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Expanding the uses of genome-scale
models with protein structures
Nathan Mih1,2 & Bernhard O Palsson1,3

Biology is reaching a convergence point of
its historic reductionist and modern holistic
approaches to understanding the living
system. Structural biology has historically
taken the reductionist approach to deeply
probe the inner workings of complex mole-
cular machines. In contrast, systems biology
and genome-scale modeling have organi-
cally grown out of the wealth of data now
being generated by diverse omics measure-
ments. In the late 2000s, a proposed inter-
disciplinary field of structural systems
biology pitched the merger of these two
approaches, with widespread applications in
pharmacology, disease modeling, protein
engineering, and evolutionary studies. In
this commentary, we highlight the chal-
lenges of integrating these two fields, with a
focus on genome-scale metabolic modeling,
and the novel findings that are made
possible from such a merger.

A challenge for converging fields

T he field of structural systems biology

represents an integration of two

established, but quite different, fields:

structural biology and systems biology.

Given the different histories, underlying

paradigms, ways of thinking, and the char-

acteristics of the data types used in these

two fields, such an integration is not without

its challenges. In spite of these fundamental

differences, a convergence is not only

happening, but is necessary to achieve the

ultimate goals of systems biology.

The number of experimental structures in

the Protein Data Bank (PDB) continues to

steadily rise each year. A key distinction

between structural data and the omics data

types prevalent in systems biology is the capa-

bility of structural data to “zoom in” to the

atomic level to study fundamental details of

chemical interactions. A structural biologist

knows the value of mechanistic insights that

can be gained from this information. Struc-

tural data offer new features, such as a three-

dimensional context to mutations, post-trans-

lational modifications, protein domains, link-

ing needs for functionalizing prosthetic groups

to metabolism, ROS damage sites, and others,

enabling the execution of novel studies in

systems biology. We have now reached the

point where structural information for certain

organisms, such as Escherichia coli and Homo

sapiens, can be utilized at the systems level.

In contrast to structural biology, a systems

biologist “zooms out” to see thousands of

biomolecular interactions happening simultane-

ously. The totality of such interactions is experi-

mentally studied through the generation of

various omics data types and by constructing

large-scale mechanistic frameworks to relate

individual components represented in such data

sets. The success of genome-scale metabolic

modeling can be attributed to high-quality,

bottom-up reconstructions of metabolic, protein

synthesis, and transcriptional regulatory

networks on an organism-specific basis.

What does systems biology need from
structural biology?

To understand how structural biology can

be utilized like an additional omics data

source in systems biology, we first describe

how we use the terms “structural genomics”

and “structural proteomics”. Structural

genomics has widely been used to describe

the determination of all 3D structures of

proteins within an organism’s genome.

Worldwide collaborations have led to the

deposition of over 150,000 structures in the

PDB, and novel protein folds and families

have been uncovered as a result of this

exhaustive effort. With systems biology

models, there is a clear benefit to having this

information available, making accessible a

literal new dimension of information to

describe the components of a cell down to

the molecular level.

However, knowing just the 3D struc-

tures of proteins is only one-half of what is

needed to fully realize structural data as an

omics data type. The term structural

proteomics has increasingly been used to

describe novel experimental approaches for

determining the millions of transient inter-

actions between proteins and other compo-

nents of the cell (Piazza et al, 2018). Thus,

we can attempt to delineate the two terms,

with one being defined as the study of

what is encoded and produced directly

from the genome (structural genomics) and

the other as the result of these encoded

components interacting with their environ-

ment (structural proteomics). Yet, there is

no clear separation between the two terms

as structural determination technologies

advance—in particular, in-cell NMR tech-

niques actually resolve structures at an

atomic level within a cell (Tanaka et al,

2019), while cryo-electron tomography

(cryo-ET) promises to answer both ques-

tions of structures and interactions by visu-

alizing all components interacting with
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each other at a point in time (Beck &

Baumeister, 2016). For clarity, in this

commentary we will simply refer to the

overall collection of protein structures in

the context of systems models as the struc-

tural proteome.

With these data sets becoming commonly

available, new computational and data chal-

lenges arise. Computational tools are

required for numerous integration problems,

such as for putting together the pieces of

higher-order protein complexes, filling in the

gaps of missing structures and interactions

with in silico predictions, and formally inte-

grating data derived from this information

within systems models. None of these are

trivial problems to solve, but recent

advances in all these areas encourage us that

this future is not too far away.

