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Abstract

General anesthetics work through a variety of molecular mechanisms while resulting in the

common end point of sedation and loss of consciousness. Generally, the administration of

common anesthetics induces reduction in synaptic excitation while promoting synaptic inhi-

bition. Exogenous modulation of the anesthetics’ synaptic effects can help determine the

neuronal pathways involved in anesthesia. For example, both animal and human studies

have shown that exogenously induced increases in acetylcholine in the brain can elicit

wakeful-like behavior despite the continued presence of the anesthetic. However, the under-

lying mechanisms of anesthesia reversal at the cellular level have not been investigated.

Here we apply a computational model of a network of excitatory and inhibitory neurons to

simulate the network-wide effects of anesthesia, due to changes in synaptic inhibition and

excitation, and their reversal by cholinergic activation through muscarinic receptors. We use

a differential evolution algorithm to fit model parameters to match measures of spiking activ-

ity, neuronal connectivity, and network dynamics recorded in the visual cortex of rodents

during anesthesia with desflurane in vivo. We find that facilitating muscarinic receptor

effects of acetylcholine on top of anesthetic-induced synaptic changes predicts the reversal

of anesthetic suppression of neurons’ spiking activity, functional connectivity, as well as

pairwise and population interactions. Thus, our model predicts a specific neuronal mecha-

nism for the cholinergic reversal of anesthesia consistent with experimental behavioral

observations.

Author summary

Here, we apply a computational model of a network of excitatory and inhibitory neurons

to simulate the effects of changes in synaptic inhibition and excitation due to anesthesia

and to investigate the possibility of their reversal by muscarinic receptor activation. Specif-

ically, we use a differential evolution algorithm to fit model parameters to match dynamics

recorded in the visual cortex of rodents during anesthesia with desflurane in vivo. We find
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that changes of the fitted synaptic parameters in response to increasing anesthetic concen-

tration mirrored those found in neurophysiological experiments. Further, our results

demonstrate that the neuronal network effects induced by anesthesia can be mitigated by

the increases in cellular excitability due to the acetylcholine mediated M-current.

Introduction

General anesthesia is a pharmacological procedure that is used extensively in the medical pro-

fession. The goal of anesthesia is typically to suppress the patient’s conscious awareness, stress

and pain associated with surgery. Several putative mechanisms have been proposed as to how

anesthetic agents induce loss of awareness or consciousness, however, the variety of effects of

different anesthetic agents within the central nervous system make this an active area of study.

Experimental studies implicate the brainstem, thalamus, and cortex as regions where neuronal

activity is heavily modified by general anesthesia [1,2]. However, the primary target region

likely depends on the type of anesthetic [3]. At the single cell level, common inhalational anes-

thetics facilitate inhibitory transmission and suppress excitatory synaptic transmission [4,5]

while the extent of effects on specific receptors varies across different anesthetics (Fig 1). Typi-

cal inhalational anesthetics such as, isoflurane, sevoflurane and desflurane facilitate inhibitory

neurotransmission at GABAA receptors [6,7]. Additionally, depressive modulation of NMDA

glutamate receptors has been observed for desflurane and other anesthetic agents [8,9]. The

effects of most inhalational anesthetics on inhibitory and excitatory neurotransmitters have

been well characterized [10,11].

Despite the differences in direct effects of different anesthetic agents, the underlying

implicit hypothesis is that their final, systems-level effect leading to loss of consciousness is

Fig 1. Common inhalation anesthetics have similar effects on synaptic receptors. Experimental findings show similar

effects across inhalation anesthetics on synaptic receptors [29,30,38,92]. Binding to inhibitory GABAA receptors is

commonly potentiated while NMDA receptor activity is commonly inhibited with the magnitude of effect varying

between anesthetics. Activation of muscarinic acetylcholine receptors and AMPA receptors is inhibited by isoflurane and

sevoflurane while desflurane has a biphasic effect and null effect on muscarinic acetylcholine and AMPA receptors,

respectively.

https://doi.org/10.1371/journal.pcbi.1009743.g001
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mediated by an anesthetic agent-invariant mechanism. Proposed neural mechanisms include

modulation of neuronal excitability, increased network synchrony [12], disrupted functional

connectivity and diminished information integration [13,14]. Integrated Information Theory

is one of the leading theories providing an axiomatic and mathematical framework for how

consciousness can be attributed to specific properties of an information processing system and

how consciousness may fade when such properties are altered [15]. Indeed, experimental stud-

ies have shown that various information theoretic metrics of brain activity are reduced during

anesthesia associated with suppressed behavioral signs of consciousness [16]

In order to understand the causal mechanisms of anesthetic action, additional experimental

manipulations have been performed to modulate the state of consciousness. For example,

pharmacological, electrical, and optogenetic stimulation of various brain regions have been

performed to counter or reverse the unconscious state in humans and animals under the con-

tinued presence of anesthetic [17–20]. Many of these investigations utilized nicotinic [21] or

muscarinic [22] cholinergic interventions. Recently, reverse dialysis delivery of the acetylcho-

line agonist carbachol was used to successfully reverse the effect of sevoflurane in rats in vivo
[23]. Likewise, bathing cortical slices with cholinergic and noradrenergic agonists led to a

reversal of stereotypical slow wave oscillations generally induced by anesthesia [24]. Neverthe-

less, a dissociation between behavioral and large-scale electrocortical effects of cholinergic acti-

vation in anesthetized rodents has generated some ambiguity regarding the neuronal

correlates of exogenously induced anesthesia reversal [25,26]. Importantly, the question

whether electrophysiological activity at cellular level in local neuronal networks is restored to

pre-anesthetic levels and quality by such exogenous interventions has not been investigated. In

other words, how do cortical neuronal activity patterns compare before anesthesia, during

anesthesia and during the wake-like behavior elicited by exogenous stimulation while still in

the presence of the anesthetic? Answering this question would not only help reveal the cellular

mechanisms that may underlie the induced emergence from anesthesia but could also illumi-

nate the synaptic pathways participating in the mechanism of anesthesia itself. In addition, the

findings may have translational significance in helping to establish clinical strategies to acceler-

ate the recovery of consciousness and cognition in surgical patients and thus ameliorate the

likelihood for post-operative confusion, delirium or cognitive dysfunction including delayed

emergence from anesthesia, especially in those of increased age or with prior neurological dis-

orders [27,28]. In fact, a synaptic basis for such disorders have been proposed as many anes-

thetics interact through similar synaptic mechanisms [27].

In the absence of experimental measurements of single unit and cellular network activity

during pharmacologically induced anesthesia reversal, computer simulation of anesthetic

effects and their modulation in a neuronal network model presents a useful and promising

approach. Here we embarked on such an investigation. First, we analyzed how simulated sin-

gle-cell synaptic effects of the common, clinically used volatile anesthetic desflurane translate

into mesoscale changes in population dynamics that have been previously recorded in the

rodent visual cortex in vivo. In modeling desflurane we aim to study synaptic mechanisms of

action common to other frequently used inhalational anesthetics including isoflurane and

sevoflurane [29,30]. We then investigated how these changes may be reversed by cholinergic

activation, simulated by muscarinic receptor-mediated effects on the M-current, a well-mod-

eled K+ membrane current that experiences dynamical changes under cholinergic stimulation.

Acetylcholine acts through multiple mechanisms and can, for example, act through the influ-

ence of nicotinic acetylcholine receptors as well as muscarinic acetylcholine receptors [31–33].

Although a focus on the muscarinic acetylcholine receptor doesn’t account for the full effects

of anesthesia, previous works suggest that the muscarinic pathway has a strong identifiable

role in cholinergic influence on the cortex [22]. To model this phenomenon, we simulated an
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excitatory-inhibitory (E-I) neuron network consisting of biophysical model neurons with glu-

tamatergic, GABAergic and cholinergic inputs to model the effects of desflurane, a common

inhalation anesthetic, by varying the effect of excitatory and inhibitory neurotransmitters in a

manner consistent with experimentally observed effects of desflurane at the synaptic level. To

fit the model to experimentally obtained measures of in vivo visual cortex network firing activ-

ity at different concentrations of desflurane, we applied a differential evolution algorithm to

optimize parameters modulating the effect of neurotransmitter binding at different receptors.

Specifically, we quantified the graded, concentration-dependent effect of simulated anesthetic

on neuronal firing rate distributions, phase coherence, monosynaptic spike transmission, net-

work functional connectivity, and information theoretic measures of neuronal interactions,

and fit these measures to corresponding experimental data. We then used the model to simu-

late the presumed effect of cholinergic activation, without changing parameters for the simu-

lated anesthetic-induced synaptic alterations, to see if these measures were reversible to near

pre-anesthetic levels. Our model results provide insight into the mechanisms by which distinct

neurotransmitter systems shape network behavior under the combined influence of complex

pharmacological interventions that may affect the state of consciousness.

Results

We constructed a reduced, biophysical, neuron network model to investigate how synaptic-

level changes caused by the anesthetic desflurane affect network-level dynamics compared to

data measured in the rodent visual cortex in vivo, and, separately, how muscarinic receptor-

mediated changes at the cellular level may reverse these anesthetic effects. The network con-

sisted of excitatory and inhibitory neurons interacting via synapses mediated by excitatory

AMPA and NMDA receptors and inhibitory GABAA receptors (see Methods section). Acetyl-

choline (ACh) neuromodulation of the excitability of excitatory cells was simulated as a mus-

carinic receptor-mediated variation in the conductance of the slow, hyperpolarizing K+ M-

current.

