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Abstract

Introduction. Failure of fluoroquinolones, the principal treatment option for macrolide-resistant Mycoplasma genitalium infec-
tions, has recently emerged. This is of particular concern for men who have sex with men (MSM), who have high proportions of 
macrolide-resistant M. genitalium infections. Treatment failure with moxifloxacin is likely the result of single nucleotide poly-
morphisms (SNPs) in parC, whilst concurrent gyrA mutations may play a role.

Gap Statement. The levels of fluoroquinolone resistance and dual-class (i.e. macrolide and fluoroquinolone) resistance in M. 
genitalium among asymptomatic MSM is unknown.

Aim. To (i) determine the proportion of fluoroquinolone resistance and dual-class resistance in M. genitalium infections among 
asymptomatic MSM, (ii) explore any clinical and behavioural associations with fluoroquinolone resistance, and (iii) determine 
the distribution of antibiotic resistance among M. genitalium mgpB sequence types (STs).

Methodology. M. genitalium positive samples (N=94) were obtained from 1001 asymptomatic MSM enrolled in a study at Mel-
bourne Sexual Health Centre (Carlton, Australia) between August 2016 and September 2017. Sanger sequencing was per-
formed to determine the proportion of M. genitalium infections with SNPs in parC that have previously been associated with 
failure of moxifloxacin (corresponding to amino changes S83I, D83R, D87Y and D87N) and in gyrA (corresponding to amino acid 
changes M95I, D99N, D99Y and D99G). Associations between clinical/behavioural factors and parC SNPs were examined. Strain 
typing was performed by sequencing a portion of the mgpB gene.

Results. The proportion of MSM with infections harbouring parC and gyrA SNPs was 13.0 % [95 % confidence interval (CI): 
6.8–23.2 %] and 4.7 % (95 % CI: 1.1–13.4 %), respectively; dual-class resistance was 13.0 %. No significant clinical/behavioural 
associations were found. Antibiotic resistance was not restricted to specific mgpB STs.

Conclusion. One in eight (13 %) of asymptomatic MSM with M. genitalium had an infection with dual-class-resistance mutations. 
Typing by mgpB sequence suggested fluoroquinolone resistance is arising from independent mutation events. This study illus-
trates that asymptomatic MSM may act as a reservoir for antibiotic-resistant M. genitalium.

OPEN

ACCESS

http://jmm.microbiologyresearch.org/content/journal/jmm/
https://creativecommons.org/licenses/by-nc/4.0/legalcode


2

Chua et al., Journal of Medical Microbiology 2021;70:001429

INTRODUCTION
Mycoplasma genitalium is a sexually transmitted bacterium 
associated with non-gonococcal urethritis in men, and 
cervicitis and pelvic inflammatory disease in women [1–3]. 
M. genitalium infections are commonly asymptomatic, with 
one study reporting a prevalence of 3 % in asymptomatic men 
and 6 % in asymptomatic women attending a sexual health 
clinic in the UK [4]. The prevalence of M. genitalium in 
asymptomatic men who have sex with men (MSM) has been 
reported to be 9.4–10.5 % [5–7]. In MSM, anorectal infections 
are common and are often asymptomatic [8–14], with studies 
also reporting high levels of macrolide resistance in anorectal 
infections, between 75.0 and 84.2 % [7, 12, 15]. Despite the 
high levels of anorectal infection, the contribution of rectal M. 
genitalium to proctitis is unclear [7, 10, 16, 17]. Furthermore, 
the contribution of asymptomatic infections to longer-term 
sequelae, such as prostatitis, epididymitis and balanoposthitis, 
is not fully understood [2].

The macrolide azithromycin has been commonly admin-
istered for treatment of M. genitalium infections, but has 
resulted in increased levels of macrolide resistance glob-
ally (10.0 % before 2010 and 51.4 % in 2016–2017) [18, 19]. 
Macrolide resistance is pronounced in MSM, with levels 
as high as 87.1 % [20, 21]. Subsequently, the reliance on 
the use of fluoroquinolones for macrolide-resistant infec-
tions has increased, which may further increase the risk 
of fluoroquinolone resistance. A meta-analysis observed a 
global increase in fluoroquinolone-resistant M. genitalium 
from 4.8 % (before 2010) to 9.3 % (2016–2017) [18]. This is 
consistent with the results of an earlier review, which found 
a decrease in moxifloxacin efficacy from 100 % (before 2010) 
to 89 % (2010–2016) [22]. Studies have analysed the relation-
ship between fluoroquinolone treatment failure and single 
nucleotide polymorphisms (SNPs) in parC and gyrA [23–26]. 
In parC, SNPs corresponding to the amino acid changes 
S83I [24–26], S83R [25, 26], D87N [23, 25, 26] and D87Y 
[23, 26] have been associated with fluoroquinolone failure. 
The contribution of gyrA SNPs alone is unknown; however, 
the presence of a parC S83I and a concurrent SNP in gyrA 
(conferring either M95I or D99N) may increase the risk of 
treatment failure [26].

