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Abstract: The pH–induced crystallization of weakly basic drugs in the small intestine limits oral
bioavailability. In this study, we investigated the solubilization and inhibitory effects on nintedanib in
the presence of enteric polymers (HPMCAS LG, HPMCAS MG, Eudragit L100 55, and Eudragit L100).
These polymers provided maintenance of supersaturation by increasing the solubility of nintedanib
in PBS 6.8 in a concentration-dependent manner, and the improved ranking was as follows: Eudragit
L100 > Eudragit L100 55 > HPMCAS MG > HPMCAS LG. After being formulated into amorphous
solid dispersions (ASDs) by a solvent evaporation method, the drug exhibited an amorphous state.
The pH shift dissolution results of polymer-ASDs demonstrated that four polymers could effectively
maintain the drug supersaturation even at the lowest ratio of nintedanib and polymer (1:1, w/w).
Eudragit L100–ASD could provide both acid resistance and the favorable mitigation of crystallization
in GIF. In comparison to the coarse drug, the relative bioavailability of Eudragit L100–ASD was 245%
after oral administration in rats, and Tmax was markedly delayed from 2.8 ± 0.4 h to 5.3 ± 2.7 h. Our
findings indicate that enteric ASDs are an effective strategy to increase the intestinal absorption of
nintedanib by improving physiologically generated supersaturation and subsequent crystallization.

Keywords: nintedanib; amorphous solid dispersion; supersaturation; enteric polymer; pharmacokinetics

1. Introduction

Nintedanib, a tyrosine kinase inhibitor, was firstly approved by the FDA in 2014 for
treatment in idiopathic pulmonary fibrosis (IPF) [1]. Besides the role in fibrosis, nintedanib
possesses broad-spectrum inhibitory activities on the angiokinase of growth factor receptors,
including VEGFR1–3, PDGFRα/β, and FGFR1–4, as well as of RET, FLT-3, and Src non-
receptor tyrosine kinases [2]. The multi-targeting profile provides nintedanib with the
potential to effectively prevent tumor growth and metastasis. Moreover, the high specificity
of nintedanib can minimize drug toxicity and resistance development across a broad range
of cancers, where other anti-angiogenic agents have failed [3,4]. Clinically, the weakly
basic drug nintedanib is orally administered in soft capsules (Ofev® and Vargatef®) for
twice-daily dosing. Although nintedanib is easily soluble in the stomach, it still shows low
oral bioavailability (around 4.7%) due to poorly aqueous solubility (circa 11.98 µg/mL)
under pH 6.8 [5], efflux by P-gp [6], and first-pass metabolism [7]. Recently, several novel
formulations, such as self-microemulsifying drug delivery systems [5], sustained-release
nano-delivery systems [8], and nanocrystals [9], have been reported, with an increase in
oral bioavailability from 1.6- to 2.5-fold compared to that of oral solutions or capsules.

Nintedanib, also known as BIBF1120, has the chemical name 1H-indole-6-carboxylic
acid, 2,3-dihydro-3-[[[4-[methyl[(4-methyl-1-piperazinyl)acetyl]-amino] phenyl]amino]
phenylmethylene]-2-oxo-,methyl ester, (3Z)-, ethanesulfonate [1]. It displays a pH-dependent
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solubility profile. The solubility of nintedanib at pH values below 4.5 is nearly 5.0 mg/mL
but it is insoluble above 6.0 [5]. Although nintedanib salt easily dissolves in acidic fluid,
precipitation or recrystallization is prone to occur when the pH increases in the intestine
tract. As the small intestine is the main site of drug absorption, maintenance of a dis-
solved state in the intestine is more critical than in the stomach. Consequently, appropriate
precipitation inhibitors are necessary to slow the decline of the supersaturation state via
interfering with nucleation and/or crystal growth.

Amorphous solid dispersions (ASDs) are one of the most frequently used methods
for improving the oral bioavailability of poorly soluble drugs [10]. Hydrophilic polymers
such as polyvinyl pyrrolidone (PVP), polyethyleneglycols (PEG), and Soluplus® (SOL) are
commonly chosen for their better wettability and dispersibility to obtain immediate release
characteristics in ASDs [11–14]. These carriers could promote temporary supersaturation
and provide the driving force to enhance drug absorption [15]. However, a drug solution
in the supersaturated state possesses higher chemical potential and tends to precipitate
into an energetically more favorable crystalline form [16–18]. Moreover, a faster rate of
supersaturation generation causes a sharper drop in drug concentration due to rapid
precipitation [19]. It has been reported that the rate of dissolution in simulated gastric
fluid was inversely proportional to in vivo drug absorption [20,21]. To benefit from the
supersaturated state, temporary inhibition of precipitation is necessary to maintain the
elevated concentrations for a sufficient period of absorption time. Interestingly, polymers
with pH-dependent solubility lead to higher oral bioavailability as compared with ASDs
based on immediate-release polymers [22], which may be attributed to the balance ability
of these polymers between the rate of supersaturation generation and the precipitation
kinetics. Han et al. showed that the true solubility advantage of ASDs depended on the
critical supersaturation, below which precipitation is not observed for a sufficiently long
period [13].

In this study, we investigated the effects of pH-dependent soluble polymers, namely
hydroxypropylmethylcellulose acetate succinate (HPMCAS LG and MG) and methacrylic
acid ethyl acrylate copolymer (Eudragit L100 55 and L100), on the solubility of nintedanib
and supersaturation maintenance. ASDs were formulated with four different polymers
and characterized by differential scanning calorimetry (DSC), powder X-ray diffraction
(PXRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy
(FT–IR). After the in vitro dissolution behaviors were compared in a pH shift non-sink
condition, the in vivo pharmacokinetics of nintedanib and Eudragit L100–ASD with the
preferred enteric-release profile were examined to evaluate the enhanced absorption. In
addition, the physical stability of the prepared solid dispersions was investigated under
high temperatures and high humidity.