We used an evolutionary algorithm (see Methods section) to identify optimal synaptic con-

nectivity parameter sets (Tables 1 and 2) that most closely match multiple quantitative mea-

sures of network activity recorded under different desflurane concentrations. This allowed us

to objectively find two sets of parameter modifications that fit model results to the experimen-

tal data. Namely, in one set of optimized parameters, we allowed the algorithm to optimize the

inhibitory GABAA connectivity strength and excitatory NMDA connectivity strength while

keeping AMPA connectivity strength constant as simulated anesthetic concentration was

increased (Tables 1 and 2, A-Series). In the second set, in addition to varying the above

Table 1. Parameter optimization for simulated anesthetic concentrations when performed on 10 different network realizations. A/B-Series describe optimal values

determined by the differential evolution algorithm fitting network connectivity parameters obtained when repeating the optimization for 10 total networks. Optimization

includes A-Series, when ACh effects are assumed constant and B-Series, when ACh effects are allowed to change with anesthetic concentration. The scaling factors Px scale

the effects of synaptic conductances mediated by the x receptor (x = NMDA, GABA and AMPA). A1-A4/B1-B4 denote optimal parameter sets fit to experimental record-

ings at varying anesthetic concentrations (0%, 2%, 4%, 6% desflurane, respectively). PAMPA is only fit for the 0% anesthetic case A1/B1. Error displayed is SEM.

PNMDA PGABA PAMPA gKs PNMDA PGABA PAMPA gKs
A-Series (±SEM) B� Seriesð�SEMÞ
A1 1.69±0.05 3.92±0.51 1.27±0.07 0.98±0.08 B1 1:69� :0:05 3:92� :0:51 1:27� :0:07 0:98� :0:08

A2 1.41±0.03 4.32±0.44 1.27 - 0.98 - B2 1:63� :0:07 5:51� :0:33 1:27� 1:07� 0:03

A3 1.22±0.12 8.13±1.21 1.27 - 0.98 - B3 1:47� :0:06 6:35� :0:94 1:27� 1:23� 0:02

A4 1.09±0.09 10.61±1.91 1.27 - 0.98 - B4 1:36� :0:09 8:17� :1:41 1:27� 1:17� 0:06

https://doi.org/10.1371/journal.pcbi.1009743.t001
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parameters, we allowed the M-current conductance to vary with simulated anesthetic concen-

tration (Tables 1 and 2, B-Series). The optimization cost function was based on fitting mea-

sures of network frequency, mean phase coherence, and information theoretic measures of

integration and complexity, and the parameter sets were validated using measures of synaptic

connection probability and strength, as well as network functional connectivity (see Methods

section and S3 Fig). Optimizations were conducted separately for each anesthetic level, i.e.,

parameter values A1/B1 were optimized to data recorded for 0% desflurane concentration,

A2/B2 for 2% desflurane, A3/B3 for 4% desflurane and A4/B4 for 6% desflurane.

In each optimization run we kept the network structure fixed. Particularly, when optimiz-

ing across the A-series/B-series we maintained a single network to guarantee that the cost or

loss function monotonically decreased across generations. To check for robustness, we opti-

mized parameters for 10 independent network realizations. For each network optimization,

the initial pool of parameters seeding the search was kept the same. Table 1 reports mean and

standard error of obtained parameter values of the 10 optimization runs. Table 2, on the other

hand, represents the best fit optimized parameter set that was subsequently used to identify

anesthetic effects on the dynamics of the network.

With synaptic connectivity parameters fixed at their levels corresponding to 6% desflurane

concentration, we then simulated the reversal of the anesthetic effects by increasing AÇh

effects as mediated by the muscarinic receptor dependent M-type K+ current (specifically,

decreasing its conductance gKs; Table 2, AR/BR-Series).

The synaptic connectivity parameter values determined by the evolutionary algorithm mir-

rored experimentally identified trends of desflurane effects on excitatory and inhibitory synap-

tic currents [14,29,30,34] (See Methods section).

Specifically, in the A-series parameters, there was a decrease in the effects of NMDA recep-

tor-mediated current while there was an increase in the effect of GABA-mediated current in

response to increases in anesthesia (Tables 1 and 2). A similar trend was obtained in the B-

series with the added result that decreasing effects of acetylcholine (increasing gKs) correlated

to the effects of increased anesthesia except for the change from B3 to B4. Interestingly, the

optimization predicted that, in the B-series, to offset the decrease in neuronal excitability due

to decreasing ACh level (i.e., increased gKs) with anesthetic concentration, the increase in

Table 2. Parameter values for best fit of simulated anesthesia and cholinergic reversal. Parameters from lowest cost fit (cost averaged across anesthetic levels) used to

simulate anesthetic effects and cholinergic reversal. A/B-Series describe optimal values of best fit determined by the differential evolution algorithm for network connectiv-

ity parameters obtained when ACh effects are assumed constant (i.e., gKs is constant; A-Series) and when ACh effects are allowed to change with anesthetic concentration

(B-Series). Px denotes scaled changes in synaptic conductance’s mediated by the x receptor (x = NMDA, GABA and AMPA) as described in Table 1. AR/BR-Series repre-

sent simulated anesthetic reversal, obtained by increasing ACh effects (decreasing gKs from A4/B4 levels) while keeping all other parameters constant.

PNMDA PGABA PAMPA gKs PNMDA PGABA PAMPA gKs
A-Series B� Series
A1 1.64 3.98 1.22 0.97 B1 1:64 3:98 1:22 0:97
A2 1.43 4.61 1.22 0.97 B2 1:57 5:12 1:22 1:10
A3 1.12 8.51 1.22 0.97 B3 1:42 6:02 1:22 1:24
A4 1.07 9.41 1.22 0.97 B4 1:27 8:13 1:22 1:18
A-Series Reversal B� Series Reversal
AR1 1.07 9.41 1.22 0.81 BR1 1:27 8:13 1:22 0:98
AR2 1.07 9.41 1.22 0.67 BR2 1:27 8:13 1:22 0:79
AR3 1.07 9.41 1.22 0.53 BR3 1:27 8:13 1:22 0:60
AR4 1.07 9.41 1.22 0.40 BR4 1:27 8:13 1:22 0:40

https://doi.org/10.1371/journal.pcbi.1009743.t002
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GABAA synaptic efficacy was smaller than that obtained in the A-series, and similarly, the

NMDA synaptic efficacy was systematically higher as compared to the A-series.

Fig 2 shows example raster plots comparing experimental spike timing data collected under

the varying desflurane concentrations with model results for the optimized A- and B-series

parameter sets, as well as the simulated ACh-induced reversal of anesthetic effects. The model

raster plots show similar qualitative trends for increasing simulated anesthetic concentration

as the experimental data, specifically spiking patterns change from asynchronous with higher

spiking frequencies at simulated 0% desflurane concentration (A1/B1) to a lower frequency,

Fig 2. Changes in anesthesia level lead to transitions from high frequency asynchronous to low frequency synchronous spiking patterns. A). Raster plots

of experimentally recorded neuronal activity in response to changes in desflurane levels. For higher concentrations of desflurane (6%), oscillatory synchronous

network activity can be seen in spiking dynamics. For lower levels of anesthetic, oscillations are not apparent and asynchronous activity dominates. B) Raster

plots for simulated anesthetic effects in optimized model networks for constant gKs (A-Series) and the simulated ACh-induced reversal of anesthetic effects

(A-Series reversal). C) Raster plots for simulated anesthetic effects in optimized networks with changing gKs (B-Series) and its reversal (B Series reversal). In

both B) and C), simulated anesthetic reversal shows reinstatement of asynchronous from synchronous spiking patterns. Simulation results based on best fit

parameters (lowest cost optimization when averaged across anesthesia levels).

https://doi.org/10.1371/journal.pcbi.1009743.g002
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more synchronized firing pattern for simulated 6% desflurane concentration (A4/B4). Further-

more, the simulated reversal via ACh mediated decreases in the M-current (AR1/BR1 –AR4/

BR4) reverses those trends.

In the following sections, we analyze how specific characteristics and measures of network

dynamics, including frequency distributions and profiles, mean phase coherence, information

theoretic measures, and excitatory/inhibitory connectivity probability, computed for the

experimental data for progressively increased desflurane levels are reproduced in the opti-

mized model networks. These measures were then computed for simulated increasing levels of

cholinergic modulation to analyze the recovery of network dynamics during ACh-induced

reversal of anesthetic effects.

Anesthetic effects on network dynamics and their predicted ACh-mediated

reversal

Spike frequency decreases in response to anesthesia and recovers in response to

decreased M-Current. We first characterized the changes in the mean neuronal spike fre-

quency as well as the shape of the neuronal spike frequency distributions as a function of anes-

thetic level in the optimized model networks (Figs 3 and 4A). We observed that the neurons

generally fired less, in both the experimental data and the simulations, as a function of anes-

thetic concentration. Also, the spread of neuronal firing frequencies decreased significantly

with increased anesthetic level, with the loss of the right skew observed in the wake cases (0%,

A1 and B1). Spike frequency decreased as a function of desflurane concentration for both

parameter series, (A and B series, without and with gKs changes, respectively), with a similar

frequency drop, irrespective of the implemented gKs changes that affect neuronal excitability

in the B-series. In the predicted ACh-induced reversal simulation, the rightward skew in fre-

quency distributions was recovered, and the B-series showed stronger recovery in mean spike

frequency as compared to the A-series. This is because, as mentioned above, accounting for

cholinergic changes on neuronal excitability under desflurane anesthesia predicts that synaptic

changes are less severe. Namely, in the B-series, GABAA synaptic strength was not as high, and

NMDA synaptic was not as low compared to the A-series. In the experimental data, anesthesia

reduced excitatory firing frequency in a dose dependent manner (p<0.05, correlation test).

