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A B S T R A C T   

Since the first neurodevelopmental models that sought to explain the influx of risky behaviors during adolescence 
were proposed, there have been a number of revisions, variations and criticisms. Despite providing a strong 
multi-disciplinary heuristic to explain the development of risk behavior, extant models have not yet reliably 
isolated neural systems that underlie risk behaviors in adolescence. To address this gap, we screened 2017 ad-
olescents from an ongoing longitudinal study that assessed 15-health risk behaviors, targeting 104 adolescents 
(Age Range: 17-to-21.4), characterized as high-or-average/low risk-taking. Participants completed the Monetary 
Incentive Delay (MID) fMRI task, examining reward anticipation to “big win” versus “neutral”. We examined 
neural response variation associated with both baseline and longitudinal (multi-wave) risk classifications. An-
alyses included examination of a priori regions of interest (ROIs); and exploratory non-parametric, whole-brain 
analyses. Hypothesis-driven ROI analysis revealed no significant differences between high- and average/low-risk 
profiles using either baseline or multi-wave classification. Results of whole-brain analyses differed according to 
whether risk assessment was based on baseline or multi-wave data. Despite significant mean-level task activa-
tion, these results do not generalize prior neural substrates implicated in reward anticipation and adolescent risk- 
taking. Further, these data indicate that whole-brain differences may depend on how risk-behavior profiles are 
defined.   

1. Introduction 

Recognition has grown that adolescence is one of the highest health 
risk periods in human development, characterized as having the highest 
rates of preventable mortality and morbidity (Kann et al., 2018). This 
brings to the forefront the need to understand biological change and 
developmental variation underlying adolescence. In particular, knowl-
edge about adolescent neurodevelopment has the potential to inform 
both policy-making and interventions for those at highest risk (Dahl 
et al., 2018). An overwhelming 70 % of adolescent deaths in the United 
States are related to preventable causes, with a similar proportion for 
morbidity, from behaviors such as suicide, homicide, risky driving, risky 
sex and substance use (Casey et al., 2008; Kann et al., 2018). Although it 
has been recognized that risky behaviors contribute to the increased 
rates of morbidity and mortality in adolescence, many programs that 

have been developed to reduce those risky behaviors have been mini-
mally effective (Ferdinand et al., 2015; Hale et al., 2014; Steinberg, 
2008). 

In order to characterize change in development, several efforts have 
contributed to neurodevelopmental models that attempt to explain the 
seeming incongruity of increased risky behaviors and improved 
reasoning skills during adolescence (Ernst et al., 2006; Shulman et al., 
2016). This multi-disciplinary work has led to several neuro-
developmental models that have been influential in characterizing the 
developmental stage, with public policy implications (Shulman et al., 
2016; Steinberg and Icenogle, 2019). However, the studies have 
received criticism due to the inconsistencies in findings and lack of 
convergence across key components of the models (Crone and Dahl, 
2012; Meisel et al., 2019; Pfeifer and Allen, 2012; Sherman et al., 2018). 
Previous researchers proposed that these neurodevelopmental models 
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may characterize a subset of youth that may be of highest risk (Bjork and 
Pardini, 2015), and a recent meta-analysis recommended taking a cat-
egorical approach by comparing qualitatively different “high risk--
takers” to more normative risk profiles (Sherman et al., 2018, p. 37). 
This raises the question of whether recent modeling and sampling 
techniques of neurodevelopment models accurately characterize real 
world risk profiles? 

Current theories of neurodevelopment in adolescence have focused 
on the socioemotional and cognitive control systems (Casey et al., 2008; 
Ernst et al., 2006; Luna and Wright, 2016; Steinberg, 2008). Socio-
emotional systems encompass reward sensitivity, such as sensation- and 
novelty-seeking. A common thread across theories is that changes in 
reward sensitivity encourage the adolescent to experiment with 
rewarding stimuli, such as social, sexual, substance and other risk be-
haviors. Sensation seeking is thought to be associated with basal dopa-
mine (DA) levels that drive incentive motivation, which in turn 
enhances the engagement in a salient behavior (Ernst and Luciana, 
2015; Ernst and Spear, 2009). Recent evidence suggests that sensation 
seeking (or reward sensitivity) peaks in late adolescence (around age 19; 
Steinberg et al., 2018). Meanwhile, the maturation of cognitive control 
systems relates to the progressive proliferation of white matter (WM) 
and grey matter (GM; (Mills et al., 2016; Tamnes et al., 2017), facili-
tating the specialization of cognitive processes and improvement in 
goal-oriented behaviors (Luna et al., 2010; Marek et al., 2015). A 
number of such dual process models (Shulman et al., 2016) are 
described in more detail below. 

Despite broad similarities across current neurodevelopmental 
models in the process and function of socioemotional and cognitive 
systems, there are several key differences. The Triadic model (Ernst et al., 
2006) focuses on the balance between approach, avoidant and regula-
tory systems. The approach system has positive valence, focused on 
rewarding stimuli, that drives an organism to engage in novel behaviors. 
Meanwhile, the avoidance system has negative valence, focused on 
harm, that is involved in operant and conditioned behavior to help 
notify the organism of whether a stimulus should (or should not) be 
approached. The third component is the regulatory, or cognitive control 
system, which is critical in monitoring and adaptation, functioning as a 
conductor to facilitate behaviors by balancing information across mul-
tiple systems (Ernst et al., 2006; Richards et al., 2013). The key systems 
in the Triadic model rely on different brain regions, specifically the 
approach system recruits both orbital frontal cortex (OFC) and ventral 
striatum (VS); the avoidance system primarily involves the amygdala 
(central nucleus for operant behavior and lateral/basolateral for con-
ditioning stimuli) and insula; and the regulatory system involves the 
ventrolateral PFC (vlPFC), dorsolateral prefrontal cortex (dlPFC) and 
anterior cingulate cortex (ACC; Richards et al., 2013). All of these re-
gions function in combination to exchange information and perform the 
goal-oriented behaviors. 

As opposed to the balance across multiple systems in the Triadic 
model, Maturational Imbalance (Casey et al., 2008), Dual Systems 
(Steinberg, 2008) and Driven Dual Systems (Luna and Wright, 2016) 
models emphasize that the dominating or primary function of the 
cognitive control systems is to suppress inappropriate (or salient) 
thoughts and actions associated with the socioemotional system in favor 
of goal-oriented behaviors, reducing the effect of reward sensitivity. The 
Maturational Imbalance (Casey et al., 2008) model emphasizes that the 
inability to behave in a goal-oriented manner reflects immature devel-
opment of the cognitive control system, supported by the vlPFC, which 
reduces the influence of reward sensitivity, supported by the Nucleus 
Accumbens (NAcc). In contrast, the Dual Systems Model (Steinberg, 
2008) contends that decisions are a clash between cognitive control 
(mPFC/OFC/dlPFC) and social-emotional (Amygdala and VS) regions. 
The post-pubertal maturation of reward regions leads to increased 
reward seeking, especially in the context of peers, as a function of rising 
DA-rich receptors in the NAcc and decline in DA autoreceptors in the 
PFC, which function as a negative feedback loop, reducing the PFC’s 

ability to suppress inappropriate thoughts and actions. Similarly, the 
Driven Dual Systems model (Luna and Wright, 2016) contends that 
cognitive control is the key system in governing appropriate 
goal-oriented actions. In contrast to other models, this model suggests 
that cognitive control systems are largely developed by late child-
hood/early adolescence, and focuses instead on the hyperactivation of 
the reward regions (VS) due to the proliferation of DA receptors there 
that increases the appetitive/motivation systems and thus drive riskier 
behaviors. 