Adding protein structures to genome-
scale metabolic models

In 2009, a structural genomics project for

the thermophile Thermotoga maritima was

completed. At the same time, a newly

reconstructed metabolic network of

T. maritima provided the context with

which to analyze this compendium of

protein structures (Zhang et al, 2009). This

pioneering study created the first genome-

scale model with protein structures, or

GEM-PRO. With this integrated model, the

authors addressed questions associated

with the evolution of new pathways in a

metabolic network, focusing on two

competing theories of pathway evolution.

One theory posited that functionality

evolves by the recruitment of nearby

neighbors in a metabolic pathway that are

likely to carry out similar enzymatic

changes. Another theory stated that func-

tionality evolved through the recruitment

of promiscuous enzymes from faraway

parts of a metabolic network to carry out

the next steps of a pathway. By looking at

the protein folds in the context of a

network, it was found that folds were

quite different compared to neighboring

enzymes, leading to the conclusion that

functionality likely evolved through the

second, promiscuous recruitment model

(Fig 1C). This study demonstrated that a

synergy between structures and their loca-

tion in a network was required to answer

an evolutionary question. If the structures

were the only source of information avail-

able, it would not be possible to

understand their position within a meta-

bolic network. At the same time, with just

a metabolic network, no knowledge of the

protein folds in 3D space would be avail-

able.

The integration of structural data into

metabolic models has subsequently been

extended to a number of applications, which

we categorize and review below.

The composition, biosynthesis, and
visualization of proteins

Similar to how genome content can be

summarized by their nucleotide building

blocks, the structural proteome of an organ-

ism can be described in terms of the

biochemistry of its proteins and their amino

acid composition. Simple physicochemical

properties (polarity, hydrophobicity, size)

can act as descriptors, and more detailed

spatial information such as location and

function can be included—given a character-

ized 3D structure of the protein (Fig 1A).

These data can be prepared for downstream

data science analyses and can further

enhance modeling capabilities by introduc-

ing quantitative predictions of enzyme activ-

ity based on these properties at different

stress conditions.

How does a cell determine its alloca-

tion of resources to the variety of machin-

ery that drives its growth and maintains

its functions? A new generation of

genome-scale metabolic models incorporate

the cost of synthesizing the enzymes that

carry out metabolic reactions in a cell.

Enzyme turnover rates then become

crucial pieces of information that need to

be curated or estimated for all of a

model’s reactions. Recently, we turned to

structural information to aid in the predic-

tion of these notoriously hard to estimate

rates, using machine learning methods for

a proteome synthesis model of E. coli

(Heckmann et al, 2018). Structural features

describing the active sites of these

enzymes and general descriptors of the

global protein structure were incorporated

alongside a number of other features into

the predictive model.

The structure–function relationship also

provides fundamental information for

describing an enzyme’s role within a meta-

bolic network. As more and more struc-

tures are solved, similarities between them

and well-studied proteins allow us to confi-

dently assume functionalities when

reconstructing metabolic networks. As we

approach the completion of these features,

large-scale visual representation becomes

possible. What may be viewed as the

“final frontier” of structural systems biol-

ogy would be an accurate visual 3D model

of a cell, incorporating all known molecu-

lar interactions, localizations, abundances,

enzyme complex stoichiometries, higher-

order DNA structures, small molecules,

and more (Fig 1B). New work with cryo-

electron tomography has begun to uncover

the assemblies of higher-order protein

complexes in their native environment

(Beck & Baumeister, 2016). This promises

to provide a visual connection between

proteomics measurements and individually

solved structures. Furthermore, it is now

possible to obtain atomic-level NMR struc-

tures of enzymes in these native environ-

ments—the final piece of the puzzle

needed to view the components of a cell in

their natural state, in vivo (Tanaka et al,

2019). Systems biology models provide the

platform onto which these types of data

can be mapped and represented computa-

tionally.

A predictive and visual model of

proteome allocations under different condi-

tions remains a challenge, as it is no small

undertaking to manually gather and recon-

struct enzymatic pathways, let alone simu-

late these models of growing complexity.

The big picture of small changes

How do protein changes at the residue level

impact the metabolic network and pheno-

typic behavior as a whole? Can the totality

of these changes help classify cell types in

humans or delineate between species and

strains of unicellular organisms?