This was likewise observed in both A- and B-series simulations (rE = -0.97, rA = 0.-95, rB =

-0.99, PE <0.0001, PA <0.0001, PB<0.0001). Moreover, firing frequency in the awake state

showed a significant difference between all subsequent anesthesia states (p<0.0167, Bonfer-

roni) for the experiment as well as for the A- and B-series. Likewise, when comparing firing

rates in all of the subsequent reversal states to the highest anesthesia state (e.g. A4 to

AR1-AR4) a significant difference was found (p<0.0125, Bonferroni). As anticipated, the

reversal simulation had positive firing rate correlations for both A- and B- series (rAR = 0.89,

rBR = 0.93, PAR <0.0001, PBR<0.0001).

Neurons phase lock for increasing anesthesia and decohere with decreased M-Current. In

both experimental and simulated results, the common feature was an increase in network syn-

chronization as a function of increased desflurane levels. Mean phase coherence (MPC) measures

the consistency of the relative phase that neurons fire with respect to each other thus taking into

account non-zero time lag synchrony. Anesthesia increased MPC (Fig 4B) in the data and both

simulation series (rE = 0.64, rA = 0.81, rB = 0.71, PE = 0.0052, PA<0.0001, PB<0.0001). Moreover,

MPC in the awake state showed a significant difference between all subsequent anesthesia states

(p<0.0167, Bonferroni) for the data as well as for the A- and B-series (Fig 4B).

For the anesthetic reversal, increased levels of ACh (i.e. decreased gKs) led to decreases in

MPC. The reversal data for experiment and simulation showed an overall positive trend (rAR =
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-0.50, rBR = -0.52, PAR = 0.0003, PBR = 0.0001); however, a significant difference between the

means of individual levels was only present between the highest reversal state and the deepest

level of anesthesia for the B-series (B4 and BR4, P<0.0125, Bonferroni) and between the two

highest states and the deepest anesthesia for the A-series (A4 and AR4/AR3, P<0.0125,

Bonferroni).

Information theoretic metrics decrease in response to anesthesia and increase with

smaller M-Current. We computed the information theoretic measures network integration

(I(X)) and complexity (C(X)) for both experimental data and simulated network activity. Inte-

gration is a generalization of mutual information that measures the amount of total entropy of

a system that is accounted for by the interactions among its elements. Integration is zero when

system elements are statistically independent [35]. Complexity, on the other hand, measures

the total entropy loss due to interaction of system elements, or, equivalently, the difference

between the sum of the entropies of the individual elements and the entropy of the entire sys-

tem. Complexity is low for systems with independent elements or with highly synchronous

elements.

Fig 3. Firing rate distributions for different levels of anesthetic concentration. A) Changes in experimentally recorded firing rate distributions under

increasing desflurane concentration (0, 2, 4, and 6%) show increased right skewness for the awake state in comparison to anesthetic states. The bins were

normalized by the total number of spikes relative to the awake case (0%). B) and C) Firing rate distributions in optimized networks for A- (B) and B- (C) series

parameter sets. Simulated networks show similar trends in frequency distributions when compared to experiment. The predicted ACh-induced reversal shows

reinstatement of the right skew. The bins were normalized by the total number of spikes relative to the awake case A1/B1. Upper/Lower bound show histogram

standard error. Results based on lowest cost fit parameters.

https://doi.org/10.1371/journal.pcbi.1009743.g003
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Integration and complexity displayed similar changes in both the experiment and simula-

tion with increasing anesthetic concentration (Fig 4C and 4D). Both displayed negative trends

for simulated anesthesia and positive trends for reversal. For the experiment a statistical differ-

ence was only found between 0% and 6% for the complexity (P<0.0167, Bonferroni) while no

significant difference was found for experimental integration. For the simulation, the B-series

complexity showed significant changes between B1 and B4, the A-series additionally had dif-

ferences between A1 and all levels of anesthesia complexity (P<0.0167, Bonferroni). Complex-

ity showed significant negative correlation with level of anesthesia for both A and B series as

Fig 4. Characterization of anesthetic effects on network dynamics and their simulated ACh reversal for best fit. Measures of network dynamics computed from

experimental data and optimized model networks as a function of anesthetic concentration and simulated reversal level: A) Average spike rate B). Mean Phase

coherence C) Complexity C(X) D) Integration I(X). A1-AR4/B1-BR4 (x-axis) denote simulated anesthetic concentration levels and reversal states obtained in optimized

networks with corresponding parameters listed in Table 2. Black line denotes simulations with A-series parameter sets (gKs constant) and pink line denotes simulations

with B-series parameter sets (changing gKs). Blue line (with corresponding axis labels on the top) denotes measures computed from experimental spiking data at

different desflurane concentrations. Stars denote significance between initial anesthetic/reversal and subsequent simulations. All calculations were made for 6s intervals

and then averaged over 5 intervals. Error bars are +/-SEM based on 10 network realizations. Results from lowest cost fit parameters.

https://doi.org/10.1371/journal.pcbi.1009743.g004
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well as the experiment (re = -0.73, rA = -0.96, rB = -0.75, PE <0.0002, PA<0.0001, PB<0.0001).

The reversal simulation complexity displayed a positive linear trend for both AR and BR-series

(rAR = 0.76, rBR = 0.62, PAR <0.0001, PBR <0.0001) with significant differences between A4

and all reversal states for the A-series and between B4 and all reversal states with the exception

of BR1 for the B-series (P<0.0125, Bonferroni). Consistent correlations were seen for integra-

tion (rE = -0.55, rA = -0.82, rB = -0.76, PE = 0.0165, PA <0.0001, PB <0.0001) and its reversal

(rAR = 0.47, rBR = 0.76, PAR = 0.0006, PBR <0.0001). For the integration simulation, a signifi-

cant difference was seen between the awake case and all anesthetic states in the A-series and

between the wake and highest anesthetic state for the B-series (P<0.0167, Bonferroni). For the

reversal, significant differences were seen between B4 and all reversal states for the B-series

and between A4 and all reversal states with the exception of AR1 for the A-series (P<0.0125,

Bonferroni).

A difference in trends between the A and B series simulations is indicated by the signifi-

cantly more precipitous drop in the measures for the A-series with increasing anesthetic level.

This could be due to the differences in network connectivity parameters (i.e., NMDA and

GABAA synaptic strengths) obtained for the two series. Specifically, lower NMDA synaptic

efficacy and higher GABA synaptic efficacy leads to effective disconnection of the neurons in

the A-series networks, resulting in lower integration and complexity measures.

Simulated M-current mediated reversal acted to increase both these measures (Fig 4C and

4D; AR/BR series). In the B-series reversal, both measures recovered to values greater than the

simulated waking values A1/B1. This was presumably due to the higher NMDA and lower

GABAA synaptic efficacies that lead to significantly stronger excitatory interactions between

the neurons in the B-series simulations, increasing integration and complexity.

Connectivity strength decreases in response to anesthesia and increases with M-Current

mediated reversal. We estimated network excitatory and inhibitory synaptic strengths, as

well as network excitatory and inhibitory connection probabilities, in the optimized networks

and compared them directly to these same measures computed from the experimental data.

These excitatory and inhibitory network connectivity measures were computed using cross

correlogram analysis as described in the methods section and based on methods estabilished

in previous works [14,36,37].

The optimized networks displayed similar decreases in the strength of excitatory network

connectivity with increased levels of anesthetic as observed in the experimental data (Fig 5A).

When testing for statistical significance via a correlation test we found that anesthesia reduced

excitatory strength. The excitatory strength had a significant negative correlation with anesthe-

sia treatment (rE = -0.79, rA = -0.81, rB = -0.77, PE <0.0001, PA<0.0001, PB <0.0001). The

wake state showed a significant difference between all subsequent anesthesia states (P<0.0167,

Bonferroni) for the experiment as well as for the A- and B-series. Excitatory strength in the

reversal simulation had positive correlations for the A- and B-series (rAR = 0.43, rBR = 0.46,

PAR = 0.0018, PBR = 0.0008). For the reversal, the A-series only showed differences between A4

and AR2 whereas the B-series showed differences across all reversal states (P<0.0125, Bonfer-

roni). Both the A-series and B-series results followed similar trajectories, with the A-series

results reporting somewhat smaller excitatory connectivity strength values. This can be due to

the fact that the evolutionary algorithm returned significantly lower NMDA efficacy for the A-

series, compared to the B-series. On the other hand, excitatory network connectivity probabil-

ity is very similar for both parameter series as the structural connectivitiy density of excitatory

synapses is the same in all model networks (see Methods section). We found a significant cor-

relation in excitatory probability in the A-series and B-series but not in the experiment. A sig-

nificant difference was found between all subsequent anesthesia states and the wake state (A1/

B1) for A- and B-series simulations (P<0.0167, Bonferroni). The experiment, A-series and B-
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series had negative correlations but only the A- and B-series demonstrated a significant corre-

lation (rA = -0.87, rB = -0.55, PA <0.0001, PB = 0.0053). Differences were found between all

reversal states and A4/B4 except between B4 and BR1 (P<0.0125, Bonferroni). The reversal

simulation had positive correlations for both A- and B-series (rAR = 0.54, rBR = 0.59, PAR

<0.0001, PBR <0.0001).