Each of these neurodevelopmental models emphasizes the early 
sensitization of DA systems in reward regions following puberty, and the 
alteration of cognitive control and/or socioemotional systems as a 
function of improved cognitive capacity. They posit that these discrete 
systems interact as adolescents are exposed to salient stimuli. Notably, in 
all models, there is overlap in the brain regions that underlie reward, 
salience and cognitive control. Namely, socioemotional processing 
largely involves areas of the NAcc/VS and OFC; emotion processing is 
supported by the amygdala and mPFC; and cognitive control is attrib-
uted to regions of the dlPFC, ACC, OFC, and/or vlPFC. 

Despite agreement about the brain regions involved in critical as-
pects of adolescent decision-making and behavior, there remains debate 
as to the variability in neural findings and associated behaviors attrib-
uted to these regions. FMRI has been an important tool in distinguishing 
neural differences associated with adolescence, yet a challenge in neu-
rodevelopmental theories has been that while common regions are 
highlighted, the direction of effects in the literature is inconsistent. Some 
of the proposed regions in cognitive control systems have shown both 
activation and deactivation across age that have been difficult to 
reconcile (Crone and Dahl, 2012; Pfeifer and Allen, 2012). While some 
of these neural signatures of VS and PFC activation may be related to 
atypical development, they may not be representative of typically 
developing youth (Bjork and Pardini, 2015). As a result, the models 
imply predispositions in neurodevelopment in adolescence that bias 
them towards risky behaviors, resulting in post-hoc misinterpretation of 
differences as deficiencies rather than normative changes (Bjork and 
Pardini, 2015; Pfeifer and Allen, 2012). Moreover, the peaks in reward 
processing in the dual system models precede the peaks of unintentional 
and behavioral injury by several years, occurring between 18–23 (Bjork 
and Pardini, 2015; Kann et al., 2018; U.S. Centers for Disease Control, 
https://www.cdc.gov/injury/wisqars/fatal.html). 

While the neurodevelopmental models have harnessed both animal 
and human research to test hypotheses about neural associations among 
psychological, neurobiological, and risk behavior development (Shul-
man et al., 2016), empirical efforts pertaining to convergent and 
ecological validity have been scant. One presumed association is in the 
neurobiological (reward sensitivity) and psychological (sensation 
seeking) pathways to risk taking behaviors (Shulman et al., 2016). A 
large proportion of studies investigating risk behaviors and neural 
change have relied on cognitive measures in laboratory settings as 
‘scanner-compatible proxies for measuring real-world behaviors’ (Telzer 
et al., 2015, pp. 391) or ‘ecologically valid measure of real-life risk 
taking’ (Qu et al., 2015, pp. 11309). However, the use of proxy variables 
such as cognitive task performance to identify real-world risk behavior 
profiles as a dependent variable may be problematic owing to their 
questionable construct validity (Demidenko et al., 2019; Eisenberg 
et al., 2019). Specification and justification of these choices for 
measuring the dependent variable of risk behavior is thus paramount for 
efforts to accumulate and reproduce evidence on these questions. 

Reviews that have examined neural predictors of risk behaviors in 
adolescents report substantial variability across studies that yield only 
mixed support for the neurodevelopmental models in the directions 
hypothesized above. More specifically, multiple reviews reported that 
comparison groups have had high variability in categorizing children, 
adolescents and adults (Crone and Dahl, 2012; Galv�an, 2010). Further, 
tasks have often utilized different analytic strategies, baseline condi-
tions, and magnitudes (or probabilities) of reward. Sherman et al. 
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(2018) found in their review that risk taking indexed by different neural 
correlates is measured in different ways across studies, categorized, for 
example, by lab-based measures of risk in tasks (which may be largely 
ineffective, due to their weak associations with real-world risk behav-
iors), generalized sensation-seeking, or perceptions of risks. In addition, 
70 % of the studies they reviewed were substantially underpowered (N 
< 50) and oftentimes researchers solely used region of interest (ROI) 
approaches, focusing attention where findings were expected, over-
looking alternative key regions posited by different neurodevelopmental 
models. 

Although there have been longitudinal analyses that evaluate lon-
gitudinal changes in risk behaviors, the criteria used for age, targeted 
sampling, and measurements of risk may have contributed to some of 
the inconsistencies (Braams et al., 2015, 2016; Büchel et al., 2017; Cope 
et al., 2019). With respect to age, some studies used samples that 
included age ranges that were broad, 8–26 years (Braams et al., 2016), 
or outside of a window when risk behaviors peak (Bjork and Pardini, 
2015), such as restricted to age 16 (Büchel et al., 2017). Other studies 
recruited in order to estimate effects of puberty (Braams et al., 2016; 
Peper et al., 2013) or populations in disadvantaged communities (Cope 
et al., 2019), making it difficult to discern neural correlates of risk be-
haviors in a normative adolescent population. This variability across 
studies has contributed to mixed findings of the neurodevelopmental 
models, whereby reward processing predicted substance use in Cope 
et al. (2019) but not in Braams et al. (2016), and only under the con-
dition of high sensation seeking in Büchel et al. (2017). Thus, it remains 
unclear how risk profiles are associated with reward processing, recently 
reported to peak in late adolescence (age ~19; Steinberg et al., 2018), 
during corresponding developmental peaks in health risk behaviors 
(18–23 years) in a normative sample. 

In the current study, we recruited a large and diverse population of 
typically developing high school adolescents (10th [15–16.5 years old] 
and 12th [17–19 years old] graders, N ¼ 2017 in the full sample) that 
provided self-reports on real-world risk behaviors in multiple categories. 
To address previous limitations of broad age ranges (Pfeifer and Allen, 
2016), sampling and inefficient proxies of real-world risk, a targeted 
subsample (N ¼ 104) was recruited from the full sample, representing 
two distinct risk-taking profiles during late adolescence when risk be-
haviors often peak (Kann et al., 2018; U.S. Centers for Disease Control, 
https://www.cdc.gov/injury/wisqars/fatal.html). To characterize high 
versus average/low risk-taking adolescents that can appropriately 
contrast risk-taking profiles, the subsample of adolescents was classified 
into high (75th percentile and above) and average/low risk groups (20th 
– 60th percentile) based on a combined factor score of risk-taking 
self-reports, a Behavioral Misadventure Scale (BMS, based on a confir-
matory factor analysis across all risk behavior categories). This sub-
sample completed a neuroimaging protocol to evaluate differences in 
neural activity associated with the level of risk behavior derived from 
the Wave 1 BMS, utilizing both whole brain analyses and a list of key a 
priori brain regions (ROIs) from an empirical consensus based on the 
research literature (Galv�an, 2010; Sherman et al., 2018). In a subsequent 
comparison, high and average/low risk groups’ neural activation pro-
files were assessed based on the longitudinal stability of their risk pro-
files over time, which has not been previously studied. 

