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Abstract: In 1981, a new virus (virus 132) was described for the first time with morphological and
biochemical similarities to rotaviruses (RVs), but without antigenic similarity to any of the previously
known rotavirus groups. Subsequently, it was re-designated as D/132, and formed a new serogroup
among rotaviruses, the group D rotavirus (RVD). Since their identification, RVs are the leading
cause of enteritis and diarrhea in humans and various animal species, and are also associated
with abridged growth, particularly in avian species. Recently, RVD has been suggested to play
a role in the pathogenesis of runting and stunting syndrome (RSS), alongside other viruses such
as reovirus, astrovirus, coronavirus, and others, all of which cause colossal economic losses to the
poultry industry. RVD has been reported from several countries worldwide, and to date, only one
complete genome sequence for RVD is available. Neither an immunodiagnostic nor a vaccine is
available for the detection and prevention of RVD infection. Despite our growing understanding
about this particular group, questions remain regarding its exact prevalence and pathogenecity,
and the disease-associated annual losses for the poultry industry. Here, we describe the current
knowledge about the identification, epidemiology, diagnosis, and prevention of RVD in poultry.

Keywords: rotavirus D; poultry; runting and stunting syndrome; diagnosis; epidemiology;
control; challenges

1. Introduction

The poultry production is one of the fastest expanding and most dynamically evolving divisions
of the livestock sector worldwide. Globally, average poultry meat consumption is expected to rise
by 3.7 kg and account for nearly 40% of meat consumed in 2030. A growth rate of 1.6 percent
per year is expected in the world’s egg production, which projects an increment from 70.4 million
metric tons in 2015 to 89.9 million metric tons in 2030. Improved breeding methods, nutrition,
and management practices have led to this incredible achievement. However, selective breeding
policies, intensive rearing, and the inadequate vaccination of birds are making them more vulnerable
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to diseases. Among the prevailing diseases, avian rotaviruses (AvRVs) are one of the important causes
of viral enteric disease of poultry reported worldwide, and remain a threat to the poultry industry.

The human rotaviruses (RVs) were first identified in 1973 [1,2]. Years before 1973, several animal
viruses, such as epizootic diarrhea of infant mice (EDIM) virus in mice [3], simian agent 11 (SA11)
in vervet monkey [4], and 70 nm virus particles in diarrheic stools from calves [5], were described.
All of these were later found to be RVs based on their morphology and group antigen sharing with
human RVs [6]. Rotaviruses have been recognized as one of the main etiological agents of diarrhea
and enteritis in mammals, including avian species [7,8]. Among avian species, RVs have been detected
in turkeys, chickens, ducks, pigeons, pheasants, and wild birds [9–15]. Avian rotaviruses (AvRVs)
were first identified from the United States (USA) in 1977 in turkey poults suffering from enteritis
using electron microscopy, and afterwards in the United Kingdom (UK) in 1978 [16]. Since then,
AvRVs have been reported from various geographical regions including France, Egypt, Argentina,
Brazil, Nigeria, Bangladesh, and India [17–19]. As of now, RVs have been divided into eight serogroups,
namely RVA, RVB, RVC, up to RVH (A–H), based on the gene composition and antigenic properties of
the group-specific VP6 protein [20]. Lately, RVI in dogs and cats and RVJ in bats are designated
as putative RV species, and are presently subjected for ICTV approval [21–23]. Among these,
RVA, RVD, RVF, and RVG have been detected as AvRVs, with the predominance of RVA and RVD,
while RVF and RVG are sporadic [24,25]. AvRVs cause colossal losses to the poultry industry, as they
result in decreased feed adsorption, ultimately leading to reduced weight gain [8]. Apart from the
gastrointestinal tract, RVs have also been detected in the pancreas and spleen of broilers with runting
and stunting syndrome (RSS) [26]. Runting and stunting syndrome, which is caused by many different
agents, including reovirus, astrovirus, coronavirus etc., has a highly negative impact on poultry sector.
This disease is characterized by watery droppings, cloacal pasting, and the presence of diarrhea.
Chicks are often undersized, pale, wet, and may have distended abdomens [27].