The experimental data, as well as simulation results for both the A and B series networks,

showed decreases in inhibitory network connectivity strength and probability as a function of

anesthetic concentration. Inhibitory strength showed negative correlations with increasing

anesthetic but with a significant correlation only for the B-series (rB = -0.54, PB = 0.0003).

There was only a significant difference between the awake state B1 and B4 (P<0.0167,

Fig 5. Characterization of anesthetic effects on network connectivity and their simulated ACh reversal. Measures of network connectivity computed from

experimental data and optimized model networks as a function of anesthetic concentration and simulated reversal level: A) network excitatory connectivity strength,

B) network inhibitory connectivity strength, C) network excitatory connectivity probability, D) network inhibitory connectivity probability. A1-AR4/B1-BR4 (x-axis)

denote simulated anesthetic concentration levels and reversal states obtained in optimized networks with corresponding parameters listed in Table 2. Blue line (with

corresponding axis labels on the top) denotes measures computed from experimental data, black (pink) line denotes measures computed from A-series (B-series)

network simulations. In these measures, the presence of a significant connection was determined through cross correlogram analysis as described in Methods section.

Stars denote significance between initial anesthetic/reversal and subsequent simulations. Error bars of +/- SEM based on 10 network realizations for best fit

optimization.

https://doi.org/10.1371/journal.pcbi.1009743.g005
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Bonferroni). The reversal simulation had significant correlations for both A- and B-series (rAR

= 0.50, rBR = 0.61, PAR = 0.0002, PBR <0.0001). A significant difference was seen between A1

and all reversal states in the A-series and between B1 and B3, B4 for the B-series (P<0.0167,

Bonferroni). This seems a counterintuitive result since GABAA synaptic efficacies increase

with desflurane level, and were explicitly modeled as such in our networks. However, this

result may be a consequence of decreases in excitatory network synaptic strength and connec-

tivity probability. Namely, inhibitory cells receive less excitatory drive, subsequently firing

fewer spikes and, thus, limiting their effect on postsynaptic targets.

Inhibitory probability had significant negative correlations for the simulation A-series and

B-series as well as the experiment (rE = -0.49, rA = -0.82, rB = -0.71, PE = 0.021, PB <0.0001, PB

<0.0001). Only the simulation showed significant differences between the mean of the wake

state and the subsequent anesthetic states. The A-series showed a significant difference

between A1 and A3 and A4 while the B-series only showed a difference between B1 and B4

(P<0.0167, Bonferonni). The reversal simulation had positive correlations for both A- and B-

series (rAR = 0.67, rBR = 0.57, PAR <0.0001, PBR <0.0001). The reversal simulations showed sig-

nificant differences between the deepest state of anesthesia and all of the reversal states. This

means that there was a significant difference between A1 and AR2-AR4 for the AR-series and

B1 and BR2-BR4 for the BR-series (P<0.0125, Bonferonni). Additionally, we observed that the

strength of network inhibitory connectivity in the A-series networks was generally stronger

than in the B-series networks. This observation agrees with the fact that the GABAA conduc-

tance is higher in the A-series parameters than in the B-series. Counterintuitively, network

inhibitory connectivity probability was lower and more variable in the A-series networks com-

pared to the B-series networks.

Effects of ACh-induced anesthetic reversal on network functional connectivity. The

results discussed above report trends observed for measures of average network activity, such

as frequency, mean phase coherence, integration and complexity, as well as network connec-

tivity strength and probability. And while M-current mediated reversal reinstated these net-

work-level measures, the measures do not account for recovery of functional connectivity in

the network which would contribute to information processing. In this section, we investigate

how M-current mediated reversal affects the relative frequency profile of individual neurons

with respect to other neurons in the network and also look at effects of reversal on the cellular-

level functional connectivity. These measures specifically assess whether the internal dynamic

structure of network activity is reinstated during the ACh reversal.

To accomplish this, we first compared the firing rate of each neuron (or unit) in the experi-

mental data and in the optimized networks at each level of anesthetic concentration to its firing

rate in the waking state (Figs 6 and S1). In the figure panels, the x-axis represents firing fre-

quency of individual cells for different anesthetic levels and the y-axis represents the firing fre-

quency for the same cells in the non-anesthetic (0% or A1/B1) conditions. In this figure each

plot shows neurons from 10 different optimizations on a single network structure (neurons

from 10 different parameters all on same network). Each dot shows the firing rate of a neuron

in the 0% on the y axis and the comparison anesthetic level on the x axis. For the experimental

data, mutliple units can be potentially detected on a single electrode. This led to potential

ambiguity in neurons assigned across different anesthetic levels. To address this issue, neuron

identity was based on firing rate in the 0% case. Namely, for units recorded on each electrode,

the fastest firing units for 0% anesthesia were given the same ID as the fastest firing units in the

6% case. The results showing an overall linear relationship (Figs 6 and S1) indicates preserva-

tion of relative frequency ordering between the neurons. Deflection of the slope of the linear

relationship towards vertical indicates the decrease in absolute firing frequency observed for

different anesthetic levels.
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We observed that, generally, in both experiments and simulation results the relative fre-

quency of the neurons was preserved, i.e. neurons that fired at higher frequencies as compared

to other cells in non-anesthetic conditions retained higher firing frequencies at the different

anesthetic levels, albeit absolute frequencies decreased. Conversely, neurons that maintained

lower firing frequencies (relative to other cells) in the non-anesthetic state continued firing at

lower relative frequencies in the anesthetic conditions. Qualitatively similar results were

observed for A-series networks (Fig 6) and B-series networks (S1 Fig).

Importantly, during the simulated ACh-induced reversal (AR-series in Fig 6C; BR-series in

S1 Fig), the relative relationship between firing frequencies of neurons remained the same,

with individual cell frequencies increasing back towards their non-anesthetic values as evi-

denced by the slope of the linear relationship for higher reversal states tending towards one.

Fig 6. Effects of anesthetic concentration and simulated ACh-induced reversal on relative profiles of neuronal firing

frequency. Each panel depicts the firing frequency of each neuron in a given anesthetic/reversal state (x-axis) compared to its firing

frequency in the non-anesthetic condition (0% desflurane or A1) (y-axis) A) Units recorded in the experimental data; B,C) Neurons

in A-series optimized networks and reversal.

https://doi.org/10.1371/journal.pcbi.1009743.g006
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This result suggests that individual cells return to roughly the same firing rates during M-cur-

rent mediated reversal as they exhibited in the simulated waking state. The relationship

between firing frequencies had a signficant linear relationship in the simulation (Fig 6B and

6C) with all relationships displaying significant positive correlation (P<0.0001). The experi-

mental relationship (Fig 6A) also had a positive significant relationship (R0,2% = 0.51, R0,4% =

0.46, R0,6% = 0.52, P0,2% = 0.0124, P0,4% = 0.0271, P0,6% = 0.0092).

Further, to explore detailed changes in cellular-level functional connectivity in the opti-

mized networks, we created functional adjacency matrices from the estimated pairwise excit-

atory connectivity strengths at all simulated anesthetic and reversal conditions, measured via

identification of the peak/trough of the spiking cross correlogram as described in the Methods

section. We then calculated the cosine similarities between the created functional adjacency

matrices obtained for each anesthetic and reversal level (Fig 7). A cosine similarity of 1 indi-

cates that the functional adjacency matrices are identical, whereas cosine similarity of zero

indicates that they are uncorrelated. We then calculated the Z-score of the cosine similarity

matrix by comparing the cosine similarity for simulated spike trains with the cosine similarity

of connectivity computed from jittered spike trains as described in the Methods. Having a

high Z-score indicates how the functional connectivity differs from random. The analysis was

performed on experimental data as well as A-series and B-series fits, on all measured excitatory

connections. S3 Fig shows example of functional connectivity observed for an individual

experiment, simulation and its reversal.

We observed that the functional network similarity matrices, for experimental data as well

as model results, became less correlated with each other with increasing anesthetic levels (Fig

7). At the same time, for the model data, M-current mediated reversal resulted in a significant

increase in the correlation between the baseline non-anesthetic adjacency matrix (A1 or B1)

and the fully reversed functional adjacency matrix (AR4 and BR4). The experimental data had

similar behavior with increased similarity between the 0% and 2% anesthesia states when com-

pared to the similarity between 0% and 4%, 6%. The interesting feature of the experimental

data is that 6% and 4% had increased similarity when compared to each other than with other

anesthetic states (Fig 7). This was not seen in the simulation.

Fig 7. Effects of anesthetic concentration and ACh induced reversal on similarity between cellular functional connectivity. Cosine similarity Z-Score was computed

for every pairwise functional connection between neurons. A) Experimental functional connectivity was computed between the highest firing neuron for each electrode

with similarity computed across different levels of anesthesia. B,C) Functional network similarity computed for simulated anesthesia and reversal. Z-Scores were

computed comparing the Network similarity to mean and standard deviation of similarities for distributions randomly jittered +/- 5 milliseconds. Each is averaged over

ten runs.

https://doi.org/10.1371/journal.pcbi.1009743.g007
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In summary, our model results showed that multiple measures of network connectivity

(Figs 5 and 7) increased with ACh-induced simulated reversal suggesting that increases in cel-

lular excitability, mediated by muscarinic effects on the M-current, can reinstate network

dynamics dictated by synaptic connectivity.

Discussion

The goal of this investigation was to simulate the multisynaptic effects of an anesthetic and the

modulating effect of muscarinic ACh receptor activation in a neuronal network model. To do

this, we applied a computational model of a network of excitatory and inhibitory neurons and

used a differential evolution algorithm to fit model parameters to match measures of spiking

activity, neuronal connectivity, and network dynamics recorded in the visual cortex of rodents

during anesthesia with desflurane in vivo.

