
RESEARCH ARTICLE

Transfer entropy as a variable selection

methodology of cryptocurrencies in the

framework of a high dimensional predictive

model

Andrés Garcı́a-MedinaID
1,2*, Graciela González Farı́as3
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Abstract

We determine the number of statistically significant factors in a high dimensional predictive

model of cryptocurrencies using a random matrix test. The applied predictive model is of the

reduced rank regression (RRR) type; in particular, we choose a flavor that can be regarded

as canonical correlation analysis (CCA). A variable selection of hourly cryptocurrencies is

performed using the Symbolic estimation of Transfer Entropy (STE) measure from informa-

tion theory. In simulated studies, STE shows better performance compared to the Granger

causality approach when considering a nonlinear system and a linear system with many

drivers. In the application to cryptocurrencies, the directed graph associated to the variable

selection shows a robust pattern of predictor and response clusters, where the community

detection was contrasted with the modularity approach. Also, the centralities of the network

discriminate between the two main types of cryptocurrencies, i.e., coins and tokens. On the

factor determination of the predictive model, the result supports retaining more factors con-

trary to the usual visual inspection, with the additional advantage that the subjective element

is avoided. In particular, it is observed that the dynamic behavior of the number of factors is

moderately anticorrelated with the dynamics of the constructed composite index of predictor

and response cryptocurrencies. This finding opens up new insights for anticipating possible

declines in cryptocurrency prices on exchanges. Furthermore, our study suggests the exis-

tence of specific-predictor and specific-response factors, where only a small number of cur-

rencies are predominant.

Introduction

In econometrics, it is of fundamental interest to determine the proper number of components

in a multivariate model because this allows for the attribution of explanatory meaning to each

factor based on economic theory. Traditionally, a visual inspection approach has been a
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standard methodology in factor analysis and principal component analysis (PCA) since the

seminal publication [1]. There, a technique known as the scree test, whereby the eigenvalues

associated with the covariance matrix are ordered from largest to smallest and plotted as a

downward curve, was proposed. According to the test, we must look for an elbow in the curve

and retain the factors associated with the eigenvalues to the left of that point. Of course, this

methodology has the disadvantage of being highly subjective, and different researchers can

choose different numbers of factors. Another usual approach originates from purely nonpara-

metric statistics and relies on the cross-validation technique [2]. Methods of this type are com-

putationally demanding and become impractical if the number of variables increases at the

same rate as the number of observations in the model.

A more recent approach using a combination of parametric and nonparametric assump-

tions has been proposed in [3]. The researchers include as significant factors quantities for

which the mean eigenvalue distribution under a bootstrapping resampling is larger than one.

The latter criterion is attributed to Kaiser [4] but was proposed analytically by Guttman [5].

This method is also biased if the number of variables increases with that of observations. In

this case, it is better to use a modified version of the Kaiser approach [6] to perform analyses in

this regime known as high-dimensional statistics. In high-dimensional factor analysis, there

are relevant proposals for determining the number of factors that originate in random matrix

theory [7, 8]. Even in the related estimation method based on ratio tests of eigenvalues [9],

some conclusions are consequences of the results for random matrices. In the standard use of

random matrices, the Tracy-Widom distribution [10] plays a crucial role in testing the sample

eigenvalue distribution. Additionally, more sophisticated approaches use the joint Tracy-

Widom distribution [8] to determine the number of factors, and further elegant versions use

free matrices and noncommutative probability [11, 12]. Nevertheless, all the novel approaches

in the high-dimensional regime are mainly focused on PCA and factor analysis, while other

multivariate models such as the canonical correlation analysis (CCA) have drawn less

attention.