2. Materials and Methods
2.1. Materials

Nintedanib was purchased from Nanjing Core Tech Biomedical Co., Ltd. (Nanjing,
China). HPMCAS (grade LG and MG) was kindly provided by Shin Etsu (Shin Etsu
Chemical Co., Ltd., Tokyo, Japan). Eudragit® L100 55 and Eudragit® L100 were donated
by Evonik Industries (Darmstadt, Germany). The chemical structures of nintedanib and
polymers are summarized in Figure 1. All other reagents were of analytical grade and used
as received.
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Figure 1. Molecular structures of (a) nintedanib (pKa = 7.9), (b) HPMCAS (LG and MG), (c) Eudragit 
L100 55, (d) Eudragit L100. 

2.2. Determination of Equilibrium Solubility and Apparent n–Octanol/Water Partition 
Coefficient of Nintedanib 

An excess amount of nintedanib powder was added to simulated gastric fluid (pH 
1.2) and PBS buffer solutions at pH 4.5, 5.5, 6.0, 6.8, and 7.4. The suspension was continu-
ously shaken and balanced at 37 °C for 72 h. After centrifugation at 13,000 rpm for 10 min, 
the supernatant was diluted with mobile phase for quantitative determination by HPLC 
using a Shimadzu LC-20AT chromatographer (Shimadzu Corporation, Japan) equipped 
with a UV detector set at 382 nm. The stationary phase comprised a C18 analytical column 
(Aligent Eclipse XDB-C18, 4.6 × 250 mm, 5 µm), maintained at 40 °C. The mobile phase 
consisted of methanol and 0.1% phosphate in water (65:35, v/v) at a flow rate of 1 mL/min. 
The injection volume was 20 µL. 

The apparent n–octanol/water partition coefficients (D) of nintedanib were deter-
mined by the shake flask method. Nintedanib was precisely weighed and dissolved in 
different medium-saturated n–octanol to obtain the nintedanib/n–octanol solution. The 
resulting solution was vortexed with an equivalent volume of n–octanol–saturated aque-
ous media for 5 min. The mixture was further shaken at 37 °C for 24 h to reach equilibrium. 
After separating the water phase and oil phase by centrifugation for 15 min at 3500 rpm, 
the drug concentrations were assayed by HPLC. The values of log D were calculated as 
follows. 

Log D = Co/Cw 

where Co represents the concentration of nintedanib in the n–octanol phase, and Cw rep-
resents the concentration of nintedanib in the aqueous phase. 

2.3. Solubility Measurement of Nintedanib in Polymer Solution 
The equilibrium solubility of nintedanib in different polymer solutions was also de-
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Figure 1. Molecular structures of (a) nintedanib (pKa = 7.9), (b) HPMCAS (LG and MG), (c) Eudragit
L100 55, (d) Eudragit L100.

2.2. Determination of Equilibrium Solubility and Apparent n–Octanol/Water Partition Coefficient
of Nintedanib

An excess amount of nintedanib powder was added to simulated gastric fluid (pH 1.2)
and PBS buffer solutions at pH 4.5, 5.5, 6.0, 6.8, and 7.4. The suspension was continuously
shaken and balanced at 37 ◦C for 72 h. After centrifugation at 13,000 rpm for 10 min, the
supernatant was diluted with mobile phase for quantitative determination by HPLC using
a Shimadzu LC-20AT chromatographer (Shimadzu Corporation, Japan) equipped with
a UV detector set at 382 nm. The stationary phase comprised a C18 analytical column
(Aligent Eclipse XDB-C18, 4.6 × 250 mm, 5 µm), maintained at 40 ◦C. The mobile phase
consisted of methanol and 0.1% phosphate in water (65:35, v/v) at a flow rate of 1 mL/min.
The injection volume was 20 µL.

The apparent n–octanol/water partition coefficients (D) of nintedanib were determined
by the shake flask method. Nintedanib was precisely weighed and dissolved in different
medium-saturated n–octanol to obtain the nintedanib/n–octanol solution. The resulting
solution was vortexed with an equivalent volume of n–octanol–saturated aqueous media
for 5 min. The mixture was further shaken at 37 ◦C for 24 h to reach equilibrium. After
separating the water phase and oil phase by centrifugation for 15 min at 3500 rpm, the drug
concentrations were assayed by HPLC. The values of log D were calculated as follows.

Log D = Co/Cw

where Co represents the concentration of nintedanib in the n–octanol phase, and Cw repre-
sents the concentration of nintedanib in the aqueous phase.

2.3. Solubility Measurement of Nintedanib in Polymer Solution

The equilibrium solubility of nintedanib in different polymer solutions was also
determined using the shake flask method [23]. Briefly, an excess amount of nintedanib
powder was dispersed in 5 mL pH 6.8 PBS buffer without or with pre-dissolved polymers
(0.1%, 0.5%, or 1% w/v). Then, the suspension was shaken in a water bath under 37 ◦C at
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100 rpm for 72 h. The mixture was centrifugated at 37 ◦C and 13,000 rpm for 10 min. The
supernatant was filtrated through a 0.22 µm polyvinylidene fluoride filter. The filtrates
were diluted with mobile phase and quantified by the HPLC method, as described above.

2.4. In Vitro Supersaturation Studies

Supersaturation studies were performed in PBS 6.8 medium containing 0, 0.1%, 0.5%,
and 1.0% of HPMCAS LG, MG, Eudragit® L100 55, or Eudragit® L100 [24,25]. Nintedanib
was dissolved in DMSO at a concentration of 80 mg/mL. Then, 50 µL of nintedanib solution
was added to 5 mL of polymer solution and agitated at 100 rpm under a 37 ◦C water bath.
Then, 300 µL aliquots were taken at 5, 15, 30, 60, 90, 120, 180, 240, 300, and 360 min and
centrifugated at 13,000 rpm for 10 min, respectively. The supernatants were diluted in
methanol and quantified by the HPLC method. The values of AUC0–360min were calculated
using GraphPad Prism 8 software (GraphPad Inc., San Diego, CA, USA) to assess the
maintenance effects of polymers on the extent of supersaturation in the solutions. A
one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons was
employed to test the statistical significance of the AUC values.