In 1994, the RVD-induced morphogenesis of enteric lesions was studied in pheasant chicks,
and revealed that 66% of RVD-inoculated birds experienced diarrhea and stunted growth four days
post-infection [28]. In 2006, RVD was identified as one of the causes in the pathogenesis of runting
and stunting syndrome (RSS) [24]. Due to RSS, mortality and culling may reach up to 60%, and feed
conversion may decrease 20 times, leading to huge economic losses [24,27]. One classic way to diagnose
the RVD infection is through the detection of virus nucleic acid or antigen in intestinal contents or feces.
Therefore, for diagnosis, conventional methods such as electron microscopy, polyacrylamide agarose
gel electrophoresis (PAGE), and RT–PCR assay targeting the VP6 gene, are used [29]. Virus isolation is
another approach, but is useful only for AvRVA, and has proved to be extremely difficult for the other
RV species [7]. Although RVD infection has been documented in poultry birds, limited prevalence
studies are available to date. The first detection of RVD was somewhere in early 1980s, where it
was called virus 132, and rotavirus-like viruses (RVLV), and later re-designated as RVD [17,30,31].
Since then, RVD has been reported from many places, including a recent report from Nigeria [32].
This review compiles the available literature on RVD, including research regarding its genomic
structure, epidemiology, diagnosis, and prevention.

2. Virus Structure and Genome

Complete rotavirus (RV) particles measure about 70 nm in diameter. The infectious RVs consist of
a triple layered structure (TLP) that resembles a wheel (lat. rota), from which the name rotavirus was
derived [33]. The innermost layer is formed by viral protein 2 (VP2), which encloses the 11 segmented
dsRNA viral genome as well as the viral RNA-dependent RNA polymerase (RdRp), VP1, and the
capping enzyme, VP3. The middle capsid layer is made up of VP6, which is a highly conserved,
group-specific viral protein. The outermost layer is formed by VP4 (which is denoted as the ‘P’-Protease
sensitive protein) and VP7 (denoted as the ‘G’-glycoprotein), against which the neutralizing and
protective antibodies are generated in vitro and in vivo, respectively [34]. VP4 can undergo proteolytic
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cleavage, yielding two proteins, VP5 * and VP8 *, with the cleavage enhancing the infectivity of
RVs [34].

The rotavirus genome consists of 11 segments of positive sense double-stranded (ds) RNA.
The 11 segments of the RV genome are monocistronic, except for genome segment 11, which encodes
two proteins in some serogroup of RVs. The molecular weight of this dsRNA ranges from 105

to 106 daltons, with a size range of 0.6–3.3 kilo base pairs, and an open reading frame (ORF)
that encodes viral proteins is present in each RNA segment that encodes viral proteins [8,35,36].
The viral genome encodes six structural (VP1–VP4, VP6, VP7) and five/six non-structural proteins
(NSP1–NSP5/6) [37,38]. Segment 1 encodes the VP1 protein and functions as a RNA-dependent RNA
polymerase. It is located in the core of virion and complexed with VP3 protein, which in turn is
encoded by segment 3. VP4, an outer capsid protein, is a major neutralizing antigen that is encoded by
the fourth segment. Most of the serogroups of RVs follow the same rule, but variations have been found
in some of the serogroups. In RVD, segment 3 encodes the VP4 protein, while segment 4 encodes the
VP3 protein; this order is inverted compared with the gene–protein assignment of RVAs [39] (Table 1).
Segment 10 of RVD has an additional open reading frame (ORF-2), which encodes a hypothetical
protein [39]. The major differences between the genome organization of RVA and RVD are summarized
in Figure 1.

Among the non-structural proteins (NSPs) of RVA, RVC, and RVD, the NSP2 protein shows the
maximum sequence conservation. Avian RVA NSP1, which modulates the host immune response
by mainly acting as an interferon antagonist, has shown more similarity to RVD than that of the
mammalian RVA NSP1 sequence [39]. AvRVA NSP4, despite major differences in amino acid sequences
analogized to NSP4 of mammalian RVs, acts as an enterotoxin, as did mammalian NSP4 proteins [37].

Table 1. Comprehensive list of nucleotide sequences of RVD genes available in GenBank.

Gene
Segment

RNA Segment
Number Coding

for the Gene

Size of Coding
Sequence (in bp #)

No. of Complete
Sequences *

(Accession No.)