In this study, we are interested in a model of the latter type, where CCA is presented as a

particular case of the reduced-rank regression model. In this case, Johnstone [13] proved that

the Tracy-Widom distribution could be used to determine the number of significant factors

after appropriate transformations of the greatest root distribution involved in the Union Inter-

section Test (UIT). Based on this technique, the idea is to test the null hypothesis H0: Sxy = I,

where Sxy represents the covariance matrix between Gaussian datasets X and Y. In some

sense, not imposing a structure simplifies the analysis. However, it is important to keep in

mind that we will follow a parametric approach, and some restrictions are imposed accord-

ingly. The relevant assumption here is that the data must follow a normal distribution, which

usually is untrue for financial time series in the high-frequency domain [14]. Considering this

problem, Burda et al. [15, 16] have derived a heavy-tail limit distributions of eigenvalues based

on the framework of random matrices. The researchers determined that in the limit case of

Levy processes, the distribution of eigenvalues of the sample correlation matrix does not have

a bounded support. Hence, no limit distribution of the largest eigenvalues exists as an equiva-

lent to the Tracy-Widom distribution. Therefore, the results obtained in this study can be

thought as an upper bound for the maximum number of significant factors, and the true num-

ber can be less if the relevant time series is heavy-tailed. But as an intermediate case, if the den-

sity of the matrix entries behaves like |x|−μ, then there exist physical arguments to support a

phase transition from Tracy–Widom to Poisson at μ = 4 [17]. Then, this enable to use the

Tracy-Widom statistics to financial time series with moderate heavy-tail behavior.

Thus, our intention is to implement the Tracy-Widom test to determine the number of sig-

nificant factors in a predictor-response set of cryptocurrencies modeled by CCA. These new
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financial instruments are based on blockchain [18] technology, where a coin is defined as a

chain of digital signatures. Each owner transfers the coin to the next owner by digitally signing

a hash of the previous transaction and the public key of the next owner and adding these to the

end of the coin. The easy access to this new financial instrument through more than 17000

exchanges with low transaction fees, more than 2000 virtual currencies worldwide and a traded

volume of nearly 60 billion dollars has made it a very attractive investment instrument for the

general population [19].

Interestingly, several studies have shown evidence that such instruments are inefficient in

the meaning of the efficient market hypothesis [20]. Consequently, predictive strategies can be

applied to earn profits from trading on the relevant virtual exchange platforms. To mention

some examples, in [21], Bitcoin was studied over the historical period of 2010-2016 with a bat-

tery of robust tests, and the study concluded that Bitcoin was transitioning from an inefficient

market to an efficient one. Another study [22] has exploited this inefficiency based on a

machine learning framework and searched for abnormal profits using a representative set of

cryptocurrencies traded on various exchanges during 2015-2018. Additionally, the above

study presented several insights for the prediction of the short-term evolution of the crypto-

currency market. Another study [23] in this direction observed persistence in four major cryp-

tocurrencies, i.e., a positive correlation between a cryptocurrency’s past and future values, and

similarly concluded that unusual profits could be earned by trading in these markets. Hence,

given the above studies, it does not seem unreasonable to study the statistical determination of

the number of factors in a multivariate predictive model, e.g., using CCA.

Similarly, attempts have been made to characterize the collective behavior of cryptocurren-

cies; one example is [24]. There, it was shown that a large dataset of cryptocurrencies at the

daily frequency deviated from the universal results of Marchenko-Pastur [25]. Additionally,

the study stated that the spanning tree structure was stable over time. Furthermore, the power-

law behavior of Bitcoin was analyzed in [26] over a long period of time and at various frequen-

cies from one minute to one day. The researchers concluded that Bitcoin exhibited heavy tails

in the range of 2< α< 2.5 across multiple coin exchanges. Their findings supported the use of

standard financial methods because of the finite variance implications of results. Nonetheless,

we are interested in remaining within the domain of the parametric approach of random

matrices since the computational cost is minimal and only a few assumptions are required.

On the other hand, a crucial step in any predictive model is the variable selection procedure

used to define the predictor and response variables. In most cases, this is done based on the

accumulated research experience or according to the consensus of experts in the field. How-

ever, cryptocurrencies are a new financial instrument for which there is a limited amount of

previous experience in making this selection. Thereby, this study proposes using the transfer

entropy measure to solve the variable selection problem. Transfer entropy is a dynamic and

nonsymmetric measure that was initially developed by Schreiber [27] and is based on the con-

cept of Shannon entropy [28]. This measure was designed to determine the directionality of

transfer information between two processes by detecting the asymmetry in their interactions

[29]. Transfer entropy has been used to solve numerous problems. It has been useful in the

study of the neuronal cortex of the brain [30], statistical physics [31], and dynamic systems