Given that the neurodevelopmental models propose an increased 
motivation (Shulman et al., 2016), or tonic levels of DA (Luciana and 
Collins, 2012), we examined neural differences towards the anticipation 
of a big reward. The Monetary Incentive Delay (MID) task used in the 
Adolescent Brain Cognitive Development (ABCD) study (Casey et al., 
2018), similar to that used in the IMAGEN study (Cao et al., 2019), was 
administered during multi-band functional magnetic resonance imaging 
(fMRI) acquisition. This task has been shown to elicit robust activation 
of the NAcc, Insula, ACC and mPFC in the anticipation of reward, which 
have been reported to be sensitive to developmental and behavioral 
differences (Bjork et al., 2010; Cao et al., 2019; Knutson and Greer, 
2008). 

Using both whole brain and hypothesis-driven (ROI) approaches, 
this study was designed to test whether the neuroimaging results show 
the predicted differences between high versus average/low risk-taking 
adolescents. If risk-taking at or near its peak during adolescence is 
based in part on hyperactivation of incentive and reward systems, and 
still maturing prefrontal functions, we would predict that divergence to 
be reflected in the differences between high and average/low risk takers. 
Specifically, based on theoretical models and on previously reported 
neuroimaging studies, it was hypothesized: (1) that the MID task would 
demonstrate robust striatal activation; (2) compared to the average/low 
risk behavior group, the high risk group would exhibit increased VS, 
amygdala and/or OFC activation; and (3) the high risk group would 
exhibit decreased dlPFC activation. 

2. Methods 

2.1. Participants 

Study characteristics are briefly summarized here with additional 
details regarding study design and methods described elsewhere 
(Demidenko et al., 2019). Participants in this neuroimaging study are a 
risk-taking classification-based subsample, invited to undergo MRI, of 
the Adolescent Health Risk Behavior (AHRB) study, which is designed to 
characterize behavioral, cognitive, psychosocial and neural correlates of 
adolescents’ risk behavior trajectories. AHRB consists of a non-
probability sample of 2017 (Agemean ¼ 16.8, AgeSD ¼ 1.1; Female 56 %) 
10th and 12th grade students recruited from nine public school districts 
across eight Southeastern Michigan counties. Study procedures were 
approved by the University of Michigan Institutional Review Board. 
From Phase I of the study, a subsample of 115 adolescents were recruited 
to participate in Phase 2, the neuroimaging phase of the study (aver-
age/low time after Wave 1: M ¼ 30.9 months, SD ¼ 5.0 months). Par-
ticipants identified as belonging in high versus average/low risk 
behavior categories, based on a factor-analyzed Behavioral Misadven-
ture Scale (BMS) that incorporated all risk behavior categories, were 
invited to participate in the neuroimaging phase. Of the 115 adolescents 
that participated, 108 completed the magnetic resonance imaging (MRI) 
portion of the visit. Seven participants (N ¼ 6, average/low risk; N ¼ 1, 
high risk) were ineligible or unable to participate in the MRI due to not 
meeting MRI safety eligibility/compatibility (e.g. claustrophobia (N ¼
3) or no formally documented medical clearance to rule out potential 
metal in body (N ¼ 4)). Of the 108 participants that completed the MRI, 
four participants were excluded from the analyses due to artifacts in the 
images that were not recoverable (N ¼ 2, average/low risk; N ¼ 1, high 
risk), and another due to ceasing to respond during the task (N ¼ 1, 
average/low risk). The final fMRI subsample (N ¼ 104; AgeMean ¼ 18.9, 
AgeSD ¼ 1.3; Female 57 %), of which N ¼ 41 were high-risk and N ¼ 63 
average/low risk, was included in the subsequent analyses and did not 
differ from the full sample in age, gender, or time from the original 
survey. 

2.2. Risk group classification: behavioral misadventure 

A questionnaire assessed participants’ self-reported engagement in 
15 risk behaviors in the last 12-months. Risk behaviors included: using 
1) cigarettes, 2) e-cigarettes, 3) alcohol, 4) marijuana, 5) amphetamines, 
6) narcotics, 7) sedatives or 8) street drugs (including cocaine, heroin, 
ecstasy, and LSD); 9) distracted driving (e.g., texting while driving); 10) 
drowsy driving; 11) driving while under the influence of alcohol; 12) 
riding with an alcohol-impaired driver; 13) having unprotected sex; 14) 
physical fighting; and 15) other risks resulting in serious injury to one-
self (e.g., riding a bicycle without a helmet). To summarize overall 
engagement in risk behavior and to give adequate weighting for low 
frequency but high health impact risk behaviors that could be used in 
identifying health risk profiles, the sample was randomized into two 
halves to conduct a principal component analysis (PCA) with the first 
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half and a confirmatory factor analysis (CFA) with the remaining half. 
Results were comparable and demonstrated satisfactory fit (Demidenko 
et al., 2019). A behavioral misadventure factor score (BMS), on which all 
of the risk behaviors loaded significantly, was saved for the entire 
sample and used in subsequent analyses (Cronbach α ¼ .78). Based on 
this latent factor score, a high risk group was classified based on an 75th 
percentile cutoff, and an average/low risk group based on falling within 
the 20th to 60th percentile from the full Wave 1 sample (N ¼ 2017). This 
produced distinct groups that were non-overlapping (Figure S1). Our 
BMS variable had a strong association with a factor derived score of 
substance use (self-reported 12-month marijuana, alcohol, e-cigarettes, 
cigarettes, and illicit drug use; RMSEA: .08; CFI: .97; TLI: .95; SRMR: 
.03), r ¼ .94, and the number of past 12-month self-reported health risk 
behaviors, r ¼ .89 during Wave 1. 