Current guidelines recommend testing of M. genitalium 
in symptomatic individuals and their sexual partners [27]. 
Screening of asymptomatic individuals, especially MSM, is 
not recommended, as the contribution of M. genitalium to 
sequelae is unclear, and treatment may further exacerbate the 
issue of antibiotic resistance, particularly as treatment options 
are running out [28, 29]. MSM are a population who already 
experience high levels of macrolide-resistant M. genitalium, 
and any increase in fluoroquinolone resistance may result in 
dual-class-resistance strains, for which very limited treatment 
options are available [30]. Limited data are available on the 
trends and factors associated with fluoroquinolone-resistant 
M. genitalium in MSM [18, 31], particularly asymptomatic 
MSM. This study analyses clinical samples obtained from 
the MnM study of M. genitalium in asymptomatic MSM [7], 

and aims to (i) determine the levels of fluoroquinolone and 
dual-class resistance in the cohort, (ii) explore any clinical and 
behavioural factor associations with fluoroquinolone resist-
ance in M. genitalium, and (iii) determine the distribution of 
antibiotic resistance among M. genitalium mgpB sequence 
types (STs).

METHODS
Sample collection
Samples were collected at Melbourne Sexual Health Centre 
(MSHC; Carlton, Australia) between 23rd August 2016 
and 27th September 2017 in the MnM study, a study of 
M. genitalium in asymptomatic MSM [7]. Briefly, MSM 
were eligible to participate if they were ≥18 years of age, 
asymptomatic at both triage and clinical consultation, and 
reported receptive anal sex in the preceding year [7]. Urine 
and rectal swabs (either self- or clinician-collected) were 
screened for M. genitalium and macrolide resistance using 
the ResistancePlus MG test (SpeeDx). There was a total 
of 1001 participants, of which 95 (9.5 %; 95 % confidence 
interval [CI] 7.7–11.5 %) were positive for M. genitalium 
and were recalled for treatment. Those who tested posi-
tive for rectal M. genitalium were asked to provide a 
throat swab for screening. Overall, 27 urine samples and 
70 rectal samples tested positive for M. genitalium, with 
two participants providing both a urine and rectal M. geni-
talium sample (i.e. multi-site infection). Of the 70 MSM 
with rectal M. genitalium, 54 provided a throat sample 
of which 1 (1.9 %) tested positive for M. genitalium [7]. 
All participants provided written informed consent and 
ethical approval was granted by the Alfred Hospital Ethics 
Committee (278/16).

Sequence analysis of samples
DNA extraction was performed in the parent study [7]. 
PCR amplification of parC, gyrA and mgpB was performed 
as described previously [32], with primers described else-
where [26, 33]. The cycling conditions for parC and gyrA 
amplification were as follows: 98 °C for 30 s; followed by 35 
cycles of 98 °C for 10 s, 57 °C for 10 s and 72 °C for 15 s; and 
final extension at 72 °C for 5 min. The cycling conditions for 
mgpB have been previously described [33].

Amplicons were sequenced bidirectionally at Macrogen. 
Sequences were processed using CLC Main Workbench 
(CLC Bio) and uploaded to GenBank with accession numbers 
MZ361843–MZ361913 (mgpB), MZ391894–MZ391957 
(gyrA) and MZ391958–MZ392027 (parC). Some samples only 
had one sequence available for analysis (19 for mgpB, 1 for 
both parC and gyrA). SNPs were identified by muscle align-
ment to the M. genitalium reference strain G37 (GenBank 
accession number NC_000908.2) using mega version 10.1.7 
[34] and trimmed to equal length.