2.5. Polarized Light Microscopy

Polarized light microscopy (PLM) was applied to observe the crystallization behavior
of nintedanib in supersaturation studies [25,26]. Aliquots were withdrawn and centrifuged
(5000 rpm, 5 min) at 5, 60, 120, 240, and 360 min. Images of the crystallization of nintedanib
in the supernatant were recorded using a polarization microscope with a 40× g magnifica-
tion objective (CKX53 microscope with polarizer, Olympus Corporation, Tokyo, Japan).

2.6. Preparation and Characterization of Amorphous Solid Dispersions
2.6.1. Preparation of Amorphous Solid Dispersions

ASDs of nintedanib with HPMCAS LG, HPMCAS MG, Eudragit® L100 55, or Eudragit®

L100 were prepared using a solvent evaporation method, as described previously, with
a slight modification [27]. Briefly, nintedanib and different polymers in different ratios
(1:1, 1:3, or 1:5, w/w, drug: polymer) were dissolved in methanol by stirring. The organic
solvents were removed by rotary evaporation at 60 ◦C. The obtained films were dried
overnight under a vacuum at room temperature. After being ground with a mortar and
pestle, the ASDs were forcibly passed through a 200-mesh sieve (75 µm). The resulting
ASD powders were stored in a desiccator at ambient temperature until analysis.

2.6.2. Scanning Electron Microscopy (SEM)

The morphologies of the coarse drug, polymers, physical mixtures, and ASDs were
observed using a field-emission scanning electron microscope (Nova Nano SEM 450, FEI,
Eindhoven, The Netherlands) at a 10.0 kV acceleration voltage. Small quantities of powder
samples were mounted and coated with a thin gold-palladium layer. Photographs were
recorded to characterize the surface shapes of powders.

2.6.3. Differential Scanning Calorimetry (DSC)

A thermodynamic test was performed using a DSC instrument (TA, New Castle, DL,
USA). After weighing approximately 5 mg powdered samples into aluminum pans, the
samples were scanned in a nitrogen atmosphere at a heating rate of 10 ◦C/min from 30 ◦C
to 320 ◦C. The existing state of nintedanib was analyzed from the endothermic peak of the
recorded DSC curve.

2.6.4. Powder X-ray Diffraction (PXRD)

The diffraction patterns of the coarse drug, polymers, physical mixtures, and ASDs
were analyzed using an X-ray diffractometer (Panalytical, Holland) with Cu-Kα radiation
at 30 mA and 30 kV. Samples were scanned in the 2θ range from 5◦ to 45◦ at a rate of
5◦/min.
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2.6.5. Fourier Transform Infrared Spectroscopy (FT–IR)

FT–IR (Bruker Corporation, Switzerland) was employed to investigate the intermolec-
ular interactions of nintedanib and polymers. The solid dispersions and corresponding
polymers were mixed with KBr and then tableted. FT–IR spectra were collected over the
wave number range of 500–4000 cm−1 with a resolution of 4 cm−1.

2.7. pH Shift Dissolution Studies of Amorphous Solid Dispersions

pH shift dissolution was conducted by the paddle method with a rotation speed of
50 rpm using a dissolution tester (ZRS-4, Tianjin University Radio Factory, China) in simu-
lated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 6.8). The ASDs were
initially placed in 750 mL of SGF at 37 ◦C ± 0.5 ◦C and stirred for 120 min. Then, pH was
switched rapidly to 6.8 by adding 250 mL 0.2 mol/L sodium phosphate solution. The samples
were agitated for another 240 min. Aliquots of 2 mL were withdrawn at predetermined
time intervals (5, 15, 30, 60, 90, 120, 150, 180, 240, 300, and 360 min) and replenished with
equal volumes of fresh media. The samples were immediately filtered through a 0.22 µm
membrane and diluted in the mobile phase for HPLC quantification of nintedanib.

2.8. Stability Study

The physical stability of the ASDs (1:5, w/w, drug: polymer) was investigated under
high humidity (RH 92.5 ± 5%, 25 ± 1 ◦C) and high temperature (60 ± 1 ◦C, RH 50 ± 5%),
respectively. Samples were collected at 5 and 10 days and characterized by PXRD. The
dissolution profiles were compared with the performance of the ASDs at time 0 using the
similarity factor (f 2) [28]:

f2 = 50× log
{[

1 + (1/n)∑n
t=1(Rt − Tt)

2
]−0.5

× 100
}

where n is the number of time points; Rt and Tt correspondingly represent the dissolution value
of the reference and test at time t. The release profiles were similar if f 2 > 50. No more than one
measurement should be considered after 85% dissolution of the two contrastive formulations.

2.9. In Vivo Pharmacokinetic Study

Animals. Rats are commonly used for preclinical in vivo pharmacokinetic studies.
Male Sprague-Dawley (SD) rats weighing 180–220 g were supplied by the laboratory animal
center of Tongji Medical College, Huazhong University of Science and Technology (Wuhan,
China). The rats were maintained in a room (20–25 ◦C and 50–60% humidity) under a 12 h
light/dark cycle, with free access to standard rodent chow and clean water for 7 d before
the commencement of the experiment.

Pharmacokinetic study [29]. The SD rats were randomly divided into two groups
(n = 6) and fasted for 12 h before oral administration. The Eudragit® L100 solid disper-
sion (1:5, w/w) and the coarse drug (75 µm, 50 mg/kg) were freshly suspended in 0.5%
tragacanth gum (w/v) at a dose volume of 10 mL/kg. Blood samples (0.15 mL blood per
time point) were collected into heparinized tubes from the jugular vein pre-dose (0 h) and
post-dose (1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8, 10, 12, 14, and 24 h). The plasma samples were
separated by centrifugation at 4000 rpm for 15 min and stored at −80 ◦C before analysis.

Plasma sample pretreatment. All plasma samples were processed by a protein pre-
cipitation method. An aliquot of 30 µL plasma was spiked with 150 µL acetonitrile, which
contained 250 ng/mL of carbamazepine as an internal standard (IS). The mixture was
vortex-mixed for 5 min, followed by centrifugation at 15,000 rpm and 4 ◦C for 10 min.
A volume of 10 µL of supernatant was injected into the ultrahigh-performance liquid
chromatography-tandem mass spectrometry (UPLC–MS/MS) system for analysis.