2.3. fMRI task 

To evaluate the neural activation of reward processing, the MID task 
reward (Knutson et al., 2000) was used to model the neural signatures of 
the anticipation of monetary reward (Cao et al., 2019; Bjork et al., 
2010). The MID is a well-established task for assessing reward pro-
cessing and is currently being employed across 21-sites in the national 
Adolescent Brain Cognitive Development (ABCD) study to measure the 
development of adolescent reward processing (Casey et al., 2018). 
Identical to the task described in Casey et al. (2018), the task in this 
study consists of three phases: anticipation, probe and outcome (that is, 
feedback). Each trial starts with a cue type (Win $0.20, Win $5, Lose $5, 
Lose $0.50, or No Money At Stake). Each cue lasts for 2000 ms and is 
followed by a jittered fixation cross (1500� 4000 ms). Following the 
jittered fixation cross, the target probe cue (187� 500 ms) appears that 
requires participants to respond in order to win or not lose money. If 
participants are too fast (or too slow), that trial is marked as incorrect. 
Following the probe phase, the outcome (or feedback) phase (2000 ms 
minus the target duration) indicates the outcome of that trial (for 
example, ‘You Win $5!’, ‘You Keep $0.200, ‘You Lose $50 or ‘No Money At 
Stake!’). There are twelve trial orders of the task, consisting of 50 
contiguous trials and 10 trial types per run (5:42 min long). Participants 
complete two runs of the MID task during the scan (Total: 100 contig-
uous trials and 20 trials of each of five trial types). The task is individ-
ualized with an initial mean response time (MRT) that is used from the 
practice run performed outside of the scanner minutes before the scan. 
Using the mean reaction time (RT) plus two standard deviations on 
correct trials, the MID task individualizes the difficulty to reach around 
60 % accuracy rate by adjusting the difficulty (that is, probe duration). 
See Figure S2 in Supplementary Materials for a schematic of the task. 

Prior to the scan, participants were informed of all cue-related out-
comes and completed a practice trial of the MID task. Participants were 
explicitly told that their performance on the task during the scan (for 
example, $5 Win Cue is was associated with an opportunity to win $5 
and a $5 Lose cue was associated with an opportunity to not lose $5) 
would be associated with the compensation they can get for their cu-
mulative earnings during the MID (Maximum $30). Stimuli were pre-
sented via the IFIS system (MRI Devices, Inc., Milwaukee, WI), an 
integrated stimulus display and experimental control package, also 
capable of recording button presses. Lenses were available with the IFIS 
system to correct subject vision, as needed. 

2.4. fMRI data acquisition 

Data were acquired using a GE Discovery MR750 3.0 T scanner with 
a standard adult-sized coil (Milwaukee, WI). A full-brain high-resolution 
T1 SPGR PROMO scan was acquired that is used in preprocessing (TR 
¼7000 ms, TE ¼2900 ms, flip angle ¼ 8�, FOV ¼25.6 cm, slice thickness 
¼1 mm, 208 sagittal slices; matrix ¼ 256 � 256). Before the MID task, a 
fieldmap was acquired using spin-echo EPI (TR ¼7400 ms, TE ¼80 ms, 
FOV ¼21.6 cm, 90 � 90 matrix) with opposite phase encoding polarity 

(A→P, P→A). Two functional T2*-weighted BOLD MID runs were ac-
quired in the axial plane using a multiband EPI sequence (MB factor ¼ 6) 
of 60 contiguous axial 2.4 mm slices (TR ¼800 ms, TE ¼30 ms, flip angle 
¼ 52�, FOV ¼21.6 cm, 90 � 90 matrix, volumes ¼ 407). 

2.5. fMRI data analyses 

FMRI data were reconstructed and realigned using SPM12, physio-
logical noise was removed using RETROICOR (Glover et al., 2000), and a 
fieldmap correction was applied in SPM12 to each T2* run to recover 
inhomogeneity of signal in the B0 field. Preprocessing steps were 
completed using FSL (FMRIB’s Software Library, www.fmrib.ox.ac. 
uk/fsl) FEAT (FMRI Expert Analysis Tool) Version 6.00. Our pre-
processing steps included: registration to high resolution structural and 
standard space MNI 152 image using FLIRT (Jenkinson and Smith, 2001; 
Jenkinson, Bannister, Brady, & Smith, 2002), motion correction using 
MCFLIRT (Jenkinson et al., 2002), non-brain removal using BET (Smith, 
2002), spatial smoothing using a Gaussian kernel of FWHM 5 mm, 
grand-mean intensity normalisation of the entire 4D dataset by a single 
multiplicative factor and high pass temporal filtering (Gaussian--
weighted least-squares straight line fitting, with sigma ¼ 50.0 s). 

First-level analyses were performed by using FEAT. Time-series sta-
tistical analysis was carried out using FILM with local autocorrelation 
correction (Woolrich et al., 2001). Similar to other studies (Cao et al., 
2019; Hagler et al., 2019; Lamm et al., 2014), both Anticipation and 
Feedback events were modeled (15 explanatory variables), in addition 
to six motion parameters [translation (XYZ) and rotation (pitch, roll, 
yaw)] as well as their derivatives for a total of 12 motion regressors. 
Anticipation events included: Big Win, ($5.00) Small Win ($0.20), 
Neutral (No money at stake), Small Lose ($0.20) and Big Lose ($5.00) 
condition cues. Feedback included both hit and miss events for: Big Win, 
Small Win, Neutral, Small Lose, Big Lose. To control for the temporal 
effect of motion of the BOLD signal, we used the command fsl_motio-
n_outliers to generate an additional confound list censoring frame 
displacement (FD) volumes that exceeded FD > .9. To average/low 
across the two runs, a second-level model was defined for each partici-
pant using fixed effect analysis in FEAT. 

2.6. Whole brain 

Group-level analyses were performed using non-parametric permu-
tation tests to create null non-parametric distributions and control type 
1 error rates (Eklund et al., 2016), with cluster correction performed 
using Threshold-Free Cluster Enhancement (TFCE) in order to accu-
rately differentiate both focal and broad level activation that may be lost 
using standard parametric models (Smith and Nichols, 2009; Winkler 
et al., 2014). As described in Pfeifer et al. (2019), nonparametric models 
reduce assumptions about spatial distributions of noise within fMRI and 
reduce false positive rates. A design matrix was used differentiating 
group (High versus Average/low risk), with a covariate of age that was 
demeaned and entered into the model. To perform the analysis, FSL’s 
randomise command (5000 permutations) was used with zstat files 
produced from Feat Second Level’s for reward anticipation, contrast Big 
Win > Neutral. A cluster-level threshold of FWE-corrected p < .05 was 
used to identify significant values in the statistical maps for a mask 
(Supplementary Figure S3). 