As a proof-of-concept, molecular model-

ing tools were used to analyze the impact

of coding mutations on drug binding in

the human red blood cell (Fig 1D; Mih

et al, 2016). Docking and molecular

dynamics simulations enabled predictions

of differences in the binding affinities of

small molecules due to a mutation in

selected proteins. These relative differences

were integrated into both constraint-based

and kinetic metabolic models of the red

blood cell to observe the predicted

systemic impact of the mutation upon

metabolism. Sequence variation can also

be mapped from different strains of a

species, different species altogether, or
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from different cell lines (Fig 1E). Combined

with spatial descriptors of amino acids,

this approach can pinpoint certain protein

domains with causal mutations that cluster

together. The sequence variation of G-

protein-coupled receptors (GPCRs) is a

likely reason behind adverse effects that

are observed in a minority of individuals

who take a certain drug (Hauser et al,

2018). A comprehensive effort to map

this variation from almost 70,000 individ-

uals revealed numerous variants that

appear close to drug binding pockets or

other functional sites on GPCRs. Certain

drug labels already include such warnings

for characterized variants if an adverse

reaction is known to occur, and this

personalized information can only

improve as more interaction data are

gathered.

Extending these approaches to new meth-

ods such as those that attempt to model

strain-specific metabolism, we can begin to

simulate differences at the resolution of single

amino acids. Machine learning algorithms

can take advantage of this information to

identify patterns of genetic changes due to
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certain stresses, such as drug-resistant strains

of pathogens, and be used to develop predic-

tive models for newly sequenced strains.

The new era of multi-omics data

The study of interactions between proteins

and small molecules has largely been limited

to those directly related to catalysis, studied

with enzymatic assays. A large-scale under-

standing of all small molecule interactions

with proteins inside a cell adds yet another

interactome to systems biology models,

uncovering competitive and non-competitive

interactions that regulate processes alongside

the transcriptome (Fig 1F).

Early work in this area focused on

predicting the effects of small molecules

binding to undesired targets, also known as

off-targets. A human kidney metabolic

model integrated with structural information

was used to reveal the potential mechanism

of action of torcetrapib, a drug that was in

development to treat high cholesterol levels

(Chang et al, 2010). Retrospectively, this

approach was utilized to give potential

explanations as to why the drug gave rise to

fatal hypertension in patients during clinical

trials. This study applied binding site simi-

larity predictions to human protein struc-

tures to identify potential targets that this

drug could inhibit in addition to its main

target. By combining these predictions with

gene knockouts in a metabolic model of the

human kidney, the authors were able to

predict the clinically observed hypertension

as a potential side effect of these off-target

binding events.

Experimental data sets representing these

transient interactions with protein molecules

are beginning to take shape. For the

metabolome, ingenious techniques that

apply proteolytic and mass spectrometric

methods mean that protein–small molecule

interactions can be elucidated at a scale

comparable to other omics methods (Piazza

et al, 2018). An additional layer of informa-

tion can be added by measuring the effects

of gene deletions on metabolite levels, in

what are known as gene–metabolome data

sets (Fuhrer et al, 2017). For the other large

molecules within the cell, a number of

biomolecular interaction screens are avail-

able and should be next in line to be explic-

itly accounted for in structural systems

biology models. These include protein–

protein interaction techniques and data sets,

which not only provide information about

protein complex compositions but also intro-

duce cell signaling into the mix. The DNA

interactome can be deciphered through

protein–DNA interactions as measured by

methods such as ChIP-exo and predicted

with newly developed algorithms that take

into account the 3D structure of DNA motifs

(Chiu et al, 2017).

Taking all of this information together

and distilling it into a snapshot of a cell at

work is perhaps the biggest challenge of

them all, as data sets balloon in size when

considering the billions, perhaps trillions, of

interactions—all occurring at once.

What lies ahead for structural
systems biology?

The number of studies presented here

demonstrates the growing range of applica-

tions enabled by the inclusion of protein

structures into network models of metabo-

lism, proteome synthesis, and proteostasis.

We can now comfortably state that the

structural proteome is now an available

independent omics data type that (i) can be

assembled for model organisms, (ii) can be

computationally represented and integrated

into genome-scale models, and (iii) adds

new dimensions to systems biology studies

where a fundamentally new set of questions

can be addressed. Although we are still far

from realizing a fully integrated multi-scale

whole-cell model, these studies show that

even with incomplete information, the

continued development and application of

structural systems biology leads to novel

applications.

Acknowledgements
This work was funded by the Novo Nordisk Foun-

dation Grant Number NNF10CC1016517. The

authors graciously thank Marc Abrams for his help

editing and proofreading this document.

Conflict of interest
The authors declare that they have no conflict of

interest.