We first examined if excitatory and inhibitory synaptic changes typically produced by the

inhalational anesthetic desflurane led to neural network behavior similar to experimentally

observed neuron activity as characterized by various measures including population firing

rate, phase coherence, monosynaptic spike transmission, and the information theoretic mea-

sures integration and complexity. Second, we investigated if an exogenously induced increase

in the level of ACh acting on muscarinic receptors and the M-current could reverse the effect

of the anesthetic as suggested by prior behavioral experiments.

Simulation of the anesthetic effect

We simulated the effect of anesthetic desflurane on the neuronal network by reducing the

response of excitatory synapses and facilitating that of inhibitory synapses. General anesthetics

commonly potentiate GABAergic synaptic receptor transmission through modification of

inhibitory post synaptic potential (IPSP) amplitude and duration, as well as through inhibition

of glutamatergic receptor excitatory post synaptic potential (EPSP) amplitude and duration.

The relative strength of these effects depends on the class of anesthetic [4,38]. Desflurane

inhibits binding at NMDA receptors while potentiating postsynaptic inhibition at GABAA

receptors. Some anesthetics, but not desflurane, also suppress AMPA receptors. The effect of

anesthetics on nicotinic and muscarinic receptors is more diverse. Some anesthetics also mod-

ify the activity of cholinergic neurons projecting to the cortex [23]. Regarding its electrophysi-

ological effects, desflurane has been shown to decrease average spike rate, excitatory and

inhibitory monosynaptic transmission, and population measures of neuronal interactions in

the cortex [14,39]. These changes in neuronal activity observed in vivo have not been directly

linked to the corresponding synaptic effects observed in vitro.

In our study we found that potentiation of inhibitory GABAergic and inhibition of excit-

atory glutamatergic NMDA synaptic receptors do indeed lead to graded decreases in popula-

tion activity and increases in synchronization, as quantified by firing rate and mean phase

coherence, as well as measured decreases in integration and complexity. Additionally, we were

able to recover changes in functional network connectivity which matched changes seen in lit-

erature [25,26]. The simulation results were robust; although only a few of the measures (fre-

quency, MPC, I(X) and C(X)) were used for optimization of model parameters via the

differential evolution algorithm, the results held for a wide range of non-fitted measures within

limits that produced physiologically reasonable spiking behavior. The correlation test, when

giving significance for the experiment and the simulation, gave the same sign of correlation for

each metric. Specifically, this validates that our model correctly accounts for the same trends

observed in the experiment in response to anesthesia. Moreover, the parameter fits obtained
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for increasing levels of anesthetic matched in their relative magnitudes to the reported anes-

thetic induced changes in synaptic efficacy.

Understanding the mechanism of anesthesia through computational

modeling

The cellular mechanism of anesthetic action with respect to loss of awareness has been a sub-

ject of intense investigation. Computational models are actively used to make progress in this

area of research. Because differing classes of anesthetics elicit different effects on synaptic

receptor subtypes, many modeling approaches aim to determine how nuanced changes in

receptor binding and synaptic activity lead to changes in neural or electroencephalographic

activity. For example, in mean field models, GABAergic and glutamatergic synaptic changes

are attributed to a single parameter that maps to different concentrations of general anesthesia

[40]. Other modelling approaches seek to understand the mechanism of specific anesthetic

agents; for example, the effects of propofol have been studied through the modeling of both

GABAA and GABAB amplitude/duration and the effects on cortical synchrony and EEG

rhythms [24,41].Enflurane and isoflurane are other commonly modeled anesthetics where the

roles of both glutamatergic receptor binding and GABAergic effects are taken into consider-

ation [41–43]. Anesthetic action effected through post synaptic potential (PSP) changes, from

a modelling perspective, is a relativity robust explanation supported by its effectiveness across

modelling paradigms. These include “mean field” models as well as networks of “integrate and

fire”, “Izhikevich “and “HH” neurons, which all show reduced activity and changes to popula-

tion synchrony when modeling anesthetic effects on synaptic receptors [43–45].

Our study is distinguished from former computational models of anesthetic effects by the

independent consideration of the effects on NMDAR and GABAR through PSP changes, as well

as of cholinergic influence through changes in the muscarinic M-current. We also used a more

biologically realistic log-normal distribution for synaptic weights [46]. Because we had access to

experimental spike data, we were able to directly fit our model to empirical data at graded levels

of anesthesia and then test our hypothesis regarding cholinergic anesthesia reversal.

Anesthetic effects on spike synchrony

A common brain signature of general anesthesia is the loss of global functional connectivity

between specialized regions of the cortex while local populations show increases in neural syn-

chrony [25,47,48]. Cellular and network mechanisms leading to neural synchrony have been

studied extensively in the field of computational neuroscience [49–51]. A set of possible net-

work wide mechanisms are the PING (pyramidal interneuron network gamma) class of mech-

anisms, where stable, synchronous activity patterns emerge when inhibition periodically shuts

down excitation in the network [52–56]. The propensity of neural network synchrony can also

depend on intrinsic cellular excitability properties, an example being changes from Type 1 to

Type 2 membrane excitability. Type 1 and Type 2 neural excitability describe the well-charac-

terized differences in spike generation dynamics that can generally occur between different

types of neurons, and can occur in the same neuron under different pharmacological condi-

tions, such as changing ACh levels. Type 2 dynamics originate from increased competition

between depolarizing and hyperpolarizing currents as compared to Type 1 [57]. These differ-

ences exemplify themselves in the onset and steepness of firing frequency-input (i-f) curves

and the shape of phase response curves (PRCs) which in turn determine synchronization of

the networks. Neurons exhibiting Type 1 excitability respond more rapidly with higher firing

frequency changes to changing stimulus magnitude as compared to Type 2 cells, and also

decreased propensity to synchronize stemming from the shape of their PRC curves [58–60].
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Thus, as also discussed below, ACh can play a double edged role in affecting network syn-

chrony via the muscarinic receptor system. On one hand, decreasing levels of ACh during

increased anesthesia levels can promote synchrony, as it has been shown that activation of the

K+ M-current mediates the transition from Type 1 to Type 2 membrane excitability [56],

while on the other hand, the increase of ACh-mediated effects during reversal can offset the

decreasing synaptic efficacies with higher cellular responses (increasing steepness of i-f curve).

In our modelling results simulated anesthetic effects and M-current mediated reversal, we

show that we can evoke transitions between high frequency asynchronous population behavior

and low frequency synchronous activity via both mechanisms: by potentiation of IPSPs and

inhibition of EPSPs, and ACh-mediated modulation of cell excitability. For higher levels of

anesthesia, while both the simulations and the experimental data showed increasing MPC,

simulated networks exhibited a larger increase. This could be due to the fact that our model

only represents local network interactions, without incorporating the existence of external

inputs that could additionally desynchronize network activity leading to decreased MPC. For

example, in the visual cortex, there are non-local network inputs possibly preventing a high

level of synchronization in the locally recorded network activity, and reflected in lower MPC

values in the experimental data. However, overall, our model results demonstrate that it is pos-

sible for the population synchronization observed in response to anesthesia to develop in

response to changes in PSP alone or to concurrently active cellular mechanisms.

Predicting anesthesia reversal by ACh

Prior experimental studies demonstrated that the behavioral expression of the anesthetic state

can be reversed by stimulating the cholinergic system of the brain by various means in vivo
and in vitro in both humans and animals [21,23,24,61]. To date, no modelling study has

attempted to simulate the reversal of neuronal effects of anesthesia by modulating the interac-

tion between cholinergic and other synaptic effects. In this work we demonstrated that ACh

limited to act only via blocking the muscarinic slow potassium M-current can reverse the gen-

eral anesthetic effect on spiking dynamics and population activity, via mechanisms described

above. Specifically, we showed that decreasing the influence of the M-current under simulated

anesthesia leads to an increase in firing rate and neural interaction measures, showing a popu-

lation wide reversal of anesthesia-induced synaptic changes. This finding suggests a possible

cellular mechanism for the induced reversal of anesthesia effects on PSPs consistent with

experimental studies [17,22].

The role of muscarinic ACh receptors in affecting the state of the animal depends largely on

the type of general anesthetic used. Desflurane exerts a nonlinear effect on muscarinic ACh

receptor activation in a concentration-dependent manner [13]. We also showed that the addi-

tion of decreasing acetylcholine influence via the muscarinic pathway during anesthesia (B

series) leads to similar reversal endpoints to those with altering NMDA and GABA synaptic

changes alone (A series). The choice to model changes in anesthetic ACh influence (B series)

in addition to synaptic changes alone (A series) was made to generalize the effects of common

inhalational anesthestics which can affect both the cholinergic as well as the glutamatergic and

GABAergic pathways (Fig 1). By considering solely the effect of changes on IPSPs via GABAR

and EPSPs through NMDAR we show that not only can changes in population activity (firing

rate, synchronization and entropy), be accomplished without changes in cholinergic influence

but that increasing cholinergic influence alone can reverse these effects. This demonstrates

that cortical cholinergic presence has the potential to mitigate the general effects of inhala-

tional anesthesia. In many cases, however, such as for the effects of desflurane, inhalational

anesthesia can affect muscarinic and nicotinic ACh receptor binding and for this reason we
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decided to model the cooperative effects from changes in synaptic EPSP/IPSP and cellular

excitability changes via the M-current. In the case of cholinergic reversal, however, this con-

founded the role of ACh, as the changes in ACh due to anesthesia could be argued to be trivi-

ally reversed in the reversal states.

