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Abstract: Effective Partial Discharge (PD) localization can detect the insulation problems of the
power equipment in a substation and improve the reliability of power systems. Typical Ultra-High
Frequency (UHF) PD localization methods are mainly based on time difference information, which
need a high sampling rate system. This paper proposes a novel PD localization method based on
a received signal strength indicator (RSSI) fingerprint to quickly locate the power equipment with
potential insulation defects. The proposed method consists of two stages. In the offline stage, the RSSI
fingerprint data of the detection area is measured by a wireless UHF sensor array and processed by a
clustering algorithm to reduce the PD interference and abnormal RSSI values. In the online stage,
when PD happens, the RSSI fingerprint of PD is measured via the input of pattern recognition for
PD localization. To achieve an accurate localization, the pattern recognition process is divided into
two steps: a preliminary localization is implemented by cluster recognition to reduce the localization
region, and the compressed sensing algorithm is used for accurate PD localization. A field test in a
substation indicates that the mean localization error of the proposed method is 1.25 m, and 89.6%
localization errors are less than 3 m.

Keywords: partial discharges; wireless UHF sensors; RSSI fingerprint; localization; compressed
sensing; substations

1. Introduction

Partial Discharge (PD) is the representation of the insulation degradation of the power equipment
in a substation, which can give rise to equipment failure and even serious accidents [1,2]. Therefore,
PD detection and localization is an effective way to monitor the status of power equipment and
avoid accidents. With the development of the smart grid, intelligent Condition Monitoring and
Diagnostics (CMD) is one of the key requirement of a substation [3,4]. This paper proposes a novel
partial discharge localization system in a substation that can quickly locate the power equipment with
potential insulation defects.

PD can be detected by the measurement of ultrasonic waves, light, heat, and Ultra-High Frequency
(UHF) electromagnetic waves [5]. For PD localization in a substation, the UHF method is one of
the most effective ways due to its excellent stability, anti-interference, transmission distance, and
transmission speed [6,7]. Typical UHF methods are mainly based on time or angle information
of the UHF signals such as time of arrival (TOA) [8], time difference of arrival (TDOA) [9,10],
and angle of arrival (AOA) [11,12]. Among them, TDOA has been widely used for PD localization.
In this paper [13,14] we proposed a PD localization method in transformers based on TDOA. In the
literature, [15] TDOA was used for PD localization in a substation. A traditional TDOA-based PD
localization system in a substation is shown in Figure 1. When PD happens, the UHF sensors receive
the UHF signals produced by PD. Then, by analyzing the time difference information, the location of
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PD can be estimated. Since the transmission speed of UHF signals is close to the speed of light, the time
difference of the UHF signal’s arrival among UHF sensors is on a nanosecond level, which requires a
high sampling frequency and high-precision time synchronization between the UHF sensors and the
signal acquisition system. This requirement produces high hardware costs and makes TDOA-based
localization hard to achieved.
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Figure 1. Traditional time difference of arrival (TDOA)–based Partial Discharge (PD) localization
system in a substation.

