lipoprotein fraction type using the plaque typology as a grouping variable with the aim of
revealing patterns in data and discovering lipid levels related to the two different groups
of subjects. Therefore, differential analysis was conducted comparing lipid levels in “soft”
and “hard” through a moderated t statistic implemented within the limma R package.
p-values were corrected using the Benjamini-Hochberg procedure in order to minimize any
type I error and thus the occurrence of false positives. Lipids were considered significant
and differentially altered with an adjusted p-value < 0.05 and a fold change FC ≤ 1/1.5 or
FC ≥ 1.5.
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