In this study, we used measures of synaptic functional connectivity, computed from average

pairwise correlations of neuron spiking, to quantify changes in overall network behavior in

both anesthesia and reversal conditions. We showed that the cosine similarity in the functional

connectivity matrix increased for the full reversal state when compared to the high anesthetic

state. This means that specific neuron to neuron functional connectivity was highly correlated

between the awake and reversal states but not the anesthesia states. This suggests that the func-

tional topology of a network can be reversed through a different receptor pathway than is used

to achieve the state of anesthesia. Likewise, the population measures of integration and com-

plexity were increased by the cholinergic decrease in M-current. In fact, prior experimental

studies showed that muscarinic receptor activation could reverse isoflurane-induced changes

in electroencephalogram cross entropy a quantity related to brain functional complexity pre-

sumed to be associated with the conscious state [22,62].

In the past, anesthesia reversal has been achieved by a variety of drugs and methods of

administration in experimental studies. For example, microinjection of nicotine into the thala-

mus led to the recovery of the righting reflex in rodents anesthetized by sevoflurane [21], and a

similar reversal from isoflurane was observed in response to microinjection of histamine into

the basal forebrain [63]. Unlike general anesthesia, however, the mechanisms for induced

reversal may be specific to the type of anesthetic agent used. An example of this can be seen

when comparing the effects of the GABAA antagonist, gabazine, on the effects of propofol as

well as ketamine [64]. The application of gabazine led to wake-like responses when rats were

sedated with propofol, which acts through potentiation of GABAA receptors, but gabazine was

ineffective when used during administration of ketamine, which has been known to act

through modulation of NMDA receptors. These previous studies suggest that the phenomena

of induced reversal can be demonstrated in controlled rodent studies, but a similar effect has

been suggested in human studies [65]. Another example is the clinical case where a patient’s

use of Ritalin, a central nervous system stimulant, required an increase of general anesthetic

dose for sedation [66]. In rodents, Ritalin was found to cause emergence from sedation

induced by isoflurane [67].

Our results predicting cholinergic recovery of neuronal population dynamics, inter-neuro-

nal functional connectivity and complexity lends support to the evidence that the brain state

altered by anesthesia is at least partially reversible. In clinical use, the effects of anesthesia can

linger after the drug is no longer administered [68]. For this reason, there are both transla-

tional and phenomenological motivations to investigate induced recovery from anesthesia.

Our study gives insight into the synaptic and network mechanisms by which central nervous

system changes caused by anesthesia can be mitigated by the administration of a functional

agonist.

Limitations and directions for future work

We recognize a few limitations of this study. First, our model was based on random connectiv-

ity between E and I cells, instead of on a detailed representation of a specific neural circuit.

Other modeling studies included thalamocortical interactions [69,70] or a cortical macro

structure aimed at understanding how a multilayer architecture can influence the effects of

anesthesia-induced changes in synaptic strength [69,71–73]. We argue that, for a first approxi-

mation, a generic random model is sufficient because little is known about the identity of
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brain regions that are responsible for mediating the anesthetic action, particularly with respect

to the suppression of consciousness. We compared our model predictions to data obtained

from visual cortex, which may not be the primary site of anesthetic action to suppress con-

sciousness. It can be argued, however, that the experimentally observed changes in neural fir-

ing rates, coherence, connectivity, complexity, and other related measures are probably

sufficiently general to describe the mechanism of synaptically induced network effects we

intend to understand. We corroborated our simulation of anesthetic effects with correspond-

ing data obtained from experiments investigating the effects of desflurane on cortical neuron

firing in vivo. Regarding the anesthesia reversal, additional experiments will need to be per-

formed to determine the cholinergic effects on spiking behavior under anesthesia. This could

serve as a possible avenue for future work to validate our current predictions and to provide

further insight into the cellular and network-wide mechanisms of induced anesthetic reversal.

Former studies to-date are limited to the demonstration of cholinergic stimulation-induced

behavioral reversal [23] and reinstatement of awake-like LFP oscillations [74].

Of course, to understand the full effect of anesthesia on the observed behavior of a live ani-

mal may require the modeling of additional effects in multiple brain regions including wide-

spread cortical areas, thalamus, subcortical and brainstem arousal centers, to mention a few.

Although other models of anesthetic mechanism have incorporated thalamocortical interac-

tions [69,72], none have simulated anesthetic reversal and still fall short of modeling corre-

sponding behavioral effects. Additionally, general anesthetics have secondary effects on

voltage-gated and ligand-gated channels, two-pore potassium channels, and other targets that

were not represented in our model [4,13,38]. Inclusion of these additional effects could pro-

vide a more nuanced simulation with potentially closer fit to experimental data. Moreover, our

model predicts the reversal of cortical dynamics solely from the modulation of the M-current,

which only accounts for some changes induced by acetylcholine. We recognize that there are

many cholinergic affects not accounted for in our model, however despite the missing details,

the success of our simulations suggests that our model likely captured essential mechanistic

elements of anesthetic action and its cholinergic reversal.

Conclusion

In summary, we demonstrated that experimentally observed changes in neural activity and

functional connectivity caused by desflurane could be computationally reproduced by modu-

lating synaptic efficacy according to the known synaptic effects of the anesthetic. Additionally,

we showed that by modulating the M-current alone, the effect of anesthesia on neural activity

and functional connectivity in the network could be at least partially reversed. In the future,

more comprehensive models that take into account cortical architecture, thalamocortical

interactions and a broader array of cellular mechanisms will help to fully understand the com-

plex roles of synaptic modulation in producing the observed neuronal network and behavioral

effects of anesthesia.

Methods

Experimental data

Experimental results were based on the analysis of data collected in previous studies; for an in

depth description refer to the original study [75] Briefly, rats were surgically implanted with a

multishank, 64 contact microelectrode array in the visual cortex (V1). After a post-surgery

recovery period, they were placed in a cylindrical anesthesia chamber for administration of

inhalation anesthetic. Desflurane was applied in the sequence of 8, 6, 4, 2, and 0% inhaled con-

centrations for 45 to 50 min at each level. Neural activity was recorded during the duration of
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the experiment and subsequently processed to extract multiunit spiking information. For this

study, we analyzed unit spiking activity collected during the 0, 2, 4 and 6% desflurane exposure

sessions and chose not to model 8% due to the confounding mechanism leading to the burst

suppression phenomena normally present at this level of anesthesia [76,77].

Neuron modeling

The computational neuron model was based on the standard Hodgkin–Huxley modeling para-

digm with parameters chosen to better account for the firing characteristics of cortical pyrami-

dal neurons as established in previous studies [55,59,78]. In summary the neurons were

modeled with coupled differential equations to account for nonlinear changes in voltage as a

response to both tonic input and non-periodic input from connected neurons. A visual refer-

ence for the voltage response can be seen in Fig 8. For the remainder of the section a

Fig 8. Network structure is populated by lognormal distributed random connection strengths. A). Synaptic strengths in model networks varied

according to a lognormal distribution with a minority of connections being mediated by strong synaptic strengths, while weak synaptic strengths

constitute majority of connections B) Simulated network consists of 200 inhibitory and 800 excitatory cells connected randomly with 10% probability.

Connection color reflects the log of synaptic strength. C, D) Postsynaptic potential time courses in response to synaptic currents mediated by different

receptors. Excitatory currents are modeled with both AMPA and NMDA mediated currents. Bottom panel shows timing of presynaptic spikes, for

simplicity both inhibitory and excitatory presynaptic neurons are shown with the same spike times.

https://doi.org/10.1371/journal.pcbi.1009743.g008
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description of the model will be given for completeness including the parameters used in the

model and structure of the governing equations.

Excitatory and inhibitory neurons are modeled using the Hodgkin-Huxley formalism with

parameters selected based on a model that emulated properties of both cortical pyramidal neu-

rons and inhibitory interneurons [79–81]. The neuron model contained sodium, delayed recti-

fier potassium, slow M-Type potassium and leak currents as described in the following

equations:

dV
dt
¼ � gNam

3

1
h V � ENað Þ � gKdn

4 V � Ekð Þ

� gKszðV � EkÞ � gLðV � ELÞ þ Inoise � Isyn þ IDC ð1Þ

dX
dt
¼
X1ðVÞ � X
tXðVÞ

for x ¼ fh; n; zg ð2Þ

m1ðVÞ ¼
1

1þ e
� V� 30

9:5ð Þ
ð3Þ

h1ðVÞ ¼
1

1þ e
Vþ53

7:0ð Þ
ð4Þ

n1ðVÞ ¼
1

1þ e �
Vþ30

10ð Þ
ð5Þ

z1ðVÞ ¼
1

1þ e �
Vþ39

5:0ð Þ
ð6Þ

thðVÞ ¼ 0:37þ
2:78

1þ e
Vþ40:5

5:0ð Þ
ð7Þ

tnðVÞ ¼ 0:37þ
1:85

1þ e
Vþ27

15ð Þ
ð8Þ

tzðVÞ ¼ 75 ð9Þ

In the above, V is the membrane voltage while m, n, h and z represent the unitless gating

variables of the ionic current conductances. Isyn is the synaptic current input to the cell from

other neurons in the network and has units of μA/cm2. Inoise is a noise input consisting of ran-

domly occurring brief current pulses with average frequency of 0.1 Hz, a duration of 2 ms and

strength of 4 μA/cm2. This noise input was sufficiently strong to generate an action potential in

the absence of any other inputs. IDC is a biasing constant current input of -0.77 μA/cm2. ENa,
EK and EL are the reversal potentials for sodium, potassium, and leak currents, respectively, set

to ENa = 55 mV, EK = −90 mV, EL = −60 mV.