In recent years, the received signal strength indicator (RSSI) localization method has been widely
studied in indoor localization, which uses only the signal strength information and is easily achieved
by a low hardware cost solution [16,17]. In this paper [18], an RSSI-based PD localization systems
is proposed, which uses the signal propagation model to estimate the distances and then calculates
the location of PD. This method is easily implemented but is susceptible to the complex environment
in substation. With the development of wireless UHF sensors, the arrangement of the UHF sensor
array can be more flexible, which motivates us to use the RSSI fingerprint localization method for PD
localization in a substation [19]. The RSSI fingerprint localization method is a scene analysis method
with excellent environment adaptability and accuracy. The RSSI fingerprint PD localization system
is shown in Figure 2. First, in the offline stage, a set of test points are arranged in the detection area.
The RSSI values that are produced by discharging source, which denotes the received UHF signal
strength, are measured at each test point. The RSSI values are transmitted from wireless UHF sensors
to the computers though a router. All the RSSI values and corresponding test points’ coordinates
are recorded to establish the RSSI fingerprint map of the detection area. Second, in the online stage,
when PD happens, the RSSI values of PD are measured by the wireless UHF sensors array and used to
estimate the location of PD by pattern recognition in the prebuilt RSSI fingerprint map. The purpose
of our proposed method is to quickly find the faulty equipment in substations. Due to the intrinsic
nature of the measuring process, our method cannot be applied to localize PD sources inside power
equipment like transforms or gas-insulated substations.
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Typical pattern recognition algorithms such as K Nearest Neighbor (KNN) [20] and neural
networks [21] are easy to implement, but the performance in practical application is not satisfactory.
In this paper, we use the compressed sensing (CS) algorithm to obtain more accurate PD localization.
CS theory indicates that the sparse signal can be reconstructed by solving the l1-minimization
problem [22,23]. For the proposed localization method, a localization result is a specific point in
the detecting area. Therefore, the result vectors are sparse in nature. According to the CS theory,
the accuracy of the CS localization algorithm decreases with the increase of test points [24]. Therefore,
the online stage also consists of two steps. First, the preliminary localization is implemented by cluster
recognition, which produces a small RSSI fingerprint map. Second, more accurate localization is
obtained by CS algorithm with the use of a small RSSI fingerprint.

From practical application point of view, an affinity propagation clustering algorithm is designed
and performed in the offline stage to eliminate the influence of interference signals and abnormal
RSSI values for the fingerprint map. Furthermore, the built RSSI fingerprint map will also be divided
into several clusters by this clustering algorithm for the preliminary localization in the online stage,
as described above.

A field test is performed in a substation to verify the effectiveness of our proposed PD localization
method. The results indicate that the proposed localization method shows satisfactory performance.
The mean localization error is 1.25 m, and 89.6% of localization errors are less than 3 m.

The remainder of this paper is organized as following: Section 2 introduces the overview of
the proposed PD localization method. The data acquisition and processing method and affinity
propagation clustering algorithm in the offline stage are proposed in Section 3. Section 4 introduces
the preliminary localization by cluster recognition and the accurate localization based on CS algorithm
in the online stage. Section 5 introduces the hardware design. A field test and corresponding results
are reported and analyzed in Section 6. Section 7 highlights the key contributions of this paper.

2. Overview of the Proposed PD Localization Method

The proposed RSSI fingerprint-based PD localization method is divided into two stages. Figure 3
shows the flow chart of the proposed PD localization method using four sensors, AP1, AP2, AP3,
and AP4, as an example.

First, in the offline stage, totally N test points are arranged in the detection area, which are denoted
by RPj (j = 1, 2, . . . , N). Then, the discharge source is used to produce PD at each test point, and the
corresponding RSSI values are measured by L wireless UHF sensors. These wireless UHF sensors
are denoted by APi (I = 1, 2, . . . , L). Assuming the RSSI value of the test point RPj measured by the
wireless UHF sensor APi is denoted by φi,j, then the RSSI fingerprint of RPj is,

rj = [φ1,j, φ2,j, . . . , φL,j]
T (1)

The RSSI fingerprints of all test points establish the RSSI fingerprint map Ψ of the detection area,
which is denoted by,

Ψ =


φ1,1 φ1,2 . . . φ1,N
φ2,1 φ2,2 . . . φ2,N

...
...

. . .
...

φL,1 φL,2 . . . φL,N

 (2)

There are two clustering processes in the offline stage. The Clustering I process is implemented
during the establishment of the RSSI fingerprint map to reduce the influence of PD interference signals
and abnormal RSSI values. The Clustering II process is implemented when the RSSI fingerprint map
has been established. After the Clustering II process, the RSSI fingerprint map is divided into several
clusters, which is the preparation for cluster recognition in the online stage.
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Second, in the online stage, when PD happens, the RSSI fingerprint of PD is measured by wireless
UHF sensor array and denoted as rPD,

rPD = [φ′1, φ′2, . . . , φ′L]
T (3)

where φ′i is the RSSI value of PD measured by APi.
Then, pattern recognition is performed to find the column in Ψ that is most approximate to rPD.