No. of Partial
Sequences

Total Number
of Nucleotide

Sequences

VP1 1 3237 1 (NC_014511) 4 5

VP2 2 2739 1 (NC_014512) 5 6

VP3 4 2055 2 (NC_014514,
KF142491) 6 8

VP4 3 2331 1 (NC_014513) 6 7

VP6 6 1194 3 (NC_014516,
KX374470, JX187435) 36 39

VP7 9 948 3 (KM254196,
NC_014519, KF142489) 21 24

NSP1 5 1722 1 (NC_014515) 5 6

NSP2 8 930 1 (NC_014518) 3 4

NSP3 7 1110 1(NC_014517) 3 4

NSP4 10 ORF1: 381
ORF2: 279

4 (NC_014520,KF142490,
KX374472, KX374471 ) 3 7

NSP5 11 585 1 (NC_014521) 1 2

* Complete sequences include sequences with a complete specific protein-coding region. # base pair.
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Figure 1. Notable differences among the gene products encoded by genome segments of two avian
rotavirus groups, group D (RVD) and group A (RVA). The genome segments 3 and 4 encode for the
VP3 and VP4 protein, respectively, in RVA, while the VP4 and VP3 proteins are encoded by genome
segments 3 and 4 in RVD. Segment 10 carries one open reading frame (ORF) in RVA, while there are
two in RVD.

3. Classification

Rotaviruses constitute the genus Rotavirus, which is one among 15 genera within Reoviridae family.
Reoviridae is further subdivided into two sub-families, Sedoreovirinae and Spinareovirinae [6] (Figure 2).
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Initially, cross-immunofluorescence studies or the polyacrylamide agarose gel electrophoresis
(PAGE) analysis of dsRNA segments was used to classify RVs [36]. The antigenicity of RV is determined
by three major structural proteins: VP4, VP6, and VP7. VP6 determines serogroups, whereas VP4 and
VP7 determine serotypes. On the basis of the electrophoretic migration pattern of the RV genome
segments and the antigenicity of inner capsid VP6 protein, eight different groups are defined by ICTV
(designated as RVA–RVH) [20]. The putative serogroup RVI has been reported in sheltered dogs from
Hungary and in cats from North America [21,22], while RVJ has been reported from bats in Serbia [23].
In 2008, for RVA, a nucleotide sequence-based classification system was adopted [40]. This system of
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classification assigns a specific genotype to each of the 11 RV genome segments according to established
nucleotide percent cutoff values. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6
genes of RV strains are described using the abbreviations Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx
(x = Arabic numbers starting from 1), respectively [6]. As per the 10 June 2017 update of RCWG
(Rotavirus Classification Working Group), the maximum number of P and G genotypes, P[50] and G35
respectively, have been reported. In India, the G6P[1], G6P[11], G6P[14], G3P[3], G8P[11], G10P[1],
G10P[3], G10P[11] G10P[14], and G15P[21] genotypes of bovine RVA have been identified from different
geographical locations [41]. There also have been attempts at creating genotype-based comprehensive
classification systems for RVB and RVC [42–45]. RVs belonging to species A, B, and C (RVA, RVB,
and RVC, respectively) infect humans and various animal species. RVs belonging to species D, E, F,
and G (RVD, RVE, RVF, and RVG, respectively) have been recovered from animals only, so far.

Rotaviruses infecting avian spp. are designated as AvRVs. The RVs cross-reacting with antisera
prepared against mammalian RVAs are classified as RVA, and those that lack the RVA antigen are
referred to as atypical RVs/non-group A RVs that belong to groups D, F, and G, (designated as RVD,
RVF, and RVG) which are exclusively found in poultry [29,31,32,36]. Although RVA is predominant
across all host species, RVD is more common in poultry [46]. RVF and RVG have only been occasionally
reported [47]. After analysis by PAGE, the genomic RNA segments initially clustered into four regions,
I to IV. According to the distribution of segments in each region, the AvRV-A has a pattern of 5:1:3:2,
and RV-D has a pattern of 5:2:2:2 (Figure 3), while mammalian type avian RV-A shows a pattern of
4:2:3:2 [17,30]. Reconstruction of the evolutionary history placed RVs in two major clades consisting of
rotavirus A/C/D/F and rotavirus B/G/H [48]. This analysis is based on all six structural proteins
and two (NSP2 and NSP5) of the five non-structural proteins. Within clade one, RVD is shown to
be most closely related to RVF [48]. Studies based on codon usage of AvRVs done in 2015 suggested
that there is a geographical preference in the usage of specific codons, i.e., the RVD nucleotide
codons, for a particular protein, and that they are showing a selection process to adapt themselves to
a particular geographical region [49]. Their study also revealed that the codon usage of AvRVs is more
similar to that of yeast than human and E. coli, indicating that it may be easy to express RVD VP6
proteins through a yeast expression system.
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4. Diversity of RVD across the World