Quantification of nintedanib. A prominence UFLC system (Shimadzu Corporation,
Kyoto, Japan) with an electrospray ionization (ESI) source in positive mode was used.
The separation of analytes was performed on an Ultimate®XB–C18 column (2.1 × 50 mm,
5 µm, Welch, Shanghai, China). The column temperature was maintained at 40 ◦C. The
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gradient elution was conducted with solvent A (water with 0.1% formic acid) and solvent
B (acetonitrile with 0.1% formic acid) at a flow rate of 0.5 mL/min. The gradient program
was set as follows: 20% B for 0.10 min; 20% to 65% B from 0.10 to 1.60 min; 65% to 95% B
from 1.60 to 1.80 min; 95% B from 1.80 to 3.00 min; 95% to 20% B from 3.00 to 3.20 min; 20%
B from 3.20 to 4.00 min. The injection volume was 10 µL, and the autosampler temperature
was maintained at 4 ◦C. The source parameters were optimized: curtain gas: 16 psi, collision
gas: medium, ion spray voltage: 5500 V, temperature: 500 ◦C, nebulizer gas: 50 psi, auxiliary
heater gas: 50 psi. Other optimum parameters are listed in Table 1.

Table 1. MRM condition for nintedanib and IS.

Compound Precursor Ion > Product Ion
(m/z)

DP
(V)

EP
(V)

CE
(eV)

CXP
(V)

Nintedanib 540.3 > 113.0 126 10 39 8
Carbamazepine (IS) 236.9 > 193.9 161 10 31 16

Pharmacokinetic data analysis and statistical analysis [30]. The calibration curve
ranging from 1 to 500 ng/mL was fitted using a weighted (1/x2) least-squares linear
regression of peak area ratios against concentrations. The plasma concentration-time
profiles were analyzed using a non-compartmental model. The main PK parameters,
including time to reach Cmax (Tmax), maximum plasma concentration (Cmax), the area under
the plasma concentration-time curve (AUC0–24h), half-life (t1/2), and mean retention time
(MRT) were obtained by Phoenix WinNonlin software (Version 6.4, Pharsight Corporation,
Mountain View, CA, USA). A two-tailed Student’s t-test was adopted to compare the PK
parameters of the nintedanib group and Eudragit L100–ASD group. The relative oral
bioavailability (Frel) was calculated by the ratio of AUC0–24h for the ASD and the coarse
drug. Differences were considered statistically significant at p < 0.05.

3. Results and Discussion
3.1. Equilibrium Solubility and Apparent n–Octanol/Water Partition Coefficient of Nintedanib

The equilibrium solubility and apparent n–octanol/water partition coefficient of a
drug in the GI tract are the key parameters that affect drug absorption. As shown in
Figure 2, the maximum solubility was 67.7 ± 1.2 mg/mL in pH 1.2 SGF. Sharply decreased
solubility of nintedanib was observed when the pH value of the solvent ranged from
1.2 to 5.5. As the pH increased from 5.5 to 7.4, the drug solubility gradually decreased
to 26.8 ± 1.6 µg/mL and 3.8 ± 0.2 µg/mL, respectively. The solubility changes with pH
value indicated the pH-dependent solubility of nintedanib. On the contrary, the apparent
n–octanol/water partition coefficient (log D = 2.64 ± 0.02) in the pH 6.8 medium was
higher than that (log D = −0.62 ± 0.02) in the pH 1.2 medium, indicating that nintedanib
was more lipophilic in the neutral environment than in the acidic environment.
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3.2. Effect of Enteric Polymers on Solubility of Nintedanib

The effect of different polymers on the solubility of nintedanib is shown in Figure 3a.
The addition of enteric polymers in pH 6.8 PBS buffer ranging from 0.1% to 1% (w/v)
significantly increased the apparent solubility of nintedanib in a concentration–dependent
manner (p < 0.001). Compared to pH 6.8 buffer without polymers, HPMCAS LG, HPMCAS
MG, Eudragit L100 55, and Eudragit L100 at a concentration of 0.1% (w/v) elevated drug
solubility 2.6-, 2.9-, 32.5-, and 39.0-fold, respectively. At the concentration of 0.5%, Eudragit
L100 increased the drug solubility 6.4-, 6.0-, and 1.3-fold in comparison with HPMCAS
LG, HPMCAS MG, and Eudragit L100 55, respectively. HPMCAS LG presented a similar
increase as HPMCAS MG (p > 0.05). Eudragit L100 and L100 55 had similar potential to
solubilize nintedanib, while Eudragit L100 showed stronger solubilization (p < 0.05 or
p < 0.01). Compared to Eudragit L100 and L100 55, the improvement in the drug solubility
was more dependent on the concentration gradient of HPMCAS LG and MG (p < 0.001).
As shown in Figure 3b, the pH value of the corresponding medium slightly decreased with
the additional content of polymers. However, the pH values were still around 6.0 at a
1.0% polymer concentration. These data indicated that the interaction between the enteric
polymers and the drug improved the solubility of nintedanib, other than changing the pH
value of the environment.
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3.3. Supersaturation Kinetics of Nintedanib in the Presence of Enteric Polymers

The in vitro nintedanib concentration-time profiles and their respective AUC0–360min
are shown in Figure 4. Upon inducing the supersaturation of nintedanib without polymers,
immediate and complete precipitation could be observed. When enteric polymers were
added to pH 6.8 PBS buffer, the remaining concentration of nintedanib increased with the
polymer concentration increase. The addition of HPMCAS increased the apparent solubility
of nintedanib but to a lower extent (Figure 4a,b). The AUCs in the medium with over
0.5% of HPMCAS LG were statistically different from those for PBS (p < 0.01 or p < 0.001).
Compared to HPMCAS LG, a marked increase in AUC in the HPMCAS MG groups at
1.0% was observed (p < 0.001). Moreover, Eudragit L100 55 at 0.1% maintained a drug
concentration of approximately 650 µg/mL for up to 60 min but decreased later (Figure 4a).
With the increase in the Eudragit L100 55 concentration, the ability to maintain supersat-
uration increased (Figure 4c,e). Among all four polymers, Eudragit L100 demonstrated
the best supersaturation maintenance in PBS 6.8, reaching the highest AUC (Figure 4b,d,f).
In particular, Eudragit L100 at 0.1% was able to maintain a drug concentration of circa
670 µg/mL within 360 min and obtained the highest AUC (p < 0.001). These findings
suggested a certain concentration-dependent effect of the four polymers on maintaining
drug supersaturation and showed that the capability of retaining supersaturation is in the
order Eudragit L100 > Eudragit L100 55 > HPMCAS MG > HPMCAS LG.