This neuron model, with the slow M-type K+ current, was developed to model the musca-

rinic-receptor effects of acetylcholine in cortical pyramidal neurons [57]. The properties of

this neuron model when gKs = 0 mS/cm2 describe a neuron under high levels of acetylcholine

while gKs = 1.5 mS/cm2 represents a low acetylcholine state.
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Network design

We constructed E-I networks with 800 excitatory and 200 inhibitory neurons (Fig 8B). The

choice of excitatory-inhibitory ratio was based on the physiological ratio of 4 to 1 cells found

in cortex [82]. Neurons were connected randomly with 10% probability. Synaptic strengths

followed a log normal distribution, as suggested to occur in cortical networks (Fig 8A) [46].

The distribution was defined by parameters μ = −20.0, θ = 9.4, and characterized by the equa-

tion:

PDFLog Xð Þ ¼
1

xy
ffiffiffiffiffiffi
2p
p e�

ðlnx� uÞ2

2y2

� �

ð10Þ

μ and θ are defined such that they are the mean and standard deviation of the logarithm of x if

the logarithm of x was normally distributed. This connectivity distribution was chosen such

that ~0.2% of excitatory connections would elicit an action potential in a post-synaptic cell in

the absence of other inputs for our parameter values representing the wake state. The value of

0.2% was determined by experimental data in which cross correlogram analysis showed a 0.2%

“strong” connection probability among a local population of neurons [14].

Synaptic currents mediated by AMPA, NMDA and GABAA receptors were included in the

network such that excitatory synaptic currents were given by Iexc = IAMPA+INMDA and inhibi-

tory synaptic currents by Iinh = IGABA. All synaptic currents were modeled with a double expo-

nential function of the form

IX ¼ PxBxV0:5glog e�
t� tspike
tXs � e�

t� tspike
tXf

� �

ðV � ExÞ ð11Þ

where X indicates the receptor type (AMPA, NMDA or GABAA), tspike is the time of the pre-

synaptic spike and glog is the synaptic conductance drawn from the lognormal distribution.

Reversal potential Ex was set at −75 mV for inhibitory synapses and 0 mV for excitatory

synapses [83]. The term go will be used to refer to Bx V0.5 glog.Time constants τXs and τXf gov-

erned the fast rise and slow decay of the synaptic current and were set as follows:

tAMPAf ¼ tNMDAf ¼ tGABAAf
¼ 0:2 ms ð12Þ

tAMPAs ¼ 3:0 ms; tNMDAs ¼ 200:0 ms; tGABAAs
¼ 5:5 ms ð13Þ

The NMDA synaptic conductance was additionally gated by the post-synaptic voltage

[84,85] described by the additional pre-factor Bx:

BAMPA ¼ BGABAA
¼ 1 ð14Þ

BNMDAðVÞ ¼
1

1þ e� Vþ10
3:57

ð15Þ

Fig 2C and 2D illustrates time courses of the synaptic currents. Additionally, to account for

event-to-event variability, a variability pre-factor V0.5, randomly chosen uniformly from [0.5,

1], modulated the synaptic current induced by each pre-synaptic spike. Finally, the scaling fac-

tors Px simulated anesthetic effects on synaptic conductances. Values of Px for each receptor

type were optimized to fit multiple measures of network dynamics for each level of anesthesia.

Values are listed in Tables 1 and 2 that show average parameter values for optimizations per-

formed on ten different network realizations, and the specific parameter values used for the

presented analysis of results, respectively.
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Measures and metrics

We use several different measures to quantify the changes between network states and dynam-

ics under different levels of anesthesia observed in the experimental data and simulated in the

neural network models.

Integration and interaction complexity

We computed the information theoretic measures Complexity C(X) and Integration I(X) to

quantify changes in the entropy of the network [35]. I(X) is a generalization of mutual infor-

mation that measures the amount of total entropy of a system that is accounted for by the

interactions among its elements. I(X) is zero when system elements are statistically indepen-

dent [35]. C(X) measures the total entropy loss due to interaction of system elements, or,

equivalently, the difference between the sum of the entropies of the individual elements and

the entropy of the entire system. C(X) is low for systems with independent elements or with

highly synchronous elements.

To compute these measures, the total spiking activity from an experimental recording or a

network simulation was partitioned into patterns by binning spike trains into 1 ms time bins

and constructing vectors for each time bin containing a 1 at the neuron index if the neuron

spiked within that time bin and a 0 if there was no spike (columns in Fig 9). The set X of

unique vectors, representing patterns of spiking activity within a bin, that occurred across the

data set were identified. Additionally, discretized spike vectors Xi, i = 1,. . .,N, were constructed

for each cell (rows in Fig 9).

To compute integration and complexity only a subset of neurons were considered. 60 neu-

rons were selected at random from both the experimental data and the simulation. I(X) and C

(X) were computed by taking 3 random intervals of 6s, computing the measure on each set of

intervals, and then averaging the measure outcomes across the three sets.

Integration was computed as

IðXÞ ¼
PN

i¼1
HðXiÞ � HðXÞ ð16Þ

where H(Xi) = −∑kpklogpk is the entropy based on the probability of a spike occurring in the ith

cell, and H(X) = −∑jpjlogpj is the entropy based on the probability of occurrence of a spike pat-

tern vector.

Complexity was computed as

CðXÞ ¼ HðXÞ �
PN

i¼1
HðXijX � XiÞ ð17Þ

Here, H(Xi) is the entropy of the spike train belonging to neuron i while H(X) is the entropy

of the set of spike vector for the entire interval. H(Xi|X−Xi) is the conditional entropy where Xi
is the new spike vectors neglecting the ith unit and is conditioned on the spike train of the ith

unit. The metric is discussed greater detail in original study [35].

Mean phase coherence

We computed mean phase coherence to quantify the average phase relation between spike

times of pairs of neurons in experimental recordings and network simulation. The pairwise

mean phase coherence is given by

si;j ¼
1

N

Xn

k¼1
exp i2p

tj;k � ti;k
ti;kþ1 � ti;k

 ! !�
�
�
�
�

�
�
�
�
�

ð18Þ
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where tj,k is the time of the kth spike of the jth neuron and ti,k, ti+1,k are times of successive spikes

of the ith neuron. Network mean phase coherence is the average of σi,j over all pairs of neurons

[86].

For two neurons i and j, the mean phase coherence is 1 when the spike times of neuron j always

occur at the same relative phase in the cycle defined by two subsequent spikes of neuron i. Con-

versely, pairwise mean phase coherence is zero when spikes of neuron j occur at random phases of

the neuron i spike cycle for the entire set of neurons i spike times, due to averaging of phases.

Functional connectivity probability and strength

Functional connectivity probability and strength were determined through cross correlogram

analysis on spike trains [36] between pairs of neurons with minimum average spike rate of 1

Fig 9. Binned spike patterns for complexity and integration measures. To compute entropy metrics complexity (C(X)) and integration (I(X)), spike trains were

binned in 1 ms bins. H(X) in Eqs (16)/(17) is computed according to unique patterns associated with column vectors (red vectors) while H(Xi) is the entropy associated

with a single neuron spike train (blue vector).

https://doi.org/10.1371/journal.pcbi.1009743.g009
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Hz. Since experimental recordings contained on average ~60 eligible units, these measures for

the simulated networks were computed based on spike trains of 60 eligible neurons. For each

pair of cells, spike trains were segmented into 40 ms intervals centered on each spike of the

designated “reference” cell of the pair and discretized into 1.3 ms bins. Cross-correlations of

discretized segments between the “reference” and “comparison” cell for every “reference” cell

spike were summed to form cross correlograms (Fig 10).

Significance of correlations was determined by comparison to a constructed “jittered” data-

set. The jittered data set was formed by randomly “jittering” spike times of the “comparison”

cell by [–5, 5] ms and then computing the cross correlogram. This was repeated by 100 times

to for the jittered data set. The global confidence band for excitatory (inhibitory) connectivity

was computed by taking the 97% confidence interval associated with the global peak (trough)

of the jittered data set. A significant connection was determined when the standardized peak

Fig 10. Cross Correlogram computes coincident spike relations by summing relative spike times of reference and comparison neurons. . A-D).

Cross correlograms between example pairs of “reference” and “comparison” cells, centered at spike times of the “reference” cell, from the experimental

recordings (left column) and simulated networks (right column). Significance bands were computed from a jittered data set of “comparison” cell spike

times (gray line = mean of jittered data set, red line = excitatory significance, blue line = inhibitory significance, see text). A-B) Example cross

correlograms showing significant excitatory connections between cell pairs. C, D) Example cross correlograms showing significant inhibitory

connections between cell pairs.

https://doi.org/10.1371/journal.pcbi.1009743.g010
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(trough) of the original cross correlogram was greater (less) than 2 times the 97% confidence

interval when measured from the mean (blue/red) [14,36,37]. The standardized peak was

formed by dividing the peak amplitude by jittered mean and standard deviations of the cross

correlogram.

Excitatory connectivity strength was determined by taking the difference in the peak height

within 0 and 5.2 ms (first four bins) and the jittered mean and dividing it by the jittered stan-

dard deviation. The inhibitory strength was computed in a similar manner by looking at the

trough of the cross correlogram within 0 and 5.2 ms.