The studies on RVD are flourishing, hence, novel sequence data are progressively updating in the
public database. To date, only one whole genome data has been published [39] wherein the maximum
number of annotations are available for the group specific protein gene, VP6. Comprehensive detail of
all of the sequences available for the different genes is shown in Table 1 and Supplementary Table S1.

The scarcity of gene sequences for study restricts RVD classification into different genotypes,
as in the case of other group RVs. Nowadays, VP6 gene sequences have been used extensively by
different researchers for the phylogenetic reconstruction of RVD isolates. Based on the VP6 gene
sequence dendrogram topology, the geographical segregation of RVD isolates can be perceived. In the
study done by Kattoor et al. (2013), a continent-specific clustering of sequences could be identified,
where isolates from South America and Eurasia were showing a high content of divergence within the
dendrogram [50]. In 2015, a study published by Beserra and coworkers revealed that the Brazilian
isolates were forming exclusive clusters, and were well segregated from the rest of the world’s
isolates [19]. However, as per our analysis, Brazilian sequences, which were collected at different
time points, showed high divergence, which lead to the clustering of sequences into diverse clusters
[Cluster 1.1, 2.3 and 2.4 (Figure 4)]. This observation is similar to that of European strains. In contrast,
strains from Bangladesh were the least divergent among themselves (Figure 4).
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rate differences among sites. The strain (UKD48) analyzed in the study is shown with a black circle
mark. Bootstrap values below 50 have been omitted. The tree is drawn to scale length representing
0.02 nucleotide substitutions per site.
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5. Identification and Epidemiology

The first ever report of RVs in poultry was from the USA (South Dakota) in 1977 from intestinal
contents of turkey poults [9]. In 1981, McNulty and coworkers isolated a virus (virus 132) from chickens
of North Ireland. Despite having morphological and biochemical similarities to RVs, virus 132 was
not antigenically related to any of the previously described RVs [30]. This virus was categorized as
atypical RV/non-group A RV. Based on comparative antigenic and nucleic acid analysis, Pedley et al.
designated this atypical RV/non-group A RV as D/132, and proposed the extension of the number of
RV groups by including RVD as new member [31]. Later, Theil et al. (1986) found non-group A viruses
from turkeys, which they called turkey rotavirus-like viruses (RVLVs) [17]. Likewise, RVLVs were
also found in pheasants, and were later determined to be RVD [12]. Since then, RVD has been
reported frequently in turkeys, chickens, and pheasants, and sporadically reported in guinea fowls,
partridges, quails, pigeons, ducks, etc., [12,15,29]. Up to now, the prevalence and clinical importance
of RVD has been recognized for chickens and turkeys in various countries. European countries from
where RVD infections have been reported include Scotland, Sweden, Germany, the UK, Italy, and the
Netherlands [29]. Apart from Europe, RVD has also been reported in chickens from the delta region of
Egypt [18]. In 2012, a report on RVD infection from Brazil noted an incidence rate of 53% [51]. In the
Asian continent, the first report on RVD was from Bangladesh [52]. After two years, a second report
came from India, with an incidence of 17.39% [46]. A study conducted by Otto et al. (2012) [29] revealed
a combined prevalence of 65.9% from Europe and Bangladesh [28]. Recently, in June 2017, nearly 32%
of RVD shedding was observed in Nigerian birds. This study also suggested that host-permissive RVs
may show cross-species transmission [32].