Pharmaceutics 2022, 14, 1830 9 of 21 
 

 

 
Figure 4. Supersaturation kinetics of nintedanib and AUC0–360min in pH 6.8 PBS buffer with different 
polymers. (a,b) 0.1%; (c,d) 0.5%; (e,f) 1% (w/v). Data are expressed as the mean ± SD (n = 3). ** p < 
0.01, *** p < 0.001 significantly compared to the no polymer group, ### p < 0.001. 

3.4. Crystallization Kinetics of Nintedanib in the Presence of Enteric Polymers 
Micro-sized particles formed in the supersaturation solution were detected by polar-

ized light microscopy. As shown in Figure 5, continuous precipitation of nintedanib was 
observed within 360 min. However, the rate of crystallization differed among different 
groups. Precipitation of nintedanib particles appeared 5 min after the addition of drug 
solution in the blank pH 6.8 PBS buffer, and a large number of crystals with a growing 
size precipitated within 60 min. Although the crystallization of nintedanib still appeared 
at 5 min, the number of crystals decreased sharply at all specified times in the presence of 
HPMCAS LG, HPMCAS MG, or Eudragit L100 55. Eudragit L100 could prevent crystalli-
zation at 5 min, and the number of nintedanib crystals presented in 360 min was less than 
that in the other three polymers, indicating the best inhibition of nintedanib precipitation. 
The trend of maintaining supersaturation was the same as the supersaturation kinetics of 
the concentration-time profiles.  

Figure 4. Supersaturation kinetics of nintedanib and AUC0–360min in pH 6.8 PBS buffer with different
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The influences of the four enteric polymers on the supersaturation kinetics of nintedanib
were consistent with the impacts on drug solubility. HPMCAS LG and Eudragit L100 55
dissolved at pH ≥ 5.5, while both HPMCAS MG and Eudragit L100 dissolved at pH ≥ 6.0,
with pH-dependent solubility. As the pH values of drug-polymer solutions were weakly
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affected (Figure 3b), the polymer-induced improvement in solubility was not derived from
the formation of soluble salt, but rather from a strong interaction between the drug and
polymers. Polymer structure, especially the functional groups, has been reported to affect
the preservation of the supersaturated state [31]. HPMCAS LG and HPMCAS MG possess
both hydrophilic groups and hydrophobic groups. It was found that the ability of HPM-
CAS to inhibit drug crystallization strongly depended on the succinoyl substituent level in
HPMCAS [32]. The increase in the succinoyl substituent ratio of HPMCAS (LG: 0.37, MG:
0.26, average number/glucose ring unit), which strongly affected the hydrophilicity of the
polymer due to the ionization of carboxylic acid, reduced the inhibition efficiency for drug
precipitation [32]. Adsorption of the polymers’ hydrophobic groups onto the surface of
hydrophobic nintedanib could suppress the crystal growth of the drug [33,34]. Similarly,
the dependence on the hydrophobicity among HPMCAS and Eudragit might elucidate the
inhibitory effects on precipitation. Eudragit L100 55 is a copolymer of methacrylic acid
(MA) and ethyl acrylate (EA) (1:1), while Eudragit L100 has the same ratio between MA and
methyl methacrylate (MMA) (1:1). Eudragit L100, with more hydrophobic MMA monomers,
is more hydrophobic than Eudragit L100 55 [33]. The increased hydrophobicity of Eudragit
polymers elevated the inhibition of recrystallization, which is in agreement with a reported
study [35].

3.4. Crystallization Kinetics of Nintedanib in the Presence of Enteric Polymers

Micro-sized particles formed in the supersaturation solution were detected by polar-
ized light microscopy. As shown in Figure 5, continuous precipitation of nintedanib was
observed within 360 min. However, the rate of crystallization differed among different
groups. Precipitation of nintedanib particles appeared 5 min after the addition of drug
solution in the blank pH 6.8 PBS buffer, and a large number of crystals with a growing size
precipitated within 60 min. Although the crystallization of nintedanib still appeared at
5 min, the number of crystals decreased sharply at all specified times in the presence of
HPMCAS LG, HPMCAS MG, or Eudragit L100 55. Eudragit L100 could prevent crystalliza-
tion at 5 min, and the number of nintedanib crystals presented in 360 min was less than
that in the other three polymers, indicating the best inhibition of nintedanib precipitation.
The trend of maintaining supersaturation was the same as the supersaturation kinetics of
the concentration-time profiles.
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3.5. Characterization of Amorphous Solid Dispersions
3.5.1. SEM

The morphologies of nintedanib, polymers, physical mixtures, and ASDs are illus-
trated in Figure 6. Nintedanib powder appeared in an irregular shape (Figure 6a). HPMCAS
LG and HPMCAS MG exhibited rod-shaped particles with rough surfaces (Figure 6b,e).
Eudragit L100 55 and Eudragit L100 showed spherical particles with smooth surfaces
(Figure 6h,k). The drug particles dispersed around the polymers for all physical mixtures
(PMs, Figure 6c,f,i,l). On the contrary, no drug crystals existed after formulation into ASDs
(Figure 6d,g,j,m). Compared to the individual components and physical mixtures, all the
ASDs presented uniform texture granules with a drastic change in appearance, suggesting
the formation of a new solid phase.
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of nintedanib presented distinctive peaks at 2θ angles of 11.55°, 17.38°, 18.77°, 19.02°, and 
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halo pattern, indicating their amorphous state. For physical mixtures, a series of diffrac-
tion peaks superimposed with nintedanib and some diffraction peaks showed a slight re-
duction due to the dilution of polymers. On the contrary, the sharp diffraction peaks of 
nintedanib disappeared in all ASDs, demonstrating that nintedanib converted from a 
crystalline state to an amorphous form. 