[32], and was given a thermodynamic interpretation in [33]. In applications to econometrics,

transfer entropy can be regarded as a nonlinear generalization of the Granger causality test

[34]. In this field, effective transfer entropy [35] has been proposed for dealing with finite sam-

ple effects. Nevertheless, it does not have an empirical limit distribution that can be used as a

comparison. Instead, effective transfer entropy is based in resampling and the use of surrogate

data. The study of Sandoval [36] uses this approach to study the contagion of institutions in

times of crisis. The cited study identifies the companies most vulnerable to contagion and
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dependent on failing economies. A more recent study in this direction is [37], where transfer

entropy is estimated by discretizing the return time series into positive and negative unit val-

ues. The researchers used stock market and real estate data to construct an indicator used to

measure systematic risk to predict future market volatility.

In the above applications, the estimation method is based on binning. Our intention is to

use the symbolic approach, where the time series can be thought of as embedded in a

dynamic system. This avoids fine-tuning of parameters, which usually limits the use of trans-

fer entropy to field applications. Symbolic transfer entropy is a robust and computationally

fast method of quantifying the dominant direction of information flow between time series

[38]. Furthermore, in [39], the multivariate version of symbolic transfer entropy has been

tested, and it has been shown that it can be applicable to nonstationary time series in mean

and variance and is even unaffected by the existence of outliers and vector autoregressive fil-

tering. Moreover, another advantage of using the symbolic approach is that under some cir-

cumstances, there exists a null hypothesis regarding the distribution that can be used to

measure the absence of a direct flow of information. This makes the results more robust and

simpler to compute.

To end this section, let us point out that, in this study, our concerns are focused on the

proper determination of the number of components and variable selection beyond the predic-

tive precision of the CCA model. Thus, the aim of this study is twofold. First, it is to provide

tools related to variable selection and the number of statistically significant factors in a multire-

sponse forecast obtained with CCA that describes an apparently unrelated mathematical appa-

ratus. Second, it is to explore the methodology’s application to the new cryptocurrency

instruments. However, the proposed approach is general, and this framework can be applied

to the analysis of any dataset of interest.

In the next section, the preprocessing of the dataset of cryptocurrencies is described. Next,

in the section on variable selection, the transfer entropy measure is used to discriminate

between the set of predictor and response variables, and the results for cryptocurrency-related

variables are presented. The regression framework section introduces the general regression

model that serves as the setting for the studied model. Then, in the section on the number of

factors, random matrix theory is used to select the appropriate number of factors in the pre-

sented multiresponse regression model considered at a high-dimensional setting. The mathe-

matical relation of results in high-dimensional statistics with the reduced-rank selection

problem for the particular case of CCA is also described there. Next, the consequences of the

methodology are explored by considering the set of predictor-response cryptocurrencies.

Finally, in the concluding section, the main findings are summarized, and future research

directions are proposed.

Data

A sample of p = 100 cryptocurrencies is obtained using the API of CoinMarketCap [19] for the

period from May 23 to November 27, 2018, at an hourly frequency, resulting in a total of

n = 4533 observations (see S1 File and S1 Table).

We transform exchange rates in dollars Pk(t) to returns Rk(t) for every cryptocurrency

(k = 1, . . ., p) and moment of time (t = 1, . . ., n)

RkðtÞ ¼
Zkðt þ DtÞ � ZkðtÞ

ZkðtÞ
; ð1Þ

and analyze the standardized returns rk = (Rk − μk)/σk (k = 1, . . ., p), where σk is the standard

deviation of Rk, and μk denotes the average over time for the studied period. Due to this
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transformation, the augmented Dickey-Fuller test [40] confirms that the relevant time series

are stationary, with a p-value of less than 0.01 for all rk (k = 1, . . ., p) considered.

Variable selection

One of the first problems encountered when trying to establish a predictive model is variable

selection. In the econometric approach, the economic theory usually dictates which variables

must be treated as predictors and as responses. However, cryptocurrencies are a new financial

instrument with not many economic models available. Hence, we follow an information-theo-

retic approach to solve the variable selection problem.