2.7. Regions of interest 

A priori regions of interest (ROI) from Neurosynth (www.neurosynth. 
org) were used to evaluate differences of mean signal intensity for 
reward anticipation in high versus average/low risk groups. These re-
gions were selected based on overlap in original descriptions of the dual 
systems models and from 18 studies (totaling 70 coordinates, with 
overlap; see Supplementary Table S1 and Figure S3a) described in two 
reviews of adolescent neurodevelopment and risk behavior (reviewed in 
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Galv�an, 2010; Sherman et al., 2018). Region labels (such as Nucleus 
Accumbens) from the review were used as the search terms in Neuro-
synth. Due to multiple peaks in the vmPFC region defined on Neuro-
synth, the NIFTI file was downloaded and thresholded in fsleyes in 
conjunction with coordinates from the 20 study meta-analysis that 
referred to the vmPFC. A central (ventral) peak from the Neurosynth ROI 
(see Figure S3b) was selected that overlapped visually with the co-
ordinates from the ROI meta-analysis that was consistent with function 
in secondary rewards (Haber and Behrens, 2014). A list of Neurosynth 
MNI coordinates (Supplementary Table S2), were converted into voxel 
space. Based on previous task-based and resting fMRI procedures for ROI 
analyses, the central voxel coordinates for ROI’s were used with fslmaths 
to create 10 mm spheres. For each ROI, the voxels from each contrast 
mask (using z-statistics produced by Feat Second Level) were averaged 
to create a mean signal intensity value that was extracted using fslmeants 
and used in analyses in R version 3.6.1 (R Core Team, 2019). To control 
the type I error rate and consider relationships among ROI’s that may 
differentiate risk and age profiles, a Multivariate analysis of variance 
(MANOVA) was performed. Subsequently, to examine the association 
between risk profile and mean signal intensity of each ROI, fourteen 
multiple regression models are performed, controlling for age. To con-
trol for multiple comparisons (14 multiple regression models), rather 
than using a highly conservative Bonferroni correction, a less conser-
vative False Discovery Rate (FDR) was used, and adjusted p-values are 
reported where significant differences arise (Benjamini and Yekutieli, 
2001; Noble, 2009). The FDR rate was calculated by including an array 
of p-values from the models of interest into the p.adjust() function in R 
(“BH” method), which returns an array of adjusted values. FMRI Scripts 
and files used in these ROI and permutation analyses (with associated 
output files) are available on github (https://github.com/demiden 
m/AHRB/tree/master/RewardRisk). 

2.8. Post-hoc analyses 

To evaluate the effects of stable, multi-wave, risk profile, a combi-
nation of waves administering self-report measures of risky behaviors 
were used to define ‘stable high’ (that is, 75th percentile or higher on 
two waves of survey response) and ‘stable average/low’ (20th-60th 
percentile on two waves) risk profiles. These profiles were used to re- 
examine the ROI and whole brain analyses to determine whether there 
are significant differences between the persistently high versus average/ 
low risk behavior profiles used to predict neural activation. This method 
may evoke differing neural properties that may capture robust individ-
ual differences in problematic behaviors as opposed to a single self- 
reporting of risk engagement. 

3. Results 

3.1. Descriptive and behavioral 

There were no significant group differences between overall per-
formance (accuracy and response times) in the high and average/low 
risk groups (p > .05) during MID trials, nor for big win or neutral trials 
(Table 1; Figure S5). Notably, response times were only collected by E- 
Prime for accurate trials, thus we report only the variation with regard to 
response times with respect to hit and not miss trials (Table S4; 
Figure S6). Moreover, there were no significant differences in time 
before wave 1 and scan 1 (Figure S7), sex, or parental education between 
groups (p > .05). 

Conversely, High risk (N ¼ 41) and average/low risk (N ¼ 63) groups 
varied with respect to age. Specifically, those in the high risk group were 
significantly older (p < .01, d ¼ .52; M ¼ 19.3, SD ¼ 1.4) than those in 
the average/low risk group (M ¼ 18.6, SD ¼ 1.3; see Table 1). Due to the 
significant age-related difference found in sensitivity to reward pro-
cessing in previous studies (Bjork et al., 2010; Dhingra et al., 2019), age 
was covaried out for in the subsequent analyses. Age significantly 

related with risk group (r ¼ .30) and the continuous BMS variable (r ¼
.39). 

3.2. Region of interest (ROI) analyses 

First, to examine the association reward anticipation and adolescent 
risk behaviors, we used hypothesis-driven a priori ROI’s to examine 
recent theoretical models. To analyze the variance among the 14 ROI’s, 
the MANOVA revealed no significant activation difference between risk 
profiles (average/low versus high), Wilk’s lamba ¼ .83 F(14, 87) ¼ 1.26, 
p ¼ .25, nor an interactive effect of risk group (high versus average/low) 
and age, Wilk’s lamba ¼ .93 F(14, 87) ¼ 0.93, p ¼ .53. This indicated 
that there were no adjusted-mean differences in reward anticipation 
activation among the fourteen ROI’s that are associated with age or self- 
reported risk. In the multiple regression models examining the associa-
tion between risk profile (high versus average/low risk) and activation 
to the anticipation of big reward versus neutral trials in 14 ROI’s, con-
trolling for age, there were no significant associations when correcting 
for multiple comparisons (Supplementary Table S3 for corrected and 
uncorrected values). 

3.3. Whole brain analyses 

Consistent with prior work using the MID task, our task evoked 
robust activation of the reward regions during reward anticipation, as 
hypothesized (Figure S8). To examine whether Wave 1 average/low risk 
(N ¼ 63) and Wave 1 high risk (N ¼ 41) groups differed in neural 
activation during reward anticipation, we conducted a nonparametric 
whole brain analysis (adjusted for age). Contrary to the hypothesized 
neurodevelopmental models, however, and reflecting inconsistencies in 
recent literature, there were no significant group differences in activa-
tion in regions specified in the neurodevelopmental models (e.g, afore-
mentioned a priori ROI’s). Moreover, the high-risk group (N ¼ 41) did 
not exhibit greater activation in any voxels/clusters as compared to the 
average/low risk group (N ¼ 63). However, consistent with recent evi-
dence (Sherman et al., 2018), in a direct contrast between groups, the 
average/low risk group exhibited several significant clusters in the 
whole brain analysis as compared to the high risk group that were 
outside of the regions specified in the neurodevelopmental models. 
Specifically, the average/low risk group had greater activation (p < .05; 

Table 1 
Demographic characteristics and behavioral performance of full sample 
completing the Monetary Incentive Delay Task by Risk Profile.   

Average/low 
n ¼ 63 

High 
n ¼ 41 

Total 
n ¼ 104 

Effect Size 

Sex, Female n (%) 37 (57.1) 22 (53.7) 59 (56.7) Ф ¼ .02 
Race, n (%)     
Black, non-Hispanic 12 (19.0) 3 (7.3) 15 (14.4)  
White, non-Hispanic 40 (63.5) 34 (82.9) 74 (71.2)  
Other 5 (8.0) 1 (2.4) 6 (5.7)  
Hispanic/Latinx 6 (9.5) 3 (7.3) 9 (8.7)   

M (SD) M (SD) M (SD)  
Age 18.6 (1.3) 19.3 (1.4) 18.9 (1.3) d ¼ .52** 
Parental Education 4.4 (1.1) 4.1 (1.2) 4.3 (1.2) d ¼ .26 
BMS � 0.28 (0.1) 0.83 (0.8) 0.16 (0.6) d ¼ 1.95*** 
Overall Acc. % 57.4 (3.2) 56.2 (3.1) 56.9 (3.2) d ¼ .38 
Win Big 63.7 (9.2) 61.2 (9.1) 62.7 (9.2) d ¼ .27 
Win Small 56.8 (9.5) 59.3 (9.7) 57.8 (9.6) d ¼ .26 
Neutral 49.8 (14.2) 44.5 (14.5) 47.7 (14.5) d ¼ .37 
Lose Small 56.3 (9.5) 56.5 (7.7) 56.4 (8.8) d ¼ .02 
Lose Big 60.2 (10.5) 59.4 (10.4) 59.9 (10.4) d ¼ .08 

BMS ¼ Behavioral Misadventure Score; WASI IQ ¼Wechsler Abbreviated Scale 
of Intelligence; Parental Education: 1 ¼ grade school or less, 2 ¼ Some High 
School, 3 ¼ Completed High School, 4 ¼ some college, 5 ¼ completed college, 6 
¼ graduate or professional school. Acc ¼ Accuracy; d ¼ Cohen’s d (Small ¼ .2; 
Medium ¼ .5, large ¼ .8). 
p < .05*, p < .01**, p < .001***. 
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FWE-Corrected) in the dorsal striatal, precuneus, posterior parietal, 
primary visual, primary cortex, and cerebellar regions (See Table 2; 
Fig. 1). 