SNPs in parC and gyrA were considered to be clinically 
relevant if they had previously been associated with fluo-
roquinolone treatment failure. These include A247C/S83R 
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[25, 26], G248T/S83I [24–26], G259A/D87N [23, 25, 26] and 
G259T/D87Y [23, 26] for parC, and G285A/M95I [24–26], 
G295A/D99N [25, 26], G295T/D99Y [25, 26] and A296G/
D99G [25] for gyrA. For mgpB typing, sequence data were 
uploaded to the Galaxy Australia web platform (https://​
usegalaxy.​org.​au) [35]. A maximum-likelihood phylogeny 
with 1000 bootstrap values was generated using iq-tree 
version 1.5.5.3 [36] and the best fit model was determined 
using Model Finder [37]. Phylogenetic trees were annotated 
using the online tool iTOL, version 5.6.1 [38].

Statistical analysis
Clinical and behavioural characteristics were obtained 
from questionnaires as part of the parent study [7]. A 
two-tail Fisher’s exact test was performed to determine the 
association between characteristics and the detection of 
antibiotic-resistance-associated SNPs using Stata version 
16.1 (StataCorp).

RESULTS
Study group
Of the 95 M. genitalium-positive men, one sample was not 
located; hence, 94 participants contributed a total of 97 
M. genitalium-positive samples (27 urine, 69 rectal and 1 
throat) (Fig. 1). The median age was 27 years (interquartile 
range: 23–32 years), most (94.7 %) were human immunode-
ficiency virus (HIV) negative and were not on pre-exposure 
prophylaxis for HIV (PrEP) (80.9 %). In the 3 months prior 
to enrolment, the majority of men reported inconsistent 
condom use (68.1 %) and were not on antibiotics (70.2 %). 
Nine men had prior exposure to azithromycin in the previous 
3 months, while 18 men had exposure to other antibiotics 
not routinely used for M. genitalium treatment. Only one 
participant reported fluoroquinolone use (sitafloxacin) as 
part of resistance-guided therapy for a prior M. genitalium 
infection.

Fig. 1. Summary of the number of M. genitalium samples with wild-type (WT) or SNPs in parC and gyrA. Clinically relevant SNPs for parC 
were considered to be A247C/S83R, G248T/S83I, G259A/D87N and G259T/D87Y. Clinically relevant SNPs for gyrA were considered to be 
G285A/M95I, G295A/D99N, G295T/D99Y and A296G/D99G. MG, M. genitalium.

https://usegalaxy.org.au
https://usegalaxy.org.au
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Proportion of samples with parC and gyrA 
mutations
Sequencing of parC was successful in 70 of 97 samples (72.2 %). 
One participant had multiple samples sequenced (rectal 
and urine) and both samples had identical parC sequences 
containing a single SNP (C366T). Of the 69 individuals, 9 
(13.0 %, 95 % CI 6.8–23.2 %) had M. genitalium infections with 
parC SNPs/amino acid changes of clinical relevance (specifi-
cally G248T/S83I, G259A/D87N, G259T/D87Y), the most 
common being G248T/S83I (7/69, 10.1 %) (Table 1).

For gyrA, 64 of the 97 samples (66.0 %) were successfully 
sequenced and 3 of these (4.7 %, 95 % CI 1.1–13.4 %) were 
M. genitalium infections with gyrA SNPs of known clinical 
relevance (G285A/M95I); all 3 also had a G248T/S83I parC 
change (Table 1).

Proportion of samples with dual-class-resistance-
associated mutations
Of the 94 men with M. genitalium infections, 79 (84.0 %, 
95 % CI 75.2–90.2 %) had infections harbouring macrolide-
resistance-associated mutations, as determined in the previous 
study [7]. All nine M. genitalium infections with clinically 
relevant parC SNPs had macrolide resistance detected; hence, 
dual-class-resistance infections were present in 13.0 % (95 % 
CI 6.5–22.3 %) of the study group.

Associations between clinical/behavioural factors 
and fluoroquinolone resistance
Clinical and behavioural factors, including antibiotic usage 
in the previous 3 months, condom usage in the previous 
3 months, clinical sample type, HIV status and the presence 
of co-infections, were analysed. No significant associations 
were observed in this study, likely due to the small sample 
size (Table S1, available with the online version of this article).

Sequence typing and distribution of antibiotic 
resistance among strains
Sequence typing of the mgpB gene was successful in 71 of 
97 samples (73.2 %). Overall, 24 mgpB STs were identified, of 
which 11 have previously been defined [39, 40] and 13 were 
undefined. The most common STs were ST-A/105 (21.1 %) 
and ST-C/4 (21.1 %). Macrolide resistance was present in the 
majority (63 out of 71, 88.7 %) of samples and, therefore, was 
common to all STs identified in this study, while SNPs in parC 
and gyrA were not confined to specific STs (Fig. 2.).