In 2000, T. Schreiber introduced a quantity called transfer entropy (TE) in the context of

information theory, with the purpose of measuring the information flow from one process to

another in a nonsymmetrical way. Let xi = x(i) and yi = y(i), i = 1, . . ., N; denote sequences of

observations of systems X and Y. TE is defined as [27]

TY!Xðk; lÞ ¼
X

i;j

pðxtþ1; x
ðkÞ
t ; y

ðlÞ
t Þ log

pðxtþ1jx
ðkÞ
t ; y

ðlÞ
t Þ

pðxtþ1jx
ðkÞ
t Þ

; ð2Þ

The idea behind TE is to incorporate time dependence by relating previous samples xi and

yi to predict the next value xi+1 and quantify the deviation from the generalized Markov prop-

erty, p(xi+1|xi, yi) = p(xi+1|xi), where p denotes the transition probability density. If there is no

deviation from the generalized Markov property, Y has no influence on X. TE, formulated as

the Kullback-Leibler entropy [41] between p(xi+1|xi, yi) and p(xi+1|xi), quantifies the incorrect-

ness of this assumption and is explicitly nonsymmetric with respect to the exchange of xi

and yi.

An interesting property of TE is that under some conditions it can be regarded as a nonlin-

ear generalization of Granger causality. In econometrics, Granger causality plays an important

role in parameter estimation of a vector autoregressive (VAR) model. Consider the jointly sta-

tionary stochastic processes Xt, Yt. Let Fðxtjx
ðkÞ
t� 1; y

ðlÞ
t� 1Þ denote the distribution function of the

target variable X, conditional on the joint (k, l) history XðkÞt� 1;Y
ðlÞ
t� 1. Then, variable Y is said to be

Granger-cause variable X (with lags k, l) if and only if [42, 44]

Fðxtjx
ðkÞ
t� 1; y

ðlÞ
t� 1Þ 6¼ Fðxtjx

ðkÞ
t� 1Þ: ð3Þ

Thereby, it is said that Y Granger-causes X if and only if X is not independent of the history

of Y.

There exists a series of results [31, 34, 45] that state an exact equivalence between the

Granger causality and TE statistics for various approaches and assumptions on the data gener-

ating processes, which make it possible to construct TE as a nonparametric test of pure

Granger causality. This connection can be regarded as a bridge between causal inference of

data under autoregressive models and the information-theoretic approach. Before proceeding,

we want to emphasize that for highly nonlinear and non-Gaussian data, as is the case for many

financial instruments, it is better to approach causality by using the TE information method

instead of the traditional Granger causality test [44].

There are several techniques for estimating TE from observed data in order to apply it to

real-world data problems. However, most of them require a large amount of data, and conse-

quently, their results are commonly biased due to small-sample effects, which limits the use of

TE in practical data applications. To avoid this problem, we use the robust and computation-

ally fast technique of symbolization [38] to estimate TE. Symbolic transfer entropy (STE) has

been introduced within the concept of permutation entropy [46]. Following [38, 46], symbols
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are defined by reordering the amplitude values of time series xi and yi. Thus, for a given i, m
arbitrary amplitude values, the elements of the delay vector

fxðiÞ; xðiþ lÞ; � � � ; xðiþ ðm � 1ÞlÞg; ð4Þ

are arranged in ascending order

fxðiþ ðki1 � 1ÞlÞ � xðiþ ðki2 � 1ÞlÞ � � � � � xðiþ ðkim � 1ÞlÞg; ð5Þ

where l denotes the time delay, i.e., the time between successive observations of x(i); and m
represents the embedding dimension, which is interpreted in the time series context as

the total number of past data points in the delay vector. A symbol is thus defined as

x̂i ¼ ðki1; ki2; . . . ; kimÞ, and the relative frequency of symbols is used to estimate the joint and

conditional probabilities of the sequence of permutation indices. One of the advantages of STE

is the delay vector formed by time series segments can be compared in terms of rank. Thus,

similar data patterns can be found regardless of their magnitude levels, extending its validity to

non-stationary systems [39].