3.4. Post-hoc analysis of adolescents with risk-group transition 

For the stable, multi-wave, comparison of risk profiles, reward 
anticipation for stable high and stable average/low were compared. As 
expected, there was a significant difference in the number of adolescents 
moving to high versus moving to the average/low risk group (X2(3) ¼
94.6, p < .001, Φ ¼ .98), whereby 23 adolescents (Mean Age ¼ 18.6, SD 
¼ 1.1) moved from the average/low group to the high risk group, and 
five adolescents (Mean Age ¼ 19.0, SD ¼ 1.4) moved from the high risk 
group to the average/low risk group when using multi-wave information 
to compose a stable risk profile. These groups did not significantly on 
age, sex, or parental education (p > .05). After excluding adolescents 
that transitioned to different risk profiles (N ¼ 27) and those that did not 
complete a questionnaire in a subsequent wave (N ¼ 6), this reduced the 
subsample to 70 adolescents, 37 stable average/low risk (M Age ¼ 18.6, 
SD ¼ 1.3) and 33 stable high risk (Mean Age ¼ 19.4, SD ¼ 1.3) ado-
lescents. Analyses between the stable high and average/low-risk groups 
afforded an opportunity for a more stringent test of this individual dif-
ference contrast. 

3.5. Post-hoc region of interest analyses 

The post-hoc analyses evaluating ROI differences in stable high 
versus stable average/low risk takers demonstrated comparable results 

to the wave 1 risk profile. Specifically, the analysis of variance among 
the 14 ROI’s, the MANOVA revealed no significant association between 
risk profile (average/low versus high), Wilk’s lamba ¼ .67 F(14, 53) ¼
1.82, p ¼ .06, and no interactive effect of group of risk (high versus avg/ 
low) and age, Wilk’s lamba ¼ .85 F(14, 53) ¼ 0.64, p ¼ .81. Similar to 
Wave 1 risk profiles, stability of profiles over time did not reveal a 
relationship among the fourteen ROI’s. Moreover, the fourteen multiple 
regression models revealed comparable results to the wave 1 risk 
groups. In the multiple regression models, when corrected for multiple 
comparisons, there were no significant associations (Supplementary 
Table S3 for corrected and uncorrected values). 

3.6. Post-hoc analyses whole brain analyses 

The post-hoc analysis evaluating the whole brain activation to the 
anticipation of big reward versus neutral condition in stable high versus 
stable average/low risk takers demonstrated different results from that 
of Wave 1 sample defining risk profiles. Specifically, the nonparametric 
TFCE analysis revealed no-significant clusters that surpassed the α < .05. 
At a lower threshold of α < .08, in a direct contrast between groups, 
revealed clusters that were significant in the initial analysis (See Table 2; 
Fig. 2), specifically greater activation in Left Precuneus (p ¼ .07) in 
average/low as compared high risk takers. Likewise, at a lower 
threshold (p < .08), average/low risk takers demonstrated greater 
activation in Right dlPFC (p ¼ .05), and Paracingulate Gyrus (p ¼ .07). 
These results suggest slight convergence, while also variability between 
single versus multiple assessment of risk profiles in whole brain acti-
vation that necessitates increased power. Notably, using the Euclidean 
distance between peak coordinates 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxwhole brain � xROIÞ
2
þ ðywhole brain � yROIÞ

2
þ ðzwhole brain � zROIÞ

2
q

used by Hong et al. (2019, pp. 387), comparing the peak location of 
dlPFC in the whole brain results to that of the a priori dlPFC coordinate, 
there was a 64.5 mm distance between peaks, suggesting difference in 
the location of peak activation. Further, similar to the subsample (N ¼
70) and full sample (N ¼ 104), activation in right dlPFC was present only 
at a lower threshold, p ¼ .05 and p ¼ .06, respectively. Statistical maps of 
tests and presentations of ROI’s from meta-analysis coordinate spheres 
are available on Neurovault (neurovault.org/collections/6282/) 

3.7. Sensitivity analyses 

To examine whether there was a continuous effect of BMS and/or 
from Wave 1 on brain activation during Big Win Reward versus Neutral 
anticipation phase in MID task, we created a nonparametric model (FSL 
randomise) to test the continuous variable of BMS, Age and brain. The 
continuous BMS model, covaried for age, demonstrated no significant 
associations (p > .05) between BMS and brain. However, at a lower 
bound threshold (p < .08), comparable clusters were found in the 
continuous BMS model (Table S5) and the dichotomous comparison of 
High versus Average/Low risk groups (Table 2). This reduced effect in 
the continuous model may be explained by the increased variance 
explained between BMS and age (15 %) versus risk group and age (9%). 
Meanwhile, no significant effect of age (continuous) on brain was pre-
sent, with or without the covariate of the BMS in the nonparametric 
model. 

4. Discussion 

4.1. Neural differences of risk and behavior 

Over the last 15 years, several neurodevelopmental models have 
been proposed as a way to explain in part the rise in risky behaviors 
during mid-to-late adolescence. Despite a strong commitment to 
exploring the neural differences in cognitive control and reward 

Table 2 
Whole Brain Analyses: significant differences in activation for Average/low 
versus High Risk-taking adolescents to anticipation of big reward versus neutral 
contrast.  