The coordinate of the matched column is the localization result. For better localization accuracy,
the pattern recognition consists of two steps. In the first step, the preliminary localization is
implemented by cluster recognition to get the small RSSI fingerprint map Ψ′. In the second step,
more accurate localization is got by CS algorithm.

3. Offline Stage

3.1. Data Acquisition and Processing

In the offline stage, the RSSI fingerprint map of the detection area is established by site survey.
During the site survey, a discharge source is used to produce PD at each test point, and the RSSI
fingerprint data is acquired by wireless UHF sensors.

Since the strength of the discharge source is uncertain, the use of the RSSI fingerprint map
constituted by the original RSSI values will produce conspicuous errors in pattern recognition. To solve
this problem, the original RSSI values should be normalized.
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Assuming the original RSSI fingerprint of RPj is,

r̂j = [φ̂1,j, φ̂2,j, . . . , φ̂L,j]
T (4)

where φ̂i,j (i = 1, 2, . . . , L) are the original RSSI values of RPj. Then the normalization process is,

φk,j =
φ̂k,j

1
L

L
∑

t=1
φ̂t,j

(5)

where k = 1, 2, . . . , L.
The normalization process highlights the spatial position relationship between the discharge

source and sensors while decreases the influence of PD strength to improve the accuracy of
pattern recognition.

3.2. Affinity Propagation Clustering

In the offline stage, two clustering procedures are performed as following.

3.2.1. Clustering I

The object of Clustering I is to reduce the influence of PD interference in the offline stage as shown
in Figure 4. During the measurement of RSSI fingerprint map, there are three PD signals detected by
four wireless UHF sensors: AP1, AP2, AP3, and AP4 within about 1500 ns. It is hard to choose which
PD is produced by our discharge source. Since the RSSI fingerprints measured in one test point are
similar, we can eliminate the PD interference by following steps: first, producing PD at one test point
for enough times and recording all the RSSI fingerprints. Then, clustering these fingerprints by the
affinity propagation clustering algorithm. The mean value of the largest cluster is chosen as the RSSI
fingerprint of this test point. Clustering I can also eliminate the abnormal RSSI values. As shown in
Figure 5, these two PD signals are produced by one discharge source at one test point. The waveform
received by AP1, AP2, and AP3 are similar, but the waveform received by AP4 contain conspicuous
abnormal values. During the Clustering I process, these abnormal values will also be eliminated.
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3.2.2. Clustering II

The object of Clustering II is to divide the RSSI fingerprint map into several clusters for the
preparation of cluster recognition in the online stage. The effect of Clustering II can be seen in
Section 6.2.

The affinity propagation clustering algorithm is a high-efficiency clustering algorithm [25].
Therefore, it is chosen as the clustering algorithm for Clustering I and Clustering II. Affinity propagation
clustering use the similarity matrix S to cluster the elements, denoted as,

S =


s(1, 1) s(1, 2) . . . s(1, D)

s(2, 1) s(2, 2) . . . s(2, D)
...

...
. . .

...
s(D, 1) s(D, 2) . . . s(D, D)

 (6)

where D is the number of elements, and s(i, j) is the similarity between the element i and element j,
which is denoted as, {

s(i, j) = −‖ri − rj‖2 ∀i, j ∈ (1, 2, . . . , D), i 6= j
s(i, j) = w ∀i, j ∈ (1, 2, . . . , D), i = j

(7)

where w is the is the control parameter to adjust the number of clusters.
The core operation of affinity propagation clustering algorithm is the iteration process shown

in (8) and (9),
res(t+1)(i, j) = s(i, j)−max

j′ 6=j

{
ava(t)(i, j′) + s(i, j′)