To provide an example of this procedure, let us consider the time series {1, 2, 3, 6, 5, 4} to

estimate the related Shannon entropy [28] measure for l = 1, m = 2. First, we need to organize

the five pairs of adjacent figures according to their relative values. As a result, three pairs are

observed to satisfy the relation xt< xt+1 characterized by permutation {01}, and two pairs for

which xt> xt+1 represent permutation {10}. Then, the Shannon entropy for l = 1, m = 2 is

given by

Hð2Þ ¼ � ð3=5Þ log ð3=5Þ � ð2=5Þ log ð2=5Þ � 0:971: ð6Þ

Let us now return to the original problem of TE estimation. Given symbol sequences fx̂ ig

and fŷig, STE is mathematically defined as [38]

TS
Y!X ¼

X

i;j

pðx̂iþd; x̂i; ŷiÞ log
pðx̂iþdjx̂i; ŷiÞ

pðx̂iþdjx̂iÞ
; ð7Þ

where the sum is over all symbols, and δ denotes a time step. The logarithm is with base 2;

thus, TS
Y!X is in bits.

The question at this point is whether a given empirical measurement of STE is statistically

different from 0 and represents sufficient evidence of a direct relationship between the vari-

ables. It is possible to construct a null hypothesis H0 that there is no such relationship, but it is

necessary to know what the distribution of an empirical measurement would look like if H0

were true and then evaluate a p-value for sampling the actual measurement from the distribu-

tion. If the test fails, we will accept the alternate hypothesis that there exists a direct

relationship.

For discrete X and Y, it is known that if H0 is true, then TS
Ys!X !

d
w2ðdÞ=ð2N log2Þ, where

the number of degrees of freedom d is the difference between the number of parameters in the

full and null models [31]. Ys represents surrogate variables for Y generated under H0, which

have the same statistical properties as does Y, but any potential correlation with X is destroyed.

As a consequence, surrogates of the distribution TS
Ys!X must preserve pðx̂iþdjx̂iÞ but not

pðx̂iþdjx̂i; ŷiÞ [47].

In order to evaluate the advantage of STE over the Granger causality approach let us con-

sider the following simulated systems:
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1. A three-variable system, with nonlinear drivers

x1ðtÞ ¼ 0:7x1ðt � 1Þ þ ε1ðtÞ

x2ðtÞ ¼ 0:3x2ðt � 1Þ þ 0:5x2ðt � 2Þx1ðt � 1Þ þ ε2ðtÞ

x3ðtÞ ¼ 0:3x3ðt � 1Þ þ 0:5x3ðt � 2Þx1ðt � 1Þ þ ε3ðtÞ;

ð8Þ

where εi* N(0, 1).

The term product of the variables in the second and third equation causes the variables x2

and x3 to have marginal distributions with long tails [39]. Therefore this model character-

izes the heavy-tail behavior of financial time series.

2. A ten-variable system with overlapping linear drivers separated in two blocks

xiðtÞ ¼
X10

j

Aijxjðt � 1Þ þ εiðtÞ; i ¼ 1; � � � ; 10; ð9Þ

where εi* N(0, 1), and the interaction matrix A has the form

A ¼

a b c 0 0 0 0 0 0 0

0 a b c 0 0 0 0 0 0

0 0 a b c 0 0 0 0 0

0 0 0 a b 0 0 0 0 0

0 0 0 0 a 0 0 0 0 0

0 0 0 0 0 a b c 0 0

0 0 0 0 0 0 a b c 0

0 0 0 0 0 0 0 a b c

0 0 0 0 0 0 0 0 a b

0 0 0 0 0 0 0 0 0 a

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð10Þ

where we set a = 0.9, b = 0.7, and c = 0.3.

In the simulations of each system, a time series length of dimension T = 2048 is considered

after removed the transitory effect of 256 steps. For STE the time delay is set to l = 1 as usual

practice, and the embedding dimension is set to m = 2 for both systems. The embedding speci-

fication is because the maximum lag is two for system 1, as well as m must be bigger than one

by definition. Likewise, the order P of the VAR model associated to the Granger causality test

is set to P = 2 for system 1, and P = 1 for system 2 in accordance with the lag order of each

model. As a criterion of a causal relation, the null hypothesis is rejected at the level of p-value =

0.01. In the Granger approach has been considered the F-distribution and the chi-square dis-

tribution to test the coefficients of the causal time series. Thus, the null of zero value coeffi-

cients must be rejected in both tests in order to consider a true causal relation, and the F-value

is used as the quantity to compare the magnitude of the causal relationships. Further, the visual

representation is done via a directed graph G = (V, E), where the nodes V represent the

involved variables, and the direction of the edges V represent the causal relations given by the
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significative STE or F values, for the transfer entropy and Granger causality approach,

respectively.