Wave 1 Average/low (N ¼ 63) > High (N ¼ 41) Risk-taking 

Cluster Indexa Cluster peak 
x, y, z 

# of Voxels Cluster Label b p * 

14 -15, -3, 16 722 Left-Caudate .03 
13 22, -62, -16 208 Right Cerebellar .03 
12 16, -82, 4 129 Right Primary Visual .04 
11 -22, -72, 2 70 Left Primary Visual .04 
10 -17, 23, 12 44 cLeft-Caudate Nucleus .04 
9 6, -74, 10 36 Right Primary Visual .04 
8 -10, -60, 50 36 Left Precuneus .04 
7 18, -36, 34 25 cPosterior Cingulate .04 
6 -16, -50, -8 22 Left-Secondary Visual .04 
5 34, -30, 28 19 cLeft-Parahippocampal < .05 
4 4, -40, 42 17 Posterior Cingulate < .05 
3 -4, -32, 62 11 Primary Motor < .05 
2 -4, -72, -2 10 Left Visual < .05  

Longitudinally Stable Average/low (N ¼ 37) > Stable High (N ¼ 33) Risk-Taking 

Cluster 
Indexa 

Cluster 
peak 
x, y, z 

# of 
Voxels 

Cluster Label b p # 

4 30, 32, 34 181 Right Dorsolateral Prefrontal 
Cortex 

.052 

3 -8, -60, 48 17 Left Precuneus .071 
2 4, 20, 40 15 Paracingulate Gyrus .074  

a Cluster index identified using fsl command cluster that identified peak 
clusters in volume, index 1 not reported due to number of voxels ¼ < 3, clusters 
plotted on MNI brain in Figs. 1 and 2. 

b To identify region for cluster label, we used a combination of reverse 
inference on neurosynth.org/locations to identify top association with cluster 
activation and cross-referenced with FSL Harvard-Oxford Cortical Structural 
Atlas. 

c Implies regional association, due to peak being in white matter. 
* Probability α < .05 used to threshold results of TFCE output from randomize. 
# Lowered α < .08 used to threshold results of TFCE output from randomise (<

.05, results null). 
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processing across a broad age-range, inconsistencies in definitions of risk 
and parameter selection have led to mixed interpretations (Crone and 
Dahl, 2012). Furthermore, proxies of risk behaviors and a priori ROI 
analyses have contributed to heterogeneous results that have not repli-
cated theoretical models (Sherman et al., 2018). To our knowledge, this 
study is the first to use several ecological measures to derive high and 
average/low risk behavior groups among adolescents, as well as longi-
tudinally stable high versus average/low risk-taking profiles, to explore 
prospective neurodevelopmental differences using both a priori ROI and 
whole brain analyses. The variability in results and lack of generaliz-
ability or neurodevelopmental heuristics in prior studies may be related 
to sample sizes, independent variable and parameter selection, ROI 
identification, and an assumption of homogeneity in adolescents. 

Using predefined ROI’s based on neurodevelopmental models and 
prior literature, there was little evidence for increased recruitment of 
reward anticipatory neurocircuitry in high-risk versus average/low risk- 
taking adolescents. Although frequently researched regions, specifically 
the ‘hot spots’ of reward processing (Woo et al., 2017), such as the 
ventral striatum, did produce the predicted robust activation in statis-
tical maps during the anticipation of a big monetary reward compared to 

a neutral cue, this activation did not differentiate risk profiles among 
adolescents. In some ways, this latter finding supports the notion evoked 
by Sherman et al. (2018), whereby studies have not consistently found 
differences across risk-taking behaviors that are often cited by neuro-
developmental models. 

To avoid constraining interpretations to a priori ROI’s and behavioral 
properties of the task, a nonparametric analysis on the whole brain was 
conducted that revealed significant and non-significant results, varying 
across the defining criteria for high and average/low risk profiles. In the 
initial comparison that used self-report risk behavior measures from 
Wave 1, the comparison of high versus average/low risk takers revealed 
increased activation across a broad range of regions. These included the 
dorsal striatal, primary visual, primary motor, precuneus, posterior 
cingulate and cerebellar regions. However, when using more than one 
wave of risk behavior self-reports to identify stable high and average/ 
low risk profiles, the activation differed from the Wave 1 whole brain 
analysis. Specifically, neither of the clusters of activation based on Wave 
1 analysis were represented in the stable high and stable average/low 
risk analysis at a p < .05 level. Taken together, the findings indicate 
differences in independent variable and parameter selection, whereby 

Fig. 1. Whole Brain Permutation Wave 1: Average/low > High Risk-Taking Profile during (FWE-corrected) anticipation of Big win versus Neutral contrast, 
thresholded p < .05. 
Non-permutation test includes 5000 permutations, using FSL randomise with threshold-free cluster enhancement. Statistical maps thresholded at lower value .05 – 
clusters selected from Table 1. 
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power and the heterogeneity across subjects alters results. 
Recent inconsistencies in findings can be attributed to multiple 

sources, such as sample sizes (Button et al., 2013; Cremers et al., 2017), 
nonindependent analyses that may contribute to ‘voodoo’ correlations 
(Vul et al., 2009), or between-study task differences (Sherman et al., 
2018). It is apparent from recent reviews that neuroimaging studies 
suffer from small samples, whereby the average/low sample size in 
adolescent risk behavior literature is <50 participants (Galv�an, 2010; 
Sherman et al., 2018). Cremers et al. (2017) argued that small samples, 
such N ¼ 30, are one source of misleading results. A review of early fMRI 
research demonstrated that often a strategy was to compute separate 
correlations of voxels/clusters with behavior that exceeded a threshold 
in a group level map, where these correlations with behavior on occa-
sion even exceeded intraclass correlations of regions of interest (Vul 
et al., 2009). Some of these correlations are attributable to extremely 
small samples that systematically inflate correlation between neural 
activation and behavior (Yarkoni et al., 2009). Furthermore, differences 
in tasks and contrasts used in studies are often overlooked. In the 23 
studies of adolescent risk taking reviewed by Sherman et al. (2018), it is 
evident that several different tasks are administered in the literature, 
such as the MID, Stoplight signal, Wheel of Fortune, Iowa Gambling, and 
Coin-flip task, which likely vary in the cognitive processes they engage 
(Richards et al., 2013). These between-study differences of tasks make it 
difficult to discern the generalizability of neural correlates with 
behavior. Animal models have demonstrated that learning what to and 
not to approach is variable, while some circuits are related to prediction 
error, others may be related to goal-oriented models (Eshel and Stein-
berg, 2018). For example, the MID, wheel of fortune or balloon analogue 
risk task may relate to distinct circuits that show an important role for 

learning the action and event values through trial and error, whereas 
affective and peer paradigms may relate to efferent working models that 
make decisions regarding future events that may impact goal-directed 
choice. In the latter decision-based model, values are estimated with 
each action using inferences based on costs, benefits and some forms of 
neural signals ability to generalize to new situations (Rangel and Hare, 
2010; Schultz, 2015). 

Distinctions in how decisions are made may be critical as there are 
heterogeneities in animal behaviors, whereby some rely on a trial-and- 
error and others on goal-directed choice (Eshel and Steinberg, 2018). 
With respect to neural properties, such intricacies of connections may 
impact the region of activation. Although the VS/NAcc dominate the 
core locations of risk/reward processing in the neurodevelopmental 
models, neural processing may depend on various aspects, some of 
which include: type of learning (or encoding paradigm); whether the 
processing relates to afferent or efferent systems; whether a reward is 
contingent on action and if a reward is primary or secondary (Haber and 
Behrens, 2014; Padoa-Schioppa and Conen, 2017; Szczepanski and 
Knight, 2014). These distinctions are critical in assessing whether results 
do (or do not) converge across studies and have a similar predictive 
utility. 