References
Beck M, Baumeister W (2016) Cryo-electron

tomography: can it reveal the molecular

sociology of cells in atomic detail? Trends Cell

Biol 26: 825 – 837

Chang RL, Xie L, Xie L, Bourne PE, Palsson BØ (2010)

Drug off-target effects predicted using structural

analysis in the context of a metabolic network

model. PLoS Comput Biol 6: e1000938

Chiu T-P, Rao S, Mann RS, Honig B, Rohs R (2017)

Genome-wide prediction of minor-groove

electrostatic potential enables biophysical

modeling of protein-DNA binding. Nucleic Acids

Res 45: 12565 – 12576

Fuhrer T, Zampieri M, Sévin DC, Sauer U, Zamboni

N (2017) Genomewide landscape of

◀ Figure 1. Classification of structural systems biology studies into six use categories.
(A) Detailed physicochemical and spatial properties of the structural proteome enable the use of protein structures as an “omics” data source. This additional information has
been utilized for downstream data science analyses and advancedmetabolic modeling simulations incorporating residue-level measurements for applications such as stress-
specific simulations. (B) A better understanding of functional assignments of proteins based on their structures leads to improved genome-scale models, which better predict
protein abundances in different conditions. Currently available structural determination techniques lead to visualizations of intricate protein complexes and their place
within the cell, leading to potential realistic models of whole cells that reflect these environmental conditions. (C) Classical analyses of protein fold usage in the context of
metabolic networks add an additional level of functional understanding to the network. The analysis of how folds are distributed within a network, and between strains or
species, answers questions about the patterns we observe inmetabolic pathway evolution. (D) In silicomolecular modeling tools enable residue-level predictions of mutations
or post-translational modifications that can then be used to modulate changes within a metabolic network, leading to an understanding of the global effect of small changes
upon an entire cell. (E) Large-scale analyses of sequence variation mapped to structure can uncover how small differences in protein structure potentially lead to metabolic
changes within different strains of an organism. Furthermore, these small differences are crucial to finding regions in proteins that may cause undesirable pharmacogenomic
interactions and can be crucial in the drug design process. As an extension of this, enzyme engineers can utilize this information to understand where highly variable regions
of proteins are, to design more targeted libraries in the engineering cycle. (F) The interactions between proteins and the other components of the cell have only now been
characterized at a large scale. Previously, interactions such as protein–ligand binding events have largely been limited to those directly involved in catalysis and studied by
enzymatic assays. A large-scale understanding of all small molecule interactions with proteins inside a cell adds yet another “interactome” to systems biology models,
uncovering competitive and non-competitive interactions that regulate processes alongside the transcriptome. Beyond these, protein–protein, protein–DNA, and gene–
metabolome interaction data sets all contribute to our better understanding of the cell, but require a scaffold on which data need to be mapped.

4 of 5 Molecular Systems Biology 15: e8601 | 2019 ª 2019 The Authors

Molecular Systems Biology Nathan Mih & Bernhard O Palsson



gene-metabolome associations in Escherichia

coli. Mol Syst Biol 13: 907

Hauser AS, Chavali S, Masuho I, Jahn LJ,

Martemyanov KA, Gloriam DE, Babu MM (2018)

Pharmacogenomics of GPCR drug targets. Cell

172: 41 – 54.e19

Heckmann D, Lloyd CJ, Mih N, Ha Y, Zielinski DC,

Haiman ZB, Desouki AA, Lercher MJ, Palsson BO

(2018) Machine learning applied to enzyme

turnover numbers reveals protein structural

correlates and improves metabolic models. Nat

Commun 9: 5252

Mih N, Brunk E, Bordbar A, Palsson BO (2016) A

multi-scale computational platform to

mechanistically assess the effect of genetic

variation on drug responses in human

erythrocyte metabolism. PLoS Comput Biol 12:

e1005039

Piazza I, Kochanowski K, Cappelletti V, Fuhrer T,

Noor E, Sauer U, Picotti P (2018) A map of

protein-metabolite interactions reveals

principles of chemical communication. Cell 172:

358 – 372.e23

Tanaka T, Ikeya T, Kamoshida H, Suemoto Y,

Mishima M, Shirakawa M, Güntert P, Ito Y

(2019) High resolution protein 3D structure

determination in living eukaryotic cells. Angew

Chem Int Ed Engl 58: 7284 – 7288

Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L,

Ginalski K, Deacon AM, Wooley J, Lesley SA,

Wilson IA et al (2009) Three-dimensional

structural view of the central metabolic

network of Thermotoga maritima. Science 325:

1544 – 1549

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and repro-

duction in any medium, provided the original work

is properly cited.

ª 2019 The Authors Molecular Systems Biology 15: e8601 | 2019 5 of 5

Nathan Mih & Bernhard O Palsson Molecular Systems Biology