In system 1 it is modeling a system with nonlinear drivers x1! x2 and x1! x3, where the

variables x2 and x3 comes from a distribution with long-tails. In Fig 1 it is shown the associated

directed graph for (a) STE and (b) Granger causality measures, respectively. We can notice

STE correctly detects the nonlinear direct causality, whereas Granger causality is not able to

describe the two nonlinear interactions, but on the contrary indicates two spurious causal

effects x2! x3 and x3! x2.

In system 2, it is modeling a system where each variable is linearly driver by at most two var-

iables, and the interactions as a whole are separated into two groups. The linear interaction

matrix A is shown in Fig 2a as a heatmap, and in Fig 2b as a directed graph. In the same way,

Fig 2(c), 2(d), 2(e) and 2(f) shown the detected causal relations by STE and Granger causality,

respectively. We can notice STE only detects causal effects within the cluster, while Granger

causality on the contrary also detects spurious interactions between clusters. Nevertheless both

approaches detect spurious relations within clusters, the number of false-positive interactions

is less for STE than for Granger causality, with 10 and 21, respectively. On the other hand, the

number of false-negatives is two for STE, whereas Granger causality is zero. In Fig 2c and 2e is

shown the scaled magnitude of STE and Granger Causality in values between zero and one, in

this scaled representation, the magnitude of the false-positives interactions in the Granger

approach is 33% more than in the STE approach.

In the last models, we have tested linear and nonlinear causal interactions. In the nonlinear

model, the Granger causality approach does not was able to detect the interactions and even

indicates two more spurious drivers, while STE correctly describes the system. In the linear

model, both approaches detects spurious drivers, but the number and magnitude were bigger

under the Granger measure. Also, it does not discriminate against the cluster structure of the

system. Despite the fact we have tested causalities in bivariate form, STE can capture the main

characteristics of the system, which allows us to rely on its use for the applications as the study

we are interested in below.

Fig 1. System 1. (a) Represents the STE detected interactions (b) Represents the Granger causality detected interactions.

https://doi.org/10.1371/journal.pone.0227269.g001
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Fig 2. System 2. (a) Heatmap of the interaction matrix A. (b) Directed graph of the interaction matrix A. (c) Heatmap

of the STE detected interactions. (d) Directed graph of the STE detected interactions. (e) Heatmap of the Granger

causality detected interactions. (f) Directed graph of the Granger causality detected interactions.

https://doi.org/10.1371/journal.pone.0227269.g002
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Application to cryptocurrency data

To present our results in the context of a predictive model, let us refer to variable x(t) as the

predictor and variable y(t) as the response. Thus, we estimate STE for the combination of pairs

{Xa(t), Yb(t + Δt)}, where a, b = 1, . . ., p (= 100); t = 0, . . ., n − Δt, and Δt is a time lag added to

consider predictive scenarios. The STE estimation needs the specification of the time delay l
and the embedding dimension m as has been explained above. In this study l is fixed and m is

varied as usual practice to simplify the state-space reconstruction [43]. The results for time

delay l = 1 and p-value = 0.10 are given in Table 1 for various values of lag time Δt and embed-

ding dimension m. The third column shows the total sum of TS
Xs

a!Yb
for all possible combina-

tions of indices a, b, as long as a direct relationship exists under H0. The fourth column shows

the number of relations that are preserved. We observe a peak in the number of preserved rela-

tions at Δt = 1 and m = 2, 3, where the number of relations exceeds 7000 out of 10000 possible

relations. Even though the maximum is reached at m = 2, we chose the case m = 3 following

the criterion of obtaining at the same time the maximum of the total sum of information flow

(118.1084 bits).