Although RVs cause enteric diseases in mammals and birds, they are often detected in otherwise
healthy flocks, particularly when sensitive molecular diagnostic assays are used. Bezerra et al. (2014)
reported the occurrence of RVD in apparently healthy asymptomatic chickens [51]. Mixed enteric
infections have also been reported. Saif et al. (1990) isolated RVD, AsTV (astrovirus), Salmonella,
and small round viruses (18–24 nm in diameter) from an enteritis outbreak in turkey poults [53]. RSS is
a disease complex caused by many viruses, including reovirus, astrovirus, rotavirus etc. Four groups of
AvRVs were recognized in flocks with RSS: avian RVA, RVD, RVF, and RVG. Otto et al. (2006) reported
that RVD plays a major role in the pathogenesis of RSS in flocks with severe villous atrophy [24].
A recently granted patent also confirms that among all of the AvRVs, RVD plays a major role in the
pathogenesis of RSS [54]. Earlier studies on rats have shown the capacity of AvRVs to disseminate
and replicate in different organs, such as the liver, spleen, and pancreas; however, the mechanism by
which RV escapes the gastrointestinal tract and reaches other organs remains unknown [55]. Recently,
the extra-intestinal presence of avian RVA in the pancreas and spleen of broilers with RSS has also
been reported [26]. However, there is no such report for RVD.

In India, the reports on RVD are very scarce. The first report on RVD came from central India
in 2008, based on the specific electrophoretic migration pattern of RVD i.e., 5:2:2:2 [46]. In 2010,
RVD was detected in western parts (Maharashtra) of India [56]. The first sequence of confirmed RVD
was reported in broiler chicks from northern India in 2013 [50]. Subsequently, in 2014, an RT-PCR
was developed for detection of RVD, with a better detection limit (1.49 × 103 copies) than reported
previously from Brazil [57]. Using this reverse transcription-polymerase chain reaction (RT-PCR),
a frequency distribution study was conducted in 2011–2012, which confirmed the existence of RVD
in chickens from northern states of India with a 6.04% positivity rate [58]. Using the same RT-PCR,
recent (2012–2017) screening data revealed that this percent positivity in northern India has increased
nearly fourfold over the last five years (Deol, unpublished data).

6. Diagnosis

Clinical manifestations of AvRV infection include mild to severe diarrhea, a varied degree of
dehydration, and stunted growth; it also may remain asymptomatic. These variations may be due to
the differences in the severity of the particular strain or the interaction between different environmental
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and management factors [36]. These manifestations alone are not sufficient for confirmatory diagnosis.
Therefore, the identification of virus in fecal content or antibody detection in serum should be used to
confirm the RV infection. To date, there is no assay for RVD antibody detection. The major methods
used for diagnosis of RVs in poultry include:

Electron microscopy: The distinct wheel-like morphology of RV was initially used for detecting
RV infection by direct visualization of the virus in feces or intestinal content [6]. Using this technique,
RVs of different groups cannot be distinguished. Immune electron microscopy can be used to
distinguish serogroups, although it requires the availability of specific antisera [59]. It is a sensitive
diagnostic approach, but is also costly and cumbersome.

Virus isolation: AvRV can be isolated in embryonated chicken eggs (via yolk sac route), primary in
cell culture (chicken embryo liver cells/chicken embryo kidney cells) or in continuous cell lines
(MA104/Rhesus monkey kidney cell line) [17,60]. The isolation is useful only for AvRVAs, but it is not
commonly used for diagnosis. It is very difficult to propagate other RV serogroups in cell cultures [6],
and it has been reported that RVD cannot be propagated in MA104 cell culture systems [61].

RNA Polyacrylamide Gel Electrophoresis (RNA-PAGE): The detection of RV-RNA in feces or intestinal
content provides an alternate means of diagnosis. Following RNA extraction, electrophoresis on
polyacrylamide gels, and silver staining, RNA can be identified by the pattern of migration of genome
segments. RNA-PAGE is a highly specific technique used for the detection of segmented viruses [35].
It detects the electrophoretic migration pattern of all 11 segments of RV, which is different among
different groups. According to the distribution of segments in each region, the AvRV-A has a pattern
of 5:1:3:2, and the RV-D has a pattern of 5:2:2:2, while the mammalian RV-A shows a pattern of 4:2:3:2.
AvRVs RVF and RVG, which shows sporadic shedding, have migration patterns of 4:1:2:2:2 and
4:2:2:2:1, respectively [28]. However, these patterns can’t be totally relied upon, because substantial
differences are observed in the electrophoretic pattern of RVs when conditions of gel electrophoresis
are varied [62].

