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Abstract
Construction of precise confidence sets of disease gene locations after initial identification of linked
regions can improve the efficiency of the ensuing fine mapping effort. We took the confidence set
inference, a framework proposed and implemented using the Mean test statistic (CSI-Mean) and
improved the efficiency substantially by using a likelihood ratio test statistic (CSI-MLS). The CSI
framework requires knowledge of some disease-model-related parameters. In the absence of prior
knowledge of these parameters, a two-step procedure may be employed: 1) the parameters are
estimated using a coarse map of markers; 2) CSI-Mean or CSI-MLS are applied to construct the
confidence sets of the disease gene locations using a finer map of markers, assuming the estimates
from Step 1 for the required parameters. In this article we show that the advantages of CSI-MLS
over CSI-Mean, previously demonstrated when the required parameters are known, are preserved
in this two-step procedure, using both the simulated and real data contributed to Problems 2 and
3 of Genetic Analysis Workshop 15. In addition, our result suggests that microsatellite data, when
available, should be used in Step 1. Also explored in detail is the effect of the absence of parental
genotypes on the performance of CSI-MLS.

Background
With the advent of high-throughput genotyping technol-
ogies, traditional gene mapping methods, including link-
age approaches, may be improved upon to realize the full
potential of the wealth of genotype data available today.
In particular, there has been considerable development in
recent years in "intermediate fine mapping" approaches
[1] in which data with dense marker maps from linkage
studies are used to construct confidence sets of the disease
gene locations following identification of linked regions.

In addition to enhancing objectivity of the ensuing fine
mapping effort by containing the disease gene locations
with a pre-specified probability, a precise confidence set
will reduce costs in genotyping and multiple testing.

A recent study on several competing approaches to inter-
mediate fine mapping shows that the confidence set infer-
ence (CSI) framework is particularly promising [1]. In
CSI, every genomic location within the identified broad
linked region is tested against the null of being the disease
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gene location, and the 95% confidence set contains all the
genomic locations where the null is not rejected at the 5%
level. Papachristou and Lin [2] first proposed the CSI
framework and implemented it by reformulating the tra-
ditional mean linkage test statistic (CSI-Mean). We
recently proposed a more efficient alternative, CSI-MLS
[3], by reformulating a likelihood ratio test (LRT) statistic,
the maximum LOD score (MLS) [4]. The CSI procedures
require knowledge of some disease-model-related param-
eters. When these parameters are known, CSI-MLS exhib-
its substantial advantages over CSI-Mean: 1) it provides
more precise confidence sets for disease gene locations
with correct coverage probabilities; 2) it is computation-
ally more efficient. In the absence of knowledge of these
parameters, a two-step procedure that constructs the con-
fidence sets in the second step following the estimation of
the required parameters in the first step may be adopted
[5]. In this article we show that the advantages of CSI-MLS
are preserved in the two-step procedures. Also investigated
are the effects of three different strategies in Step 1 and the
impact of the absence of parental genotype data.

Methods
In the CSI framework using affected-sibling pair (ASP)
data, each genomic location (τ) in a broad region with
linkage evidence is tested to see whether it is the putative
disease causing locus (τ*). In contrast to the traditional
null hypothesis of no linkage, a new hypothesis is tested:

H0τ : τ = τ* versus HAτ : τ ≠ τ*. (1)

A 95% confidence set for the disease gene location is con-
structed to contain all the genomic locations where the
above null hypothesis is not rejected at the 5% level. Any
traditional linkage test statistic can be reformulated to test
hypothesis (1), including the mean test statistic (CSI-
Mean, [2]) and the MLS statistic (CSI-MLS, [3]). Both pro-
cedures require knowledge of some disease-model-related
parameters, one possibility being zi = P(τ*IBD = i), i = 0,
1, 2, where τ*IBD is the identical by descent (IBD) allele
sharing between two affected siblings at the disease locus.
CSI-MLS provides more precise confidence sets compared
to CSI-Mean when zi values are known [3].

In the realistic case in which these parameters are not
known a priori, a two-step procedure that relies on the
availability of two sets of marker data on the same set of
ASPs can be adopted [5]: 1) identify broad linked regions
using one set of markers, termed the coarse map (e.g.,
microsatellite markers). Genomic locations with a non-
parametric linkage statistic (KAC) [6] above 2.33 are iden-
tified as showing suggestive linkage. For the linkage peak
in each region that exceeds the above cut-off point, obtain
the maximum likelihood estimates of the zi parameters. 2)
Using a set of denser markers, termed the fine map (e.g.,

single-nucleotide polymorphism (SNP) markers), and
restricted to a region of, say, 25 cM on either side of the
linkage peak, we constructed confidence sets employing
CSI-MLS or CSI-Mean with the parameter estimates from
Step 1. Because confidence sets so obtained may not be
contiguous, we employed the smoothing scheme sug-
gested by Papachristou and Lin [5].