Moreover, we show in Fig 3a and 3b the heat map of STE results for m = 2 and m = 3,

respectively. It is observed that STE has higher values in Fig 3b than in Fig 3a in general. Fur-

ther, some structure can be noticed in the upper left section of Fig 3a, which is sharper in Fig

3b. This upper left section corresponds to cryptocurrencies with the highest capitalization due

to the way we order them. Therefore, it is natural to have the highest values of information

flow in that sector.

A convenient procedure for measuring the net flow of information between processes X
and Y is by using the normalized directionality index (NDI), given by [44]

dðX;YÞ ¼
STEX!Y � STEY!X

STEX!Y þ STEY!X
2 ½� 1; 1�: ð11Þ

Table 1. STE results.

Δt m
P

abTS
ab #{TS

ab > 0}

0 2 7.7484 4221

0 3 97.7024 6345

0 4 241.6957 736

1 2 19.677 7756

1 3 118.1083 7067

1 4 351.52 1069

2 2 1.3937 1289

2 3 68.196 4701

2 4 442.0707 1342

3 2 1.3346 1240

3 3 13.8508 1070

3 4 333.1614 1013

STE of cryptocurrency return time series for each of lag times Δt = 0, 1, 2, 3 for the pair of predictor-response

variables X, Y and embedding dimension m = 2, 3, 4. The third column shows the total amount of direct information

at the p-value of 0.10, while the fourth column shows the corresponding number of preserved relations at the same

level of statistical significance.

https://doi.org/10.1371/journal.pone.0227269.t001
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This quantity standardizes STE values to be between −1 and 1, so d(X, Y) is maximized if

one of the STE values is zero and minimized if they are equal. This index is not normalized in

the statistical sense but resembles a measure of divergence or market leverage and, beyond

that, is very useful in comparing measures across different systems or financial sectors. The

form of Eq (11) gives importance to the relative information flows between X and Y enabling

compare different relations in the same scale. This feature help us to consider as a drivers of Y,

the X’s variables for which d(X, Y)> 0. In this way we set the prefered direction of information

flow and avoid the ambiguity of having both directions with different weights, which help to

compute the variable selection in straightforward manner by simple concepts of directed

graph.

We apply NDI to our previous results for Δt = 1 and m = 3. Again, for a better visualization,

the obtained values are first converted to a directed graph G = (V, E), where the nodes V repre-

sent cryptocurrencies, and the edges E now represent the positive values of d(X, Y) resulting

from applying NDI. Fig 4 shows as an example a directed subgraph for the first 10 cryptocur-

rencies in the order of capitalization with its corresponding edges given by the NDI measure.

In this figure, the arrow direction indicates the information flows from one variable to another.

We observe, e.g., that the eos coin only receives information from the other cryptocurrencies

under the NDI measure, whereas the ripple sends and receives information from the members

of the subnet.

To discriminate the predictor variables from the response variables, several basic concepts

of graph theory are used. The node out-degree kout is the number of edges pointing out from

the node, while the node in-degree kin is the number of edges pointing towards the node. We

use these concepts to select the sets of predictor-response variables by the proposed heuristic

selection rule:

Vi 2 fresponse variablesg if kin
i � kout

i ;

Vi 2 fpredictor variablesg if kin
i < kout

i ;
ð12Þ

for i = 1, . . ., p. The results of applying this procedure are shown in Table 2 for the first 10

response and predictor variables (see S2 Table for the entire list). In general, we found 49

Fig 3. Heat map of STE. (a) m = 2. (b) m = 3. The color intensity represents the magnitude of STE.

https://doi.org/10.1371/journal.pone.0227269.g003
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predictor variables and 51 response variables in our set of p = 100 times series of cryptocur-

rency returns.

Modularity and centrality

To confirm that this variable selection makes sense, we have found the structure of the associ-

ated clusters through the modularity approach. This technique is based on the principle that

Fig 4. NDI subgraph. The arrow direction represents the direction of the information flow.

https://doi.org/10.1371/journal.pone.0227269.g004

Table 2. Predictor and response variables.

i Predictor (49) Response (51)

1 ethereum bitcoin

2 neo ripple

3 dash bitcoin cash

4 monero litecoin

5 lisk cardano

6 bitcoin gold stellar

7 tether eos

8 steem iota

9 populous nem

10 siacoin ethereum classic

..

. ..
. ..

.