Figure 6. SEM images of (a) nintedanib, (b) HPMCAS LG, (c) HPMCAS LG–PM, (d) HPMCAS
LG–ASD, (e) HPMCAS MG, (f) HPMCAS MG–PM, (g) HPMCAS MG–ASD, (h) Eudragit L100
55, (i) Eudragit L100 55–PM, (j) Eudragit L100 55–ASD, (k) Eudragit L100, (l) Eudragit L100–PM,
(m) Eudragit L100–ASD. Arrows indicate drug crystal structures.

3.5.2. PXRD

The PXRD patterns for nintedanib, polymers, physical mixtures, and ASDs in Figure 7
indicate changes in the crystalline structure of the initial substance. The diffractograms of
nintedanib presented distinctive peaks at 2θ angles of 11.55◦, 17.38◦, 18.77◦, 19.02◦, and
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19.95◦, which revealed its crystalline state. The PXRD spectra of all polymers exhibited a
halo pattern, indicating their amorphous state. For physical mixtures, a series of diffraction
peaks superimposed with nintedanib and some diffraction peaks showed a slight reduction
due to the dilution of polymers. On the contrary, the sharp diffraction peaks of nintedanib
disappeared in all ASDs, demonstrating that nintedanib converted from a crystalline state
to an amorphous form.
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Figure 7. PXRD diffractograms of nintedanib and samples with (a) HPMCAS LG, (b) HPMCAS MG,
(c) Eudragit L100 55, (d) Eudragit L100.

3.5.3. DSC

Figure 8 shows the thermal behaviors of nintedanib, polymers, physical mixtures,
and ASDs. Nintedanib powder exhibited a small melting peak at 134 ◦C and a sharp
and intense endothermic peak at 305 ◦C, indicating that the drug existed in a crystalline
form, as previously reported [9]. The physical mixtures with HPMCAS LG or HPMCAS
MG demonstrated an endothermic peak at 134 ◦C, whereas the endothermic peak at
305 ◦C disappeared, which might be attributed to the poor thermal stability of the physical
mixtures as HPMCAS degraded above 250 ◦C [36]. The mixtures of nintedanib with
Eudragit L100 55 or Eudragit L100 displayed a shift in endothermic peak to a slightly lower
temperature of 300 ◦C, which might be due to the solvent effect of the molten polymer [37].
No endothermic peaks were detected in all ASDs, suggesting that nintedanib was miscible
with the four polymers and converted from the crystalline state to an amorphous state.
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Figure 8. DSC curves of nintedanib and samples with (a) HPMCAS LG, (b) HPMCAS MG,
(c) Eudragit L100 55, (d) Eudragit L100.

3.5.4. FT–IR

FT–IR analysis was performed for the possible molecular interactions between the
drug and polymers. The IR spectra of nintedanib, polymers, PMs, and ASDs are depicted
in Figure 9. Characteristic peaks of nintedanib appeared at 3414 cm−1 (N–H stretch),
1711 cm−1 (C=O stretch, ester), 1652 cm−1 (C=O stretch, secondary amide), and 1611
cm−1 (C=O stretch, tertiary amide). Physical mixtures of nintedanib with HPMCAS LG,
HPMCAS MG, or Eudragit L100 55 exhibited both the characteristic peaks of the drug
and respective polymer, except Eudragit L100. The spectra of ASDs showed significant
changes. For the ASD formulated by HPMCAS LG, the C=O stretching peak at 1711 cm−1

disappeared, and the C=O stretching (1652 cm−1 and 1611 cm−1) tended to broaden. The
N–H stretching peak of nintedanib decreased significantly (Figure 9a). Moreover, the C=O
stretching peak of HPMCAS LG at 1747 cm−1 shifted slightly to 1740 cm−1. The spectrum
of HPMCAS MG–ASD was similar to that of HPMCAS LG–ASD, with a slight shift in the
characteristic peak of the polymer from 1745 cm−1 to 1741 cm−1 (Figure 9b). These changes
indicated the formation of H-bonds between the HPMCAS carbonyl group and the N–H
bond in the nintedanib. In ASDs prepared with Eudragit L100 55 or Eudragit L100, the C=O
stretching bands at 1711 cm−1 and 1652 cm−1 in nintedanib disappeared, along with the
N–H stretching peak at 3414 cm−1. The C=O of Eudragit L100 55 (1735 cm−1) and Eudragit
L100 (1725 cm−1) became weak, and the C=O stretching of Eudragit L100 55 at 1703 cm−1

blue-shifted to 1699 cm−1 (Figure 9c,d). These findings in the Eudragit–ASDs’ FT–IR
spectra also suggested the H-bonding interactions between the N-H bond of nintedanib
and the carbonyl group of Eudragit L100 55 or Eudragit L100. In addition, the peak at 1611
cm−1, as assigned to the stretching of C=O in the nintedanib band, weakened in Eudragit
L100–ASD compared to Eudragit L100 55–ASD, implying that Eudragit L100 might provide
stronger interactions with the drug. The contribution of hydrogen bonding between the
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drug and the enteric polymers might facilitate the inhibition of drug crystallization and
precipitation [34,38].
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3.6. In Vitro Dissolution with pH Shift