Traditionally, a whole-genome linkage scan is often pur-
sued with microsatellite markers, and then the prelimi-
nary linkage signals are followed up using a denser,
usually SNP, map. It was this practice that motivated the
two-step CSI procedures. However, with the advent of
high-density genome-wide SNP chips, this practice may
soon be replaced by a single, dense SNP map on which all
individuals are genotyped. The 5 K and 10 K chips have
already been successfully employed in linkage analysis. In
such situations, we propose using a subset of the SNP
markers as the coarse map and another mutually exclusive
subset of the SNP markers as the fine map. Within each of
these two maps, markers are chosen to be in linkage equi-
librium with each other (r2 < 0.02), as linkage disequilib-
rium between markers can lead to erroneous estimates of
multipoint IBD sharing probabilities [7].

We apply our methods to Genetic Analysis Workshop 15
simulated data and the North American Rheumatoid
Arthritis Consortium (NARAC) data, with the phenotype
being the binary trait of the affection status of rheumatoid
arthritis (RA). The microsatellite and SNP data (excluding
the dense SNPs for the simulated data) on chromosome 6,
containing the HLA-DRB1 locus, are used. Three strate-
gies/settings, two using the microsatellite markers and
one using the SNP markers, were compared in terms of
their effects on the estimation of the disease-model-
related parameters and the construction of the confidence
sets. The two-step CSI-MLS and CSI-Mean were compared
in terms of the precision of the confidence sets that
include the DRB1 locus with a pre-determined probabil-
ity. In what follows, we consider all of the 100 replicates,
with a sample size of n (250, 500, or 750) per replicate
taken to be the first n families of each replicate. Estimates
of means, standard deviations, etc., of the parameters of
interest are based on the 100 replicates of the respective
sample size. "Answers" were known.

Results
Central to the CSI framework is the knowledge of the IBD
probabilities at the trait locus, z0, z1, and z2. While these
are not available from the "Answers" to the simulated
data, a good guess is the MLE at the HLA-DRB1 locus
obtained from the chromosome 6 SNP data on all fami-
lies from all available replicates. The MLE (z0 = 0.101, z1 =
0.441, z2 = 0.458) will be considered to be the true values
of the corresponding parameters. The information con-
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tent [8] at the trait locus was 0.97, suggesting that these
estimates are very close to the true values. In what follows,
we investigate the effect of the coarse map on the Step 1
parameter estimates, followed by a comparison of the per-
formance of CSI-MLS and CSI-Mean in the two-step set-
ting. We also study the influence of the availability of
parental genotype information. Finally, both CSI-MLS
and CSI-Mean are applied to the NARAC data.

Estimates of (z0, z1, z2) at the disease gene locus
Three estimation strategies/settings have been explored in
Step 1 of CSI: 1) the MLE is evaluated at the microsatellite
marker with the largest KAC score; 2) the MLE is evaluated
at the location, possibly between two microsatellite mark-
ers, with the highest KAC score; 3) the MLE is evaluated
with a set of SNPs that is mutually exclusive with the SNPs
used in the second step as the coarse map. The three strat-
egies are referred to as MS1, MSINT, and SNP1, respec-
tively. The microsatellite and the SNP coarse maps
contain 41 microsatellites and 292 SNPs, respectively.
With parental data, the information content at the disease
gene locus is 0.85 for the microsatellite map and 0.88 for
the SNP map; without parental data, it is 0.56 for both.
The precision of the parameter estimates were evaluated
in terms of root mean squared errors (RMSEs). Table 1
provides the RMSEs of the estimates of the disease gene
locations (peak of KAC scores) and of the zi values, with
and without parental genotypes. All estimates improve
with increasing sample size. With parental genotypes,
SNP1 yields slightly better estimates of zi values than MS1
and MSINT. This finding agrees well with the information
content of the maps. However, when parental genotypes
are not available, MS1 yields much more precise estimates
than SNP1 and MSINT. This is also reflected in the density
plot of the estimates given in Figure 1. There seems to be
a systematic bias in the estimates under all three setting, z1
being underestimated (for 750 ASPs, the bias was -0.01, -

0.03 and -0.03 for MS1, MSINT, and SNP1, respectively)
and z2 being overestimated (for 750 ASPs, the bias was
0.01, 0.03 and 0.02 for MS1, MSINT, and SNP1, respec-
tively).