The first 10 predictor and response variables in order of capitalization, selected using the heuristic criterion given

above. The total number of selected variables is shown in parentheses.

https://doi.org/10.1371/journal.pone.0227269.t002
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networks that tend to form clusters differ from random networks [48]. It measures the devia-

tion from a random network for a specific partition of the nodes into clusters. Then, we find

the optimal partition maximizing the modularity version for directed networks [49] defined

by

Q ¼
1

NE

X

i;j
Aij �

kout
i kin

j

NE
dðci; cjÞ

� �

; ð13Þ

where Aij is the binary entry of the adjacency matrix, which represents the existence or not of

an edge between nodes i and j by one or zero, respectively; ci is the label of the cluster to which

node i is assigned to, and NE is the total number of edges in the network. Then, the implicit

idea behind is to maximize Q over possible divisions of the network into clusters or

communities.
In the top graphs of Fig 5 it is shown the generated clusters via our heuristic approach

(Fig 5a) and the optimal generated clusters under the modularity approach (Fig 5b), both

results for the case Deltat = 1, m = 3. In spite of the fact that under the modularity approach

the NDI network form three clusters, they resemble our predictor and response sets. It is

worth to mention that the visualization is made using the Force-directed algorithm [50]. Here,

the position of each node is fixed by considering the weights of the edges as an attractive spring

force and is seek equilibrium of forces in each node by adding an electrostatic repulsive force

as a free parameter. In addition, we have separated the clusters from its equilibrium position

for visualization purposes by a radial distance of
ffiffiffiffiffiffiffiffi
1=2

p
to the top-right direction if the node

belongs to the response set, and to the same distance but to the bottom left direction if the

node belongs to the predictor set under. In this manner, the node position does not change in

both results since the algorithm only considers the associated weights to fix the position. On

the contrary, the color changes according to the cluster at which each node corresponds.

A surprising result is that ripple is consistently assigned by modularity to a cluster with a

similar pattern as the response set. This behavior is interesting because ripple looks quite dif-

ferent from all other cryptocurrencies in the force-directed visualization. A possible explana-

tion is due to the particular characteristics of ripple as a digital payment protocol and its

increasing adoption by banks for its faster international transactions over the traditional swift

payment method.

In the middle graphs of Fig 5 it is shown the equivalent analysis of above for the case Δt = 1,

m = 2, where we can see that the variable selection nodes via our heuristic rule are not

completely separated in the sense of forces (Fig 5c), but in this case the modularity approach

found two clusters (Fig 5d). To contrast this behavior, in the bottom graphs of Fig 5 we have

shown one of the worst cases under our heuristic rule, corresponding to Δt = 0, m = 4, where

#{TS
ab > 0} has the lower value in Table 1. Here we can see that the external force of

ffiffiffi
2
p

applied

to separate the sets or response and predictor nodes is stronger than the internal force between

the nodes, as a consequence, a pattern is more difficult to find. This can be confirmed by the

modularity approach, which has found five clusters in this case.

In Table 3 we show the percentage of identification of each cluster found by modularity in

relation to the predictor and response variable sets categorized under our selection rule. It can

be seen case Δt = 1, m = 2 has the best identification, where the elements of cluster one given

by modularity coincide with the elements of the predictor set in an 87.5%, while cluster two

coincide with the response set in a 90.38%. Similarly, our preferred case of Δt = 1, m = 3 have a

coincide of 83.67% and 82.35%, respectively. Nevertheless the case Δt = 1, m = 2 have higher

coincide percentage, we still prefer the case Δt = 1, m = 3 over it as the best partition because

the larger separation of the sets under the force-directed algorithm (Fig 5a and 5b).
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To explore further the structure of the directed network associated with NDI of the transfer

entropy, we have computed the in-degree and out-degree centralities of the whole network.

The in-degree centrality for a node V is defined as the fraction of nodes in which incoming

edges are connected to. The out-degree centrality for a node V is the fraction of nodes whose

outgoing edges are connected to. Before showing the results, it is important to mention that

cryptocurrencies are divided into two main categories: coins and tokens. Basically, coins have

Fig 5. Predictor-reponse clusters vs. modularity clusters. Comparision of the cluster formed by the heuristic variable selection

rule of