Studies evaluating the central tenets of the neurodevelopmental 
models have largely interpreted the task activation of VS/NAcc to reflect 
incentive salience (or motivation to act) which may be associated with 
risky behaviors, however, incentive salience may also be related to 
attentional processes and so may be difficult to disentangle using ab-
stract task contrasts. There is growing evidence that the VS (which in-
cludes the NAcc) is actively involved in effort and intrinsic motivation 
(Schouppe et al., 2014), which can be associated with value (Inzlicht 

Fig. 2. Whole Brain Permutation Longitudinally Stable 
Average/low > High Risk-Taking during anticipation of Big 
win versus Neutral contrast, thresholded p < .08 (FWE-cor-
rected). 
DLPFC ¼ Dorsolateral prefrontal cortex. Non-permutation test 
includes 5000 permutations, using FSL randomise with 
threshold-free cluster enhancement. Statistical maps thresh-
olded at lower value, p < .08, thresholding at .05 provided no 
significant differences – clusters selected from Table 1.   
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et al., 2018). Therefore, activity during task performance in some brain 
regions, such as the VS/NAcc and dorsal striatum, may reflect an 
interactive effect of reward and attention (Breckel et al., 2011; Krebs 
et al., 2012). Such that, reward and attention may arise from similar 
neural mechanisms (Westbrook and Braver, 2016), making it difficult to 
derive an accurate assessment of reward using abstract methods of 
subtraction in task-based fMRI (Poldrack and Yarkoni, 2016). To derive 
improved estimates of reward or risky decision-making in task-based 
fMRI, increasing attention should be given to the construct validity of 
tasks and their presumed estimates of cognitive processes, such as 
incentive salience (Demidenko et al., 2020). 

Outside of the domain of neural estimates, there is substantial het-
erogeneity in the behavioral definition of risky behaviors. Research on 
normative samples often utilizes variables that may not be ecologically 
valid proxies of real-world risk behavior. While some use psychological 
characteristics such as sensation seeking (Demidenko et al., 2020), 
general measures of risky behaviors (Op de Macks et al., 2016; Saxbe 
et al., 2015), substance use (Bjork et al., 2011; Chung et al., 2015) or 
likelihood of engaging in future risk (Galvan et al., 2007), several studies 
associate neural activation as a function of risk as measures by the task, 
such as driving (Cascio et al., 2015), probability or gambling tasks (Eshel 
et al., 2007; Op de Macks et al., 2016; Qu et al., 2015; Telzer et al., 
2015). These proxy-based measures of risky behavior may be inappro-
priate as laboratory tasks that may require larger samples to capture 
small effects (Sherman et al., 2018) and that have limited evidence for 
age-related differences (Defoe et al., 2015), and often serve as poor 
predictors of real-world risk behaviors in normative adolescent pop-
ulations (Demidenko et al., 2019). 

For neurodevelopmental models to be used as indicators of sensation 
seeking and risk behaviors, it is important to acknowledge that adoles-
cent behavior is heterogeneous and that this behavior should be 
modeled as such (Bjork and Pardini, 2015; Sherman et al., 2018). With 
respect to the dynamic system of the brain, the assumption that in-
dividuals are homogenous is often violated (Beltz et al., 2016), and thus 
it is important to identify unique and similar patterns in the individuals 
that may be used systematically to more effectively explain behavioral 
change (Beltz & Gates, 2017). This alternative technique may be more 
appropriate in identifying networks, which were proposed in earlier 
reviews (Pfeifer and Allen, 2012), that may offer some stability of 
measurement within and between participants, as opposed to the 
mean-level task effects that often have poor test-retest reliability (Elliott 
et al., 2019). For example, although two substance users on paper may 
look similar, the neural activation may vary as a function of attention, 
motivation, or pleasure that are based on differential reward signals 
(Schultz, 2015), resulting in mean-activation during events of a task that 
will vary, but may reflect similar patterns in their neural dynamics that 
are missed in a ‘pooling’ of activation. Alternatively, since the location 
of activation in a particular region may vary between samples (or in-
dividuals), such as the dorsal anterior cingulate may vary between 
samples (Hong et al., 2019), response-patterns or heterarchical systems 
may be an alternative method to model differences in location, timing or 
interactions of neural activation (Haxby et al., 2011; Pessoa, 2017). 
Moving forward, a measure that accounts for the brain being a dynamic 
and plastic system may be more appropriate to speculate about the 
interaction of neural systems, how these systems change across tasks and 
time, and what the underlying neural signatures of risk taking may 
entail. 

4.2. Limitations 

Although this study attempts to quantify risk behaviors in developing 
adolescents, the limitation of our analysis is that some of our parameters 
vary from previous studies. Prior work evaluating risk behaviors and 
neural activation incorporated cross-sectional and longitudinal analyses 
differing across parameters in task and definition of risk. For example, in 
cross-sectional samples, while Benningfield et al. (2014) examined the 

association between discounting (as measured by Monetary Choice 
Questionnaire) and differences in activation to big, small and neutral 
rewards, Claus et al. (2018) examined the moderating effect of substance 
use on the association between brain activation and risk-taking ten-
dencies on the Balloon Analogue Risk Task (BART). Further, in longi-
tudinal analyses of adolescent risk behaviors, whereas Qu et al. (2015) 
explored the mediating effect of ventral striatal activation on the asso-
ciation between parent-child relationships and risk-taking on the BART, 
Braams, van Duijvenvoorde, Peper, & Crone (2015) examined associa-
tions between changes in nucleus accumbens response during a Two 
Choice task (heads or tails) and risk performance as captured by the 
BART and self-report measure of Behavior Inhibition System/Behavior 
Action System. Not surprisingly, due to variability in definition of risk 
and parameters, results varied from study to study. This degree of 
variability has also been reported for within-task contrasts, such as the 
MID (Demidenko et al., 2020). 

Importantly, our study focused on individual differences among 
adolescents, and thus the results do not capture age-related change that 
is represented in the neurodevelopmental models. This study focused on 
variation across risk profiles, both cross-sectionally and longitudinally, 
to determine whether risk behavior variability among adolescents at or 
near the developmental peak of risk taking can be explained by neural 
activation that has been posited in previous models. Activation in 
adolescent risk profiles, in this analysis, cannot be attributed to either of 
the developmental models. Although age-related effects were not pre-
sent here, the age-related trends may still be evident in the models, but 
the heuristics may not necessarily provide the evidence necessary to 
explain differences between adolescents who do and do not engage in 
risk behaviors, as was previously suggested (Spear, 2000). 

4.3. Conclusion 

This is the first study to our knowledge to examine differences in 
neural activation across real-world risk profiles (from multiple waves) 
and a focal-age range when risk behaviors peak in adolescents. The re-
sults in this study demonstrate the previous hypothesized models did not 
explain the variation in risk profiles, and whole brain differences may 
depend on how risk profiles are defined. Moreover, common hot spots of 
reward related research, such as the ventral striatum, do not differen-
tiate general risk profiles among adolescents, even though the task eli-
cited a robust overall activation pattern that replicates prior research. 
This posits an important reassessment of how risk is captured and 
modeled in the developing adolescent brain, in order to improve pre-
dictive utility, interpretation for interventions, and generalizability and 
reproducibility of results. 
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