Comparison of CSI-MLS and CSI-Mean in the two-step 
procedure
Using the estimates of zi values from Step 1, CSI-Mean and
CSI-MLS confidence sets are constructed with a fine map
of 350 SNPs on the chromosome. Besides the three set-
tings MS1, MSINT, and SNP1, we added the group TRUE,
where the CSI confidence sets were constructed assuming
the true parameter values. Mean lengths of the confidence
sets, together with the empirical coverage levels, are given
in Table 2. The coverage levels under TRUE are close to the
nominal 95%, while they are higher than the nominal lev-
els in all other situations. We compared the precision of
the confidence sets in terms of their lengths, since the cov-
erage is at least up to the nominal level. Under each set-
ting, the confidence sets get tighter with increased sample
size. CSI-MLS provides substantially shorter confidence
sets than CSI-Mean, the effect being more pronounced
when parental genotypes are not available, when the sam-
ple size is large, and when true parameter estimates are
not used. For example, the reduction of the mean length
is 49% (8.7 cM) with MSINT using 750 ASPs, when paren-
tal genotypes are missing. When parental genotypes are
available, knowing the true values of the IBD sharing
probabilities at the trait locus results in the most precise
confidence sets. MSINT provides the most precise confi-
dence sets among the three two-step procedures, with the
precision close to optimal. SNP1 comes next, being only
slightly less precise than MSINT. However, when parental
genotypes are not available, MSINT provides much more
precise intervals than all other three scenarios, with TRUE
yielding the least precise intervals.

Table 1: Root mean squared errors of the estimates of the disease location, z0, z1, and z2

No. ASPs Strategy With parental genotypes Without parental genotypes

Location (cM) z0 z1 z2 Location (cM) z0 z1 z2

MS1 4.9 0.020 0.033 0.035 5.6 0.023 0.035 0.034
250 MSINT 3.8 0.020 0.033 0.033 4.8 0.024 0.041 0.040

SNP1 2.4 0.018 0.031 0.033 4.7 0.028 0.041 0.036

MS1 3.7 0.016 0.026 0.027 4.0 0.017 0.027 0.025
500 MSINT 1.9 0.016 0.026 0.024 2.3 0.017 0.037 0.035

SNP1 1.3 0.014 0.025 0.023 3.4 0.020 0.038 0.028

MS1 3.6 0.015 0.021 0.023 3.6 0.014 0.024 0.021
750 MSINT 1.5 0.013 0.022 0.020 1.8 0.015 0.034 0.033

SNP1 1.3 0.012 0.020 0.019 2.9 0.019 0.036 0.026
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Application to real data
The MSINT strategy appears to be the best in terms of pro-
viding precise confidence intervals for the underlying dis-
ease locus. Hence, we used this strategy with the CSI-MLS
and the CSI-Mean to measure their ability in localizing the
HLA-DRB1 locus on chromosome 6, a known causal locus
for RA. Our sample comprised 308 of the smallest families
(<9 pedigree members each). This was done to have a
sample size more representative of most linkage studies,
and to have nuclear families with ASPs, the setting for
which the CSI-Mean and CSI-MLS have been proposed.
There were 363 ASPs in the chosen families (not all inde-
pendent). Figure 2 shows the KAC score for a part of chro-
mosome 6 along with the CSI-Mean and CSI-MLS
intervals and the disease locus (vertical line). CSI-MLS

provides a confidence set that is 4.6 cM shorter than that
provided by CSI-Mean.

Discussion
We demonstrate here that CSI-MLS performs substantially
better than CSI-Mean, with the advantage more apparent
when parental genotype data are missing. This is not sur-
prising because the trait model represents a favorable sit-
uation for CSI-MLS [3]. In a disease with no dominance
genetic variance the value of z1 is 0.5. The value of z1 for
RA at the HLA-DRB1 locus is 0.441, significantly different
from 0.5. This difference suggests a reasonable contribu-
tion of dominance genetic variance to the total variance.
CSI-MLS performs better than CSI-Mean in most situa-
tions, with the gain most substantial when dominance
variance constitutes a substantial portion of the total var-
iance of the disease [3]. The better use of allelic IBD infor-
mation by the MLS statistic might explain the more
pronounced advantage of CSI-MLS in the absence of
parental genotype data.