Dissolution behaviors of ASDs with different ratios of nintedanib (50 mg) and poly-
mers were examined in SGF for 120 min and then in SIF for 240 min. As depicted in
Figure 10a–d, the type and content of enteric polymer largely influenced the drug disso-
lution rate. For HPMCAS (both LG and MG), more than 80% and 86% of nintedanib in
ASDs was dissolved in SGF at 5 min and 120 min, while more than 94% of nintedanib
was dissolved for all physical mixtures. Although there was no obvious retardation with
HPMCAS LG and MG in drug release in SGF, the drug release of HPMCAS LG 1:3, 1:5,
and MG 1:5 ASDs presented significantly lower values than that of the corresponding
ratios of physical mixtures (p < 0.05, p < 0.01, or p < 0.001). A similar observation was
made by Liu et al. [39]. When the pH of the medium changed to 6.8, the dissolved con-
centration of the drug slightly decreased, suggesting that the released drug precipitated
(Figure 10a,b). Although the precipitates continued to redissolve, the drug concentration
at 240 min in SIF still was lower than in SGF. In addition, HPMCAS LG–ASDs presented
similar dissolution profiles to HPMCAS MG–ASDs at the ratios of nintedanib and polymers
of 1:1 and 1:5 (w/w). Interestingly, HPMCAS ASDs exhibited a superior trend to maintain
the supersaturation of nintedanib in pH 6.8 PBS but without marked significance, except
for HPMCAS MG–ASDs at the ratio of 1:1 (Figure 10b). These results demonstrated that
HPMCAS polymers inhibited the precipitation of weakly alkaline nintedanib due to the
interaction of the drug and the polymers instead of the formation of ASDs, which coincides
with a previous report [36].
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± 5% humidity and 60 °C ± 1 °C temperature. As presented in Figure 11, the PXRD diffrac-
tion diagrams of the ASDs after the stability test were similar to the initial systems (Figure 
7). No diffraction peak of nintedanib was detected, confirming that the drug in all four 
ASDs still existed in an amorphous state. Comparing the dissolution profile at 10 days 
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87, demonstrating the dissolution profile similarities (f2 > 50) among all the formulations. 
These results showed that using HPMCAS LG, HPMCAS MG, Eudragit L100 55, and 

Figure 10. pH shift dissolution profiles in pH 1.2 for 120 min and pH 6.8 for 240 min (Mean ± S.D.,
n = 3). (a) HPMCAS LG–ASDs and PMs, (b) HPMCAS MG–ASDs and PMs, (c) Eudragit L100 55–
ASDs and PMs, (d) Eudragit L100–ASDs and PMs, (e) nintedanib, (f) Eudragit L100–ASDs. 1:5 ASD
group significantly different from the 1:1 ASD group: * p < 0.05, ** p < 0.01, *** p < 0.001; 1:3 ASD
group significantly different from the 1:1 ASD group: # p < 0.05, ## p < 0.01, ### p < 0.001; 1:5 ASD
group significantly different from the 1:5 PM group: & p < 0.05, && p < 0.01, &&& p < 0.001; 1:3 ASD
group significantly different from the 1:3 PM group: 4 p < 0.05, 44 p < 0.01, 444 p < 0.001; 1:1 ASD
group significantly different from the 1:1 PM group: § p < 0.05, §§ p < 0.01, §§§ p < 0.001.

The drug release profiles of Eudragit–PMs were similar to those of HPMCAS–PMs
(Figure 10c,d). Compared to the initial concentration in SGF, the drug concentration tended
to decrease with time in SIF. The release profiles of Eudragit–ASDs were different from
the physical mixtures. The acid resistance of Eudragit–ASDs significantly increased in
comparison with the corresponding ratio of Eudragit–PMs (p < 0.05, p < 0.01, or p < 0.001).
The drug release from the Eudragit–ASDs in SGF also markedly declined with the ratio
of polymer (p < 0.001). As illustrated in Figure 10c, the drug dissolution percentages in
the Eudragit L100 55–ASD (1:3, w/w) group were significantly higher than those of the
Eudragit L100 55–ASD (1:1) group at 150 min and 180 min in SIF (p < 0.01 or p < 0.001,
Figure 10c). As for the 1:5 group, approximately 65% of the drug dissolved at 120 min,
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indicating that the larger ratio of Eudragit L100 55 further enhanced the anti–acid effect of
the formulated ASD. Moreover, nintedanib in Eudragit L100 55–ASD (1:5) could dissolve
and maintain a higher level of drug concentration at all time points compared to that of
ASD (1:1) (p < 0.05 or p < 0.01). Compared to the PM groups, ASDs with the highest ratio of
polymer (1:5) exhibited superior maintenance of nintedanib supersaturation in pH 6.8 PBS
(p < 0.05 or p < 0.001). As for the ASDs with ratios of 1:1 and 1:3, an enhanced trend in the
inhibition of drug precipitation could be observed, while only the group (1:1) at 240 min
showed significance (p < 0.001). Compared to the related ratio of the Eudragit L100–PM
group, the drug release levels in SIF were significantly improved at 240 min, 300 min, and
360 min (p < 0.05 or p < 0.01) for the 1:3 ASD group and at 300 min and 360 min (p < 0.01
or p < 0.001) for the 1:5 ASD group. Circa 32% of nintedanib in Eudragit L100–ASD (1:3)
dissolved at 120 min, which significantly retarded drug release in comparison to the 1:1
group (p < 0.001), and the drug release percentages in pH 6.8 PBS buffer were significantly
higher than those in the 1:1 group (p < 0.05, p < 0.01, or p < 0.001). The Eudragit L100–ASD
(1:5) released approximately 7% of nintedanib at 120 min in SGF and 80% after 30 min and
switched to SIF, indicating that Eudragit L100 demonstrated excellent stomach protection.
The difference in dissolution rates in the Eudragit L100 55–ASD and L100–ASD in SGF
might be attributed to the greater ionization rate of L100 55 due to its relatively low
hydrophobicity [35].

Dissolution profiles for different doses of nintedanib are also shown in Figure 10e.
Nintedanib completely dissolved in SGF within 5 min. After adjustment to SIF, rapid
precipitation in the crystalline form generated a turbid suspension. The precipitation rate
depended on the drug dose. The remaining percentage at 360 min was 14%, 7%, and 3%
at 50, 75, and 150 mg, respectively. The cumulative dissolution decreased as the dose
increased, which was in accordance with previous studies [10,40]. The nucleation rate
strongly depended on the degree of supersaturation. A higher degree of supersaturation
meant faster crystallization and precipitation of drug particles. In this regard, all four
ASDs maintained the supersaturation state in SIF for 4 h, suggesting that these enteric
polymers could effectively inhibit the precipitation of weakly basic drug nintedanib. As
shown in Figure 10f, nintedanib dissolution profiles from the Eudragit L100–ASDs were
similar among all three dosages, indicating that the formulated ASD system could maintain
the supersaturation state in SIF. These results further demonstrated that Eudragit L100
dramatically provided both acid resistance and inhibition of precipitation for weak bases.