Reverse Transcription-Polymerase Chain Reaction (RT-PCR): This is the most sensitive molecular
detection tool available for the diagnosis of RVs, and is mainly based on the VP6 gene
segment [24,39,57]. For the detection of AvRVs, only a few RT-PCR protocols are available, and most
of them solely detect AvRV-A [15]. In 2011, an RT-PCR was developed by Bezerra and co-workers
specifically for the detection of the VP6 gene of RVD [63]. Real-time PCR and RT-PCR are now
available for the detection of RVD. The sensitivity of real-time RT-PCR was found to be similar to that
of conventional RT-PCR when the same primer sets were used for both of the assays [29].

Serological methods: Serological methods used for the detection of RVs include counter
immunoelectrophoresis [64], radioimmunoassay (RIA) [65], the latex agglutination test (LAT) [66],
and enzyme-linked immunosorbent assay (ELISA) [67]. AvRVs can be detected using ELISA.
Commercialized ELISA kits are available for detection of RVAs, such as the IDEIA RV assay (DAKO,
Ely, UK), the RIDASCREEN® assay (r-biopharm, Darmstadt, Germany), etc. However, for the detection
of other AvRVs such as RVD, RVF, or RVG, no ELISA is available.

7. Differential Diagnosis

Enteric infections are one of the principal causes of diarrhea, which results in poor feed conversion
efficiency and reduced growth, and hence leads to heavy economic losses for the poultry industry.
These infections are caused by different agents, including viruses (rotavirus, coronavirus, astrovirus,
reovirus, adenovirus, parvovirus etc.), bacteria (Salmonella, Enterococcus, E. coli) and protozoans
(Cryptosporidium and Eimeria) [68–71]. The clinical manifestations of these pathogens are almost
similar. Hence, RVD must be differentiated from all of these enteric pathogens, as well as from the
other groups of rotaviruses found in poultry.
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8. Prevention

To date, it seems difficult to eliminate RVs from commercial flocks, as rotaviruses are ubiquitous
as well as quite resistant to environmental conditions. The titre of AvRVs was found to decrease after
treatment at 56 ◦C for 30 min, but the viral infectivity is difficult to inactivate completely [11,72].
Further, it was recognized that AvRVs were resistant to chloroform and were stable at pH 3.
In general, sodium hypochlorite is an effective virucidal disinfectant, but for highly resistant AvRVs,
glutaraldehyde had stronger activity, which is also true for enveloped viruses [73]. The spread of
AvRVs can be prevented by maintaining good sanitation and hygiene by means of thorough cleaning
and disinfection to reduce the environmental contamination between flocks [36]. Although RV disease
is vaccine preventable, effective and safe vaccines are available only for human RVAs. As it is difficult to
grow atypical AvRVs in cell culture, and also due to high antigenic variations among them, no vaccines
are available so far for the prevention of AvRVs.

9. Conclusions and Future Prospects

The enteric viral infections, mainly rotavirus, are a global cause for concern. Among the four
serogroups of rotaviruses identified in poultry, the RVD has gained more importance due to its
involvement in runting and stunting syndrome. With the advent of molecular techniques, the diversity
of RVD strains is beginning to be explored. However, still, the exact prevalence and annual losses
associated with RVD in poultry industry are unknown. There are many gaps that need to be filled and
warrant attention, such as:

� Studies on host–pathogen interactions, whether they are alike other enteric viruses or not.
� As RVD is found in both symptomatic and asymptomatic birds, factors responsible for its

virulence and pathogenicity are to be studied.
� To date, very few sequences are available, and only for some of the genes of RVD strains.

Once enough sequence data are available, a nucleotide sequence-based classification system can
be established for RVD, as was achieved for RVAs.

� Only one complete genome sequence is available so far, despite the widespread distribution of
RVD in chickens.

� The function of additional ORF (ORF-2) encoded by the 10th segment of RVD is still not defined.
� The development of sensitive and specific diagnostic tests, including the improvement of available

ones, is of prime importance.
� The development of specific treatment by means of antivirals.

Once the basic information is available about RVD, its prevention should acquire the attention of
researchers by means of developing vaccines to prevent its spread and to save one of the fastest-growing
sectors, the poultry industry.

Supplementary Materials: The following are available online at www.mdpi.com/2076-0817/6/4/53/s1, Table S1:
The gene-wise (partial/complete) accession number details of avian rotavirus D.
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