When parental genotypes are absent, estimates of the dis-
ease locus IBD sharing probabilities using the MS1 strat-
egy are superior to those using MSINT or SNP1. However,
when the precision of the confidence sets are considered,
MSINT provided the shortest sets while maintaining the
nominal coverage. This apparent contradiction could be
explained as follows. When parental information is not
available, there is a bias in the estimates of zi values under
both MSINT and SNP1 settings. However, parental data is
also absent on the fine map, which leads to a similar bias
in Step 2. As long as these two biases are consistent (cancel
each other out), which is reasonable, the performance of

Density of the estimates of z1 and z2Figure 1
Density of the estimates of z1 and z2. Density of the esti-
mates of z1 and z2, with and without parental genotypes, 
using 750 ASPs. The vertical lines represent the true values 
of the parameters.

Table 2: Properties of 95% confidence sets constructed with CSI-MLS and CSI-Mean

No. ASPs Strategy With parental genotypesa Without parental genotypesa

CSI-MLS CSI-Mean RR (%) CSI-MLS CSI-Mean RR (%)

250 MS1 28.1 (1.00) 36.1 (1.00) 22 29.6 (1.00) 38.7 (1.00) 24
MSINT 22.8 (1.00) 30.4 (1.00) 25 23.2 (0.98) 33.4 (1.00) 31
SNP1 24.6 (1.00) 31.6 (1.00) 22 26.8 (1.00) 37.3 (1.00) 28
TRUE 21.5 (0.91) 27.2 (0.95) 21 29.8 (0.96) 35.5 (0.94) 16

500 MS1 21.8 (1.00) 28.8 (1.00) 24 21.8 (1.00) 31.6 (1.00) 31
MSINT 15.4 (1.00) 21.5 (1.00) 28 13.5 (0.97) 23.4 (1.00) 42
SNP1 17.0 (1.00) 23.1 (1.00) 26 18.6 (0.99) 29.9 (1.00) 34
TRUE 15.2 (0.92) 20.1 (0.97) 24 24.5 (0.95) 31.8 (0.98) 23

750 MS1 18.4 (1.00) 24.1 (1.00) 24 17.6 (1.00) 27.1 (1.00) 35
MSINT 12.2 (1.00) 16.7 (1.00) 27 9.1 (0.95) 17.8 (1.00) 49
SNP1 14.2 (1.00) 18.6 (1.00) 24 14.4 (0.98) 24.9 (1.00) 42
TRUE 11.9 (0.94) 16.3 (0.96) 27 21.3 (0.97) 28.5 (0.94) 25

aEmpirical proportions of confidence sets that contain the disease gene locus are given in parentheses. The relative reduction in length obtained by 

using CSI-MLS in place of CSI-Mean is given by RR
Mean length of CSI-Mean Mean length of CSI-MLS

Mean len
= −

ggth of CSI-Mean 
×100%
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MSINT and SNP1 in terms of precision of the localization
can be superior to MS1. Another striking observation is
that CSI-MLS confidence sets are shorter when parental
genotypes are missing rather than available. For example,
using MSINT with 750 ASPs, the mean length of CSI-MLS
intervals is 9.1 cM with parental data compared to 12.2
cM without parental data. This is due to the former having
a lower empirical coverage (95%) than the latter (100%).
When microsatellite and SNP genotypes are available on
the same set of families, we suggest using MSINT to esti-
mate the parameters in Step 1 and then constructing the
confidence sets using CSI-MLS on a dense SNP map in
Step 2. When microsatellite data are not available, use two
independent dense SNP maps in the two steps. Even
though the use of SNPs in Step 1 leads to some loss in effi-
ciency, this loss is limited. This loss can presumably be
reduced by using a denser SNP map in Step 1, though one
has to be careful about the LD between markers affecting
parameter estimates.

CSI-MLS provides much more precise confidence intervals
than CSI-Mean, yielding a reduction in length of 4.4 to
11.3 cM (16 to 49%) for the simulated data and 4.6 cM for
the real data. A chromosomal region of such sizes may
house hundreds of genes, and their exclusion reduces the
number of candidate genes that need to be followed up by
fine mapping. The problem of multiple testing is thus alle-
viated, and hence the power of detection of the causal
locus is increased. Furthermore, budgetary constraints
often limit genotyping to a fixed number of SNPs in the
fine mapping stage, a smaller chromosomal region leads
to better coverage of the region by the SNPs, and the
causal mutations can thus be better interrogated.
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