DISCUSSION
This study analysed fluoroquinolone resistance in M. geni-
talium within an asymptomatic MSM population; 13.0 % 
had a M. genitalium infection harbouring clinically relevant 
parC SNPs (specifically S83I, D87N, D87Y), and 4.7 % with 
clinically relevant gyrA SNPs (M95I in conjunction with 
parC S83I). All infections with these parC SNPs were also 
macrolide resistant.

Table 1. Summary of parC and gyrA SNPs

SNP Amino acid change No. of samples
(%)

parC*

Clinically relevant

 � G248T S83I 7 (10.0)

 � G259A D87N 1 (1.4)

 � G259T D87Y 1 (1.4)

Not clinically relevant

 � A147T L49S 1 (1.4)

 � A154G M52V 1 (1.4)

 � A173C K58T 4 (5.7)

 � C179T T60I 2 (2.9)

 � C184T P62S 6 (8.6)

 � C234T H78H 6 (8.6)

 � A282G Q94Q 1 (1.4)

 � C324T N108N 2 (2.9)

 � A346G N116D 1 (1.4)

 � C356A A119E 1 (1.4)

 � C356T A119V 1 (1.4)

 � C366T Y122Y 5 (7.1)

 � C375T T125T 1 (1.4)

 � T424C L142L 5 (7.1)

 � A436G I146V 5 (7.1)

 � C438T I146I 5 (7.1)

 � A454G S152G 1 (1.4)

Total† 32/70 (45.7)

gyrA

Clinically relevant

 � G285A‡ M95I 3 (4.7)

Not clinically relevant

 � T453C§ D151D 1 (1.6)

 � C468T|| D156D 1 (1.6)

Total 5/64 (7.8)

*Some samples contained more than one parC SNP. The following 
combinations of parC SNPs were observed: G259T, C356T; C184T, 
A346G; C184T, C234T, T424C, A436G, C438T; A147T, A154G; C179T, 
G248T.
†One patient provided two M. genitalium samples, both contained 
parC C366T.
‡Detected with parC G248T (S83I).
§Detected with a group of parC SNPs (C184T, C234T, T424C, A436G, 
C438T).
||Detected with parC C184T and A346G.
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Fig. 2. Maximum-likelihood tree of 71 mgpB sequences generated using iq-tree version 1.5.5.3 (using Galaxy Australia) and reference 
sequence G37 (NC_000908.2) [35, 36]. The best-fit model was TPM2u+R3 and annotated using iTOL (version 5.6.1) [38]. The mgpB STs are 
labelled alphabetically [39] and numerically [40], and the absence of a ST label indicates an undefined ST. For 23S rRNA, parC and gyrA 
analysis, an open box indicates the sample did not have any key clinical SNPs, while a filled box indicates it contained a SNP of known 
clinical relevance. The absence of a box indicates no sequencing result was available for analysis. For sample type, U represents a urine 
sample, R represents a rectal sample. Sample names ending with ‘R’ indicate that only the reverse strand sequence was available for 
analysis. Bootstrap values are also displayed. The scale bar indicates the number of nucleotides substitutions per site.



6

Chua et al., Journal of Medical Microbiology 2021;70:001429

As this study focused exclusively on asymptomatic MSM, 
there are limitations on the availability of similar studies for 
comparison. A study that examined the prevalence of M. 
genitalium in a group of predominantly asymptomatic MSM 
participants from an HIV study in France (from 2015 to 2016) 
reported a parC SNP prevalence of 9.1 % (3/33), which is 
lower than the proportion observed in this study (13.0%) [6]. 
A study in Spain including asymptomatic MSM STI (sexually 
transmitted infection) clinic attendees (from 2017 to 2018) 
observed a similar prevalence of these parC SNPs, 13.2 % 
(5/38) [41]. Dual-class resistance was not reported in either 
study. Collectively, these studies indicate that asymptomatic 
populations may act as an important reservoir for antibiotic-
resistant M. genitalium infections, as these infections can be 
long duration and are unlikely to be identified and treated.

Another study from Belgium (from 2015 to 2018) examined 
levels of fluoroquinolone-resistance-associated mutations, 
but participants were not stratified by symptom status and 
either sex or sexual behaviour [31]. Both the levels of clinically 
relevant parC SNPs and dual-class resistance in asymptomatic 
male and female patients was 21.5 % [31]. This is higher than 
the level observed in this study. The differences between levels 
of fluoroquinolone resistance may be due to the risk profile 
of the different study groups and their sexual behaviours, and 
differences in antibiotic prescribing between countries.