}
(8)


ava(t+1)(i, j) = min

 0, res(t)(j, j)+
∑

i′ 6=i,j
max(0, res(t)(i′, j))

 , i 6= j

ava(t+1)(i, j) = ∑
i′ 6=i,j

max(0, res(t)(i′, j)) , i = j
(9)

where res(i, j) is the responsibility value sent from element i to element j, which reflects how suitably
the element j serves as the exemplar for element i, ava(i, j) is the availability value sent from element
j to element i, which reflects how suitably the element i chooses element j as its exemplar, t is the
number of iterations, i′ ∈ (1, 2, . . . , D), i′ 6= i or j, j′ ∈ (1, 2, . . . , D), j′ 6= j.
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For all elements k (k = 1, 2. . . . , D), the condition of becoming an exemplar is,

res(t+1)(k, k) + ava(t+1)(k, k) > 0 (10)

Let E denote the set of exemplars, then for elements, its exemplar is the closest one in E under
similarity measurement.

When t reaches the maximum number of iterations tmax or the clustering results remain unchanged
in consecutive tcon iterations, the iteration is terminated.

To solve the convergence problem of iteration, we use the damping factor λ during the updating
of res and ava, as shown in (11) and (12),

res(t+1)(i, j) = (1− λ)res(t+1)(i, j) + λres(t)(i, j) (11)

ava(t+1)(i, j) = (1− λ)ava(t+1)(i, j) + λava(t)(i, j) (12)

where the range of λ goes from 0 to 1. The increase of λ will improve the global searching ability of the
algorithm and produces better convergence performance but also slow down the convergence rate.
Since the clustering processes described here are only implemented in the offline stage, the λ tends to
be a big value.

4. Online Stage

According to the CS theory, if the number of sensors L is in the order of log (N), the localization
result vector can be recovered from the RSSI fingerprint of PD at high probability [26,27]. However,
L is hard to reach the order of log (N) in most cases. Therefore, the localization is divided into two
steps. First, the preliminary localization is implemented by cluster recognition to determine which
cluster the RSSI fingerprint of PD belongs to in the RSSI fingerprint map Ψ. The recognized cluster is
regarded as the small RSSI fingerprint map Ψ’. Second, the accurate localization is implemented by CS
algorithm with the use of Ψ′.

4.1. Preliminary Localization by Cluster Recognition

To reduce the influence of the boundary problem, we use all the elements in RSSI fingerprint
map to implement the cluster recognition rather than only using the exemplars. The cluster
recognition finds,

min‖rPD − rg‖2 s.t g ∈ (1, 2, . . . , C) (13)

where C is the number of clusters, and rg is the average value of the RSSI fingerprints in the gth cluster.
The RSSI fingerprints in the optimal cluster constitute a small RSSI fingerprint map Ψ′. The size

of Ψ′ can be adjusted by the parameters in the affinity propagation clustering algorithm.

4.2. Accurate Localization by CS Algorithm

Assuming the number of the elements in Ψ′ is N′, therefore Ψ′ is a N′ × L matrix, which is a
subset of Ψ. If a PD happens at the test point RPj, the location of PD can be denoted as,

F = [0, . . . , 0, 1, 0, . . . , 0]T (14)

F is a N′ × 1 vector with all elements are marked as zero, except the element that denotes the
position of RPj, which is marked as one. Then we have,

rj = Ψ′F (15)
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Multiplying both side of (15) by Φ.

Φrj = ΦΨ′F (16)

Let Y = Φrj, then we have,
Y = ΦΨ′F (17)

As mentioned above, F is a 1-sparse vector. According to the CS theory, (17) is a standard form of
CS algorithm [22]. Φ is a m × L measuring matrix where m is the number of measurements and m < N′.
Let Θ = ΦΨ′, which is a m × N′ sensing matrix.

Literature [28] indicates that F cannot be well recovered from the measurement Y unless Θ satisfies
the Restricted Isometry Property (RIP) condition, which is denoted as,

1− ε ≤ ‖ΘF‖2

‖F‖2 ≤ 1 + ε (18)

where ε ∈ (0,1).
However, it is hard to use (18) to judge whether the RIP condition is satisfied. Literature [29–31]

indicate that if the correlation between Φ and Ψ′ is weak, the RIP condition can be satisfied at high
probability. Since the correlation between the Gaussian random matrix and other matrix is weak [32],
the measuring matrix Φ is set as the Gaussian random matrix.

To satisfying the RIP condition better, we use SVD (Singular Value Decomposition) operation to
transform sensing matrix Θ. denoted as,

Θ = U∆VT (19)

where U is a m × m orthogonal matrix, V is a N′ × N′ orthogonal matrix. ∆ is denoted by (20) and (21),

∆ = [ P 0 ] (20){
P = diag(δ1, δ2, . . . , δm)

δ1 ≥ δ2 ≥ . . . ≥ δm
(21)

Let

∆∗ =

[
P∗

0

]
(22)

{
P∗ = diag( 1

δ1
, 1
δ2

, . . . , 1
δm

)

δ1 ≥ δ2 ≥ . . . ≥ δm
(23)

Combining with (17), we have,
∆∗UTY = ∆∗UTΘF (24)

P∗UTY =
[

Im 0
]
VT F (25)

Let
Y′ = P∗UTY (26)

Q =
[

Im 0
]
VT (27)

We have,
Y′ = QF (28)



Sensors 2017, 17, 1909 9 of 18

where Y′ is a transformed RSSI fingerprint of PD and Q is the transformed sensing matrix. From (27),
we know that Q is a nearly orthogonal matrix. According to the literature [24], Q satisfies the RIP
condition.

Since Q is a m × N′ matrix and m < N′, (28) cannot be solved directly. According to the CS
theory, by solving l1-minimization model F can be well recovered from the measurement Y′ [32,33].
As shown in (29),

F′ = argmin‖F‖1 s.t. Y′ = QF (29)

where F′ is the recovered location vector.
We use the greedy algorithm to solve (29) due to its fast computation speed and small

algorithm complexity [34]. Typical greedy algorithm includes the orthogonal matching pursuit
(OMP) algorithm [35], the compressed sampling pursuit matching (CoSaMP) algorithm [36], subspace
pursuit (SP) algorithm [37], and the generalized orthogonal matching pursuit (GOMP) algorithm [38].
We will use these four algorithms for comparison in experiment.

Since PD may not happen at a test point exactly, F′ is a vector with several nonzero elements
rather than 1-sparse vector in theory. In this paper, the location of PD is decided as the coordinate of
biggest element in F′.

5. Hardware Design

5.1. Wireless UHF Sensors

The wireless UHF sensor used in the proposed PD localization method is shown in Figure 6.
The antenna, bandpass filter, amplifier, detector, MCU, Wi-Fi module, and battery are concentrated
in a metal shell. As shown in Figure 6b, the PD signal processing module (including filter, low noise
amplifier, detector) is masked by copper foil for better anti-interference performance.
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with a double feed and low cost. The panel of the elliptical dipole antenna is shown in Figure 7. The 
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electromagnetic wave to voltage. Higher effective height will produce higher voltage. 

Figure 6. The picture of wireless Ultra-High Frequency (UHF) sensor. (a) Outside; (b) Inside.

There are many kinds of antenna used in UHF sensors. Among them, the dipole antenna has
the advantage of high sensitivity and small size. Therefore, we designed an PCB elliptical dipole
antenna with a double feed and low cost. The panel of the elliptical dipole antenna is shown in
Figure 7. The measured sensitivity curve is shown in Figure 8. The average effective height of our
designed antenna is approximately 11.77 mm. The effective height denotes the ability of the antenna
to transform the electromagnetic wave to voltage. Higher effective height will produce higher voltage.
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The process of the data acquisition by wireless UHF sensors is shown in Figure 9. First, the UHF 
electromagnetic wave is received by the antenna. Second, the detection waveform is obtained after 
signal conditioning by the bandpass filter, amplifier, and detector. Finally, via A/D sampling, the 
digital data are generated and transmitted to computer through a Wi-Fi module controlled by MCU. 
It is worthwhile to denoted that the sampling frequency is 2.7 MHz, which is much lower than that 
in TDOA because the goal of our method is to get the amplitude of waveforms rather than get the 
time difference information. The peak value of the detection waveform is the original RSSI value. A 
peak detector (AD8318) together with the peak holding circuit are designed to obtain the peak value 
of PD signals. Figure 10 shows the peak detection waveform of a PD signal generated by PD emitter. 
The waveform lasts about 15 us. Since the A/D sampling frequency is 2.7 MHz, there are about 40 
sampling points, which can ensure that we obtain the peak value. 
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The process of the data acquisition by wireless UHF sensors is shown in Figure 9. First, the UHF
electromagnetic wave is received by the antenna. Second, the detection waveform is obtained
after signal conditioning by the bandpass filter, amplifier, and detector. Finally, via A/D sampling,
the digital data are generated and transmitted to computer through a Wi-Fi module controlled by
MCU. It is worthwhile to denoted that the sampling frequency is 2.7 MHz, which is much lower than
that in TDOA because the goal of our method is to get the amplitude of waveforms rather than get
the time difference information. The peak value of the detection waveform is the original RSSI value.
A peak detector (AD8318) together with the peak holding circuit are designed to obtain the peak
value of PD signals. Figure 10 shows the peak detection waveform of a PD signal generated by PD
emitter. The waveform lasts about 15 us. Since the A/D sampling frequency is 2.7 MHz, there are
about 40 sampling points, which can ensure that we obtain the peak value.
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5.2. PD Source

In the offline stage, the discharge source we used is a standard PD simulator named “EM TEST
DITO” that can produce air discharge pulse according to EN/IEC 61000-4-2, as shown in Figure 11.
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6. Experimental Verification

6.1. Experimental Scheme

To verify the performance of proposed PD localization method, we chose a test site in a substation
to perform a field experiment in a 24 × 24 m’ square area. Our PD localization system consists of a
computer, a router, and four wireless UHF sensors, AP1, AP2, AP3, and AP4, as shown in Figure 12.
From Figure 8 we can see that these wireless UHF sensors have a signal bandwidth of 300 MHz–
1500 MHz and can transmit the envelope detection data of PD signal to a computer through Wi-Fi.
To measure the RSSI fingerprint map of the test site, a total of 625 test points were arranged in the test
site and distributed evenly with the adjacent distance of 1 m. The placement of sensors and test points
is shown in Figure 13.

The test consists of two stages. First, in the offline stage, the RSSI fingerprint map Ψ was measured.
A PD source was used to produce PD for 50 times at each test point. The RSSI fingerprint data was
measured by wireless UHF sensor array and transmitted to a computer. By Clustering I process
the RSSI fingerprint of each test point was obtained and these fingerprints constituted Ψ. Then the
Clustering II process was implemented to divide Ψ into several clusters, which is the preparation for
cluster recognition in the online stage. The parameters settings of the affinity propagation clustering
algorithm are shown in Table 1.

Second, in the online stage, we used the standard discharge source to produce PD at one test point,
and the RSSI fingerprint of PD was obtained. Then, the preliminary localization was implemented
by cluster recognition, and the small RSSI fingerprint map Ψ′ was generated. Finally, the accurate
localization was implemented by CS algorithm. This process was repeated at all the test points to
verify the effectiveness of the proposed PD localization method.
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6.2. Performance Evaluation of Offline Stage

The RSSI fingerprint map Ψ of the test site measured in the offline stage is shown in Figure 14.
Together with the plan of the test site in Figure 13, we find that the RSSI fingerprint map measured by
each sensor is reasonable. The distribution of the RSSI values obeys the signal transmission properties
and can reflect the spatial information of the test site. The irregular points in Ψ are caused by the
influence of the complex electromagnetic and spatial environment in the substation.
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Figure 14. The RSSI fingerprint map measured by four sensors in the offline stage.

By the Clustering II process, Ψ is divided into several clusters as shown in Figure 15. The RSSI
fingerprints in Ψ are divided into 21 clusters. Therefore, the average number of fingerprints included
in Ψ′ is about 30 (625/21). The performance of clustering is satisfactory because most of clusters
are compact. This compactness indicates that if some test points are close to each other, their RSSI
fingerprints are also similar. This property indicates that the distribution of RSSI fingerprints can
reflect the spatial information of test site precisely.
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Figure 15. The clustering of Ψ.

In Figure 15, we can also find some elements in Ψ that are far from its exemplar. Most of this
phenomenon appears at the boundary of clusters. Therefore, this phenomenon is mainly caused
by measurement errors and the complex electromagnetic and spatial environment of the substation.
Obviously, if PD happens at these test points, the localization error would be large.
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6.3. Performance Evaluation of the Online Stage

First, for the preliminary localization, the performance of cluster recognition is satisfactory. About
81.9% of cluster recognition can recognize the correct cluster.

Second, for the CS algorithm, in order to choose the best solution for l1-minimization model,
OMP, CoSaMP, SP, and GOMP were implemented for comparison. The results are shown in Figure 16.
We can see that when m > 3, the localization errors are stable. The performance of OMP, SP, and GOMP
are almost the same. Since the algorithm complexity of OMP is minimum, it is chosen as the solution
for l1-minimization model finally.

Third, we compared three different pattern recognition algorithms: BP neural network, KNN,
and the proposed CS algorithm. The localization results are shown in Table 2, and the corresponding
cumulative distribution function (CDF) is shown in Figure 17. The results indicate that the performance
of BP neural network and KNN is almost the same, while our proposed CS algorithm exhibits the best
performance. The tendency of the CDF curve indicates that if the cluster recognition can recognize
the correct cluster and generate a suitable Ψ′, the localization by CS algorithm would be accurate. We
also investigated the execution times of these three algorithms. The average execution times of one
PD localization is that: our CS algorithm needs 11.38 s; BP neural network needs 3.39 s and KNN
needs 0.68 s.

Finally, we investigated the performance of the Clustering I process. Table 3 gives the localization
errors under the Clustering I process and without the Clustering I process. The corresponding CDF
is shown in Figure 18. The Clustering I process can reduce 39.6% of the mean localization errors,
which illustrates that the accuracy of RSSI fingerprint map is one of the key factors that determine the
localization performance. The clustering I process will add extra execution times which rely on the
actual situation of the site survey in the offline stage.
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Table 2. Localization results for different pattern recognition algorithm.

Parameters CS BP KNN

Average error (m) 1.25 2.51 2.63
The proportion of the errors within 1 m 68.3% 24.2% 27.0%
The proportion of the errors within 3 m 89.6% 70.2% 68.1%
The proportion of the errors within 5 m 95.2% 85.0% 80.2%

The maximum error (m) 8.49 10.57 11.89
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7. Conclusions

This paper proposes a novel PD localization method based on wireless UHF sensor array.
The proposed PD localization method shows satisfactory accuracy through field test. Together with
its low hardware cost, the proposed method is worthy to be widely applied in substations to find
power equipment with potential insulation defects quickly. Considering the workload in the offline
stage, the proposed method is more suitable in small and medium voltage level substations. In our
future work, we plan to use the sub-regional monitoring strategy for larger substation and investigate
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the methodology to reduce the workload of fingerprint mapping. The weather conditions can also
influence our proposed method. For example, in humid conditions, the PD interference will increase.
Therefore, to guarantee the effectiveness of the clustering I process, the number of PDs produced
by our discharge source in the offline stage should also be increased. However, according to the
normalization process as addressed in Equation (5), the influence to the localization accuracy caused
by weather conditions could be reduced to an acceptable level.
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