Parameter optimization

Network model parameters were optimized using an evolutionary algorithm to fit measures of

network frequency, mean phase coherence, integration and complexity computed from the

experimental unit spiking data collected during the 0%, 2%,4% and 6% desflurane exposure

sessions. The optimized parameters were the synaptic conductance scaling parameters PAMPA,

PNMDA, PGABA (A-series) and, additionally to those, the maximal conductance of the M-type K

+ current gKs (B-series). The algorithm is similar to typical differential evolution procedures

[87,88]. Briefly, from a population of 30 agents (parameter sets), at each generation the 10

agents with highest cost function values were replaced with 10 new parameter sets constructed

by an evolutionary algorithm described below (Fig 11A). The stopping criteria was 100 genera-

tions without change in the lowest cost function (L(X)) value across the population of 30

agents. The stopping criteria was chosen as it supports a finite run time in stochastic search

and has been used in similar implementations [89,90].

The initial population of 30 parameter sets representing the 0% anesthetic state was chosen

from the 256 parameter sets generated by assigning parameter values from the following

parameter scan: PAMPA, PNMDA2{0.5, 1.0, 1.5, 2.0}, PGABA2{2.5, 5.0, 7.5, 10.5} and gKs2{0.3,

0.7, 1.1, 1.5} mS/cm2. We initially searched for boundary parameters that achieved balanced

network dynamics and followed this by a the above parameter scan within those bounds. The

parameter scan was then followed by our algorithmic fitting procedure. Model networks with

fixed connectivity structure and synaptic strength g0 values were simulated with each parame-

ter set for 20 s and frequency, mean phase coherence, integration, and complexity measures

were computed based on spiking activity excluding the initial 1s, to avoid initial transients.

The cost or loss function, L(X), based on these measures, x = frequency, MPC, I(X) and C(X),

compared values computed from simulations, xsim, and experimental data, xexp, at 0% anes-

thetic state as follows:

LðXÞ ¼
P

xmx 19

where

mx ¼
xexp � xsim

xexp

 !2

ð20Þ

Here, the 20 lowest cost parameter sets were kept and each parameter value was randomly

varied uniformly by 10% of its value to avoid duplicate values. The final 10 parameter sets were

then constructed using the differential evolution algorithm.

Similar to typical differential evolution procedures [87,88] we set a cross over probability

CR = 0.8 and had a variable differential weight DW that was randomly varied between [0,2].

From the subpopulation of 20 parameter sets, 10 randomly chosen sets, ak (k = 1,. . .,10),

formed the basis for 10 newly created sets, ek (k = 1,. . .,10). For each set ak, 3 different sets bk,
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ck and dk were chosen that were different from ak and each other. Then, for each element

i = 1,. . .,4 in the set, a random number ρi from the uniform distribution [0,1] was chosen. If ρi
was less than CR, a new parameter value eki was generated as eki ¼ bki þ DWðcki � dki Þ; otherwise

eki ¼ aki .

Fig 11. Parameter search fine-tuned through Differential Evolution algorithm. A). Evolutionary algorithm procedure, differential

evolution, was used to optimize model parameters. For each generation, 10 agents (parameter sets) with the highest cost function from the

population of 30, were chosen for replacement. Algorithm was repeated until stopping criteria of 100 generations without change in lowest

cost function value across the population was met. B,C) Example optimization cost of lowest cost parameters across the population for each

generation in the A-series (B) and B-series (C). Population A1/B1, A2/B2, A3/B3 and A4/B4 were optimized to experimental data from the

0%, 2%, 4% and 6% anesthetic cases, respectively. The optimizations for A1 and B1 were identical. In the A-series (A2-A4), PNDMA, PGABA,

were optimized and in the B-Series (B2-B4), PNDMA, PGABA, gKs were varied.

https://doi.org/10.1371/journal.pcbi.1009743.g011

PLOS COMPUTATIONAL BIOLOGY Network dynamics during anesthesia and its reversal

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009743 June 23, 2022 27 / 34

https://doi.org/10.1371/journal.pcbi.1009743.g011
https://doi.org/10.1371/journal.pcbi.1009743


This was done for each element in the new agent and was repeated until 10 new agents were

created. After this was done the 10 new agents were simulated and then the 30 total parameters

were evaluated for their cost. The 10 with the highest cost (worse fit) were then rejected and

the process was repeated.

We performed 2 parameter optimizations, A-Series and B-Series, to parse out potentially

different effects of anesthetic modulation on synaptic conductances only (A-series) and of

combined modulation on synaptic conductances and cholinergic effects (B-series) (Fig 11B

and 11C). In both scenarios, populations A1/B1 were the result of optimizing PAMPA, PNMDA,

PGABA, gKs to the experimental 0% anesthetic case. In the A-series, PNMDA, PGABA, were opti-

mized while in the B-series, PNMDA, PGABA, gKs were optimized to the 2%, 4% and 6% anes-

thetic cases. Optimizations for the 6% anesthetic case, A4/B4, were initiated from parameter

values constrained by experimental reports of 20% average decrease in NMDA-mediated syn-

aptic signaling and 40% increase in GABA-ergic synaptic signaling under desflurane [29,91].

These initial values were randomly varied uniformly by +/- 5% to generate variability in the

event of parameter convergence. In the optimizations for the 2% and 4% anesthetic cases, A2/

B2 and A3/B3, respectively, the initial population for A2/B2 was A1/B1, and the initial popula-

tion for A3/B3 was A4/B4.

Simulation of ACh reversal

To validate robustness of the parameter optimization, we ran our optimization for 10 network

realizations, keeping the network structure fixed for all anesthetic levels. The average and error

(SEM) for the optimized parameters across these 10 networks is shown in Table 1. Table 2 lists

the parameter values with the lowest cost function for one of these optimization runs that we

used in our model analysis. Simulated cholinergic reversal (AR1-AR4/BR1-BR4) was modeled

by decreasing the value of gKs from the values in A4/B4 to 0.4 mS/cm2 such that there were 4

values in the reversal series.

Statistical analysis

The effects of desflurane and ACh-modulated M-current were tested using RM-ANOVA with

the level of intervention as fixed factor on each of the metric for both experimental data and

the simulation results. When the effect of the treatment was significant, the individual effects

were further examined using individual paired t-tests with Bonferroni correction at α = 0.0167

for testing the anesthesia effect (four levels) and α = 0.0125 for testing the reversal effect (five

levels). To compare trends, additional tests with linear regression were done on the experi-

mental data as well as the A-series/B-series and the cholinergic reversal results, at α = 0.05. Sta-

tistical analyses were conducted in Excel.

Functional connectivity analysis

Functional connectivity was determined via cross-correlogram analysis where the connectivity

strength (significance) was determined by comparing the peak within 0 to 5 ms lag of the

cross-correlogram to the jittered mean and standard deviation of the cross-correlogram. Mean

was formed from mean of 100 jittered correlograms and the standard deviation from the jit-

tered means [36,37]. The connectivity strength was recorded for each pair wise connection

and then used to determine the cosine similarity between the two simulations by computing

the dot product of the pairwise connectivity strengths for different anesthesia levels. This was

converted to a Z-Score by comparing average cosine similarity between two anesthesia levels

(10 network average) to the cosine similarity between two anesthesia levels created in the same
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manner from jittered time-series (jittered time lag peak compared to jittered mean and stan-

dard deviation).

Simulations

Custom C++ code was developed for numerical simulations which was run on the Greatlakes

High Performance Cluster. For the evolutionary algorithm each model simulation was run for

20s. The stopping criteria was met when the lowest minimum cost remained unchanged for

100 generations (last 100 iterations of cost curve in Fig 11). To check the robustness of the cur-

rent parameter set, 10 additional generations were run with model simulations of 80s and an

increased crossover probability (CR = 0.9). We detected no change in the minimum cost

parameter set. For the results shown in Figs 3–5 each simulation was simulated for 150000 ms.

The length of this runtime was necessary to result in enough spike times to calculate metrics

based on cross correlograms. Results in Figs 4 and 5 are for 10 simulation runs in which net-

work connectivity was randomized across runs but maintained for the different simulated

anesthetic levels. In this way, each of the 10 simulation runs corresponds to a unique simulated

experiment. On each run the voltage and gating variables were subject to random initial condi-

tions independent of the network seed. On initialization V was uniformly varied between [–

72, –32] mV, n between [0.2, 0.6], z between [0.2, 0.3] and h between [0.2, 0.6] while m was ini-

tialized at 0 for all runs. The equations were integrated using the 4th order Runge-Kutta

method.

Supporting information

S1 Fig. B-Series effects of anesthetic concentration and simulated ACh-induced reversal

on relative profiles of neuronal firing frequency. Each panel depicts the firing frequency of

each neuron in a given anesthetic/reversal state (x-axis) compared to its firing frequency in the

non-anesthetic condition (B1) (y-axis) A,B) Neurons in B-series optimized networks and

reversal.

(TIF)

S2 Fig. Error cost analysis for the lowest cost fit. Error cost breakdown shows subcost for

each metric of example fit. For each generation, 10 agents (parameter sets) with the highest

cost function from the population of 30, were chosen for replacement. Algorithm was repeated

until stopping criteria of 100 generations without change in lowest cost function value across

the population was met and performed on single network.

(TIF)

S3 Fig. Functional Connectivity for Experiment and Simulated Anesthesia and Reversal.

A). Example of experimental functional connectivity for 0%-6% anesthesia. Overlap in con-

nectivity can be seen for all concentrations. B) Example A-Series functional connectivity.

Higher connectivity is seen for A1 and decreases with increasing simulated anesthesia. Com-

mon connections between all anesthetic states can be observed. C) Example of AR Series func-

tional connectivity. Low connectivity is seen for AR1 and increases with gKs reversal. Single

network/experiment shown in each case.

(TIF)
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