In a previous study of male and female attendees at MSHC 
from 2016 to 2018, testing of macrolide-resistant M. genitalium 
infections found parC SNPs in 21.2 % (95 % CI 17.1–26.0 %) but 
similar levels of gyrA SNPs (5.6 %, 95 % CI 3.2–9.7 %) [26]. Esti-
mated levels of dual-class resistance were similar (16.4 %) [26]. 
Notably, substantial fluctuation in the level of parC SNPs was 
observed over a 3 year period at MSHC, indicating that moni-
toring over longer trends is important to gain a clear picture 
[26].

Screening for M. genitalium in MSM is not recommended, as 
the natural history of infection and contribution to long-term 
sequelae are unclear [28]. Consequently, there is uncertainty 
around the need to treat asymptomatic MSM, particularly as 
extended-spectrum fluoroquinolones are costly, often hard 
to access in the community, and may cause severe side effects 
[7, 28]. However, asymptomatic carriage of M. genitalium, 
particularly at the rectum, and exposure to antibiotics for treat-
ment of other sexually transmitted infections can contribute to 
the development and spread of resistant M. genitalium [7, 42]. 
The period of time for asymptomatic infections in men to resolve 
spontaneously is also unknown, but infections may persist for 
prolonged periods even after symptom resolution [2, 43]. Math-
ematical modelling indicates that screening of asymptomatic 
MSM may slightly reduce the prevalence and incidence of M. 
genitalium; however, treatment could potentially increase levels 
of macrolide resistance, particularly in settings where resistance-
guided therapy is not available [44].

Diagnostic assays that report markers of fluoroquinolone 
resistance may assist in antibiotic prescribing and stewardship 
[29, 45]. The value of such assays in predicting treatment failure 
is still unclear, as not all patients with M. genitalium harbouring 

clinically relevant parC SNPs fail treatment [46]. This is largely 
because the molecular mechanism of fluoroquinolone resist-
ance in M. genitalium is not fully understood, and other factors, 
such as organism load or pre-treatment with doxycycline, may 
influence treatment outcomes [25, 41]. More evidence is needed 
regarding the need to screen for M. genitalium, and the role of 
quinolone-resistance assays in clinical care.

Phylogenetic analysis revealed that antibiotic-resistance-
associated SNPs varied within groups of mgpB STs. This suggests 
that transmission is not the sole cause of antibiotic-resistance 
spread in this study group; rather, parC SNPs have likely arisen 
independently during fluoroquinolone treatment. Similar find-
ings were reported in studies by Fernandez-Huerta et al. (2020) 
and Sweeney et al. (2020) where they both observed de novo 
acquisition of parC mutations [47, 48]. Insufficient information 
was available to analyse the distribution of gyrA SNPs.

The most common STs observed in this study were ST-A/105 
and ST-C/4. Of these, ST-C/4 has been frequently reported 
in mgpB typing studies from Spain, France and Germany 
[48–51]. In this study, only three samples belonging to ST-A/105 
harboured a parC SNP (G248T/S83I) and no gyrA SNP, while 
samples from ST-C/4 had neither a parC nor gyrA SNP. Analysis 
of globally diverse samples should be performed to examine the 
full diversity of M. genitalium and to further examine the distri-
bution of antibiotic resistance among M. genitalium strains.

This study has a number of limitations, including a small sample 
size that precluded some statistical analyses, and sequencing 
was unsuccessful in a proportion of samples (likely due to low 
organism load). Clinically relevant SNPs were reported based 
on previous studies [23–26], but whether these mutations confer 
fluoroquinolone resistance is still unknown, due to the difficulty 
of performing antimicrobial-susceptibility testing. Analysis of 
additional loci could be performed to increase the discrimina-
tory power of the strain typing; however, with no association 
found between ST and antibiotic-resistance mutations, this 
would not have changed the outcome of the study. Moreover, 
the results in this study may not be reflected in other asympto-
matic MSM populations, especially in settings where antibiotic 
consumption differs. Examination of transmission between 
participants and their sexual partners could not be performed; 
hence, whether asymptomatic MSM are truly a reservoir for 
antibiotic-resistant M. genitalium could not be determined in 
this study. Future studies should be undertaken to examine this.

In conclusion, this study describes a concerning level of M. 
genitalium fluoroquinolone and dual-class-antibiotic resistance 
in asymptomatic MSM. This may form a hidden reservoir of 
antibiotic resistance that may contribute to community spread 
of antimicrobial resistance in M. genitalium.
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