3.7. Stability under High Temperatures and High Humidity

The physical stability of solid dispersions was evaluated by a stress test under 92.5%
± 5% humidity and 60 ◦C ± 1 ◦C temperature. As presented in Figure 11, the PXRD
diffraction diagrams of the ASDs after the stability test were similar to the initial systems
(Figure 7). No diffraction peak of nintedanib was detected, confirming that the drug in all
four ASDs still existed in an amorphous state. Comparing the dissolution profile at 10 days
with that at 0 days (Figure 12), the values of the f 2 similarity factors were between 64 and
87, demonstrating the dissolution profile similarities (f 2 > 50) among all the formulations.
These results showed that using HPMCAS LG, HPMCAS MG, Eudragit L100 55, and
Eudragit L100 as a matrix provided an amorphous form of nintedanib and it remained
physically stable.
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3.8. In Vivo Pharmacokinetics

The Eudragit L100–ASD was further chosen to investigate the effect of enteric poly-
mers on the absorption of the weakly alkaline nintedanib. The plasma concentration–time
profiles and main pharmacokinetic parameters are shown in Figure 13 and Table 2, re-
spectively. For the Eudragit L100–ASD group, the plasma concentration was not detected
until 2 h. Compared to the nintedanib group (2.8 ± 0.4 h), the peak plasma concentra-
tion was achieved at 5.3 ± 2.7 h. The Tmax markedly increased (p < 0.05), indicating that
Eudragit L100–ASD could resist gastric acid and delay the drug release in the GIT. The
mean Cmax for Eudragit L100–ASD (370.0 ± 159.6 ng/mL) was 1.5–fold higher than that
of nintedanib (248.3 ± 70.4 ng/mL), but the lack of marked difference (p > 0.05) might be
due to the high individual variation among rats. The AUC0–24h for Eudragit L100–ASD
(2710.6 ± 1479.4 ng/mL·h) was significantly greater than that obtained with nintedanib
(1107.6 ± 292.3 ng/mL·h) (p < 0.05), indicating that the ASD formulation significantly im-
proved the oral bioavailability (Frel = 245%). No significant differences were observed for
t1/2 values of Eudragit L100–ASD and nintedanib. However, the MRT of Eudragit L100–ASD
significantly increased compared to the crystalline drug (p < 0.01), indicating that the enteric
polymer extended the absorption period and provided a sustained plasma profile.
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Table 2. The main pharmacokinetic parameters of nintedanib after oral administration of nintedanib
and Eudragit L100–ASD in rats at a dose of 50 mg/kg (n = 6).

Parameters Nintedanib Eudragit L100–ASD

Tmax (h) 2.8 ± 0.4 5.3 ± 2.7 *
Cmax (ng/mL) 248.3 ± 70.4 370.0 ± 159.6

AUC0–24h (ng/mL·h) 1107.6 ± 292.3 2710.6 ± 1479.4 *
t1/2 (h) 3.2 ± 0.8 3.6 ± 1.1

MRT (h) 6.3 ± 0.8 9.3 ± 1.4 **
Frel (%) / 245%

* p < 0.05, ** p < 0.01: significantly different from the nintedanib group.

The reasons for the bioavailability enhancement by Eudragit L100–ASD are listed as
follows: (1) the amorphous conversion of crystalline nintedanib improved the solubility
of the weakly alkaline drug and facilitated dissolution in the intestinal fluid [12]; (2) the
polymer Eudragit L100 inhibited the precipitation and recrystallization of the dissolved
drug, and effectively maintained the state of drug supersaturation; (3) the maintenance of
the supersaturation state could provide high energy, which maintained a high concentration
gradient state to drive the drug to be transported across the intestinal membrane and pro-
moted oral drug absorption [41]. Although the improved bioavailability was comparable
to that of reported novel formulations [8,9], the excellent maintenance of supersaturation
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in the neutral medium in vitro only contributed to a limited augmentation, suggesting that
other issues should be considered for further improvement [6,7]. Large inter–individual
variation in the plasma concentration of nintedanib was also observed for the Eudragit
L100–ASD group. As the amorphous drug was distributed throughout the Eudragit L100
matrix, the dissolution rate of the polymer in the gastrointestinal fluid controlled the drug
dissolution. The intrinsic dissolution characteristics of Eudragit L100 and the relatively
low volume of intestinal fluids might contribute to preventing the formation of high drug
concentrations in the lumen, as demonstrated in the delayed Tmax and prolonged MRT
(Table 2). Individual differences, such as the pH value and volume of intestinal fluid,
as well as the metabolism enzymes and transporters, influenced the drug absorption of
Eudragit L100–ASD in vivo [42].

4. Conclusions

Poorly water–soluble, weakly basic drugs precipitate easily in the intestinal tract after
the drug solution empties from the stomach, leading to low bioavailability. In the present
study, pH–dependent soluble polymers, HPMCAS LG, HPMCAS MG, Eudragit L100 55,
and Eudragit L100, have been compared for the solubility enhancement of nintedanib and
supersaturation maintenance. All polymers were observed to increase the solubility and
reduce precipitation rates relative to the growth rate of the drug alone in pH 6.8 PBS buffer.
Compared to HPMCAS LG and HPMCAS MG, Eudragit L100 55 and Eudragit L100 were
more effective. The stabilizing effects on supersaturation in a neutral medium may be
related to the interaction of drug–polymer, which was confirmed by FT–IR. The dissolution
results of four polymer–ASDs demonstrated that all polymers could effectively maintain
the drug supersaturation, even at the lowest ratio. The pharmacokinetic characteristics of
Eudragit L100–ASD further demonstrated that enteric polymer–based ASDs are an effective
strategy to increase the oral bioavailability of nintedanib by improving the dissolution
properties in the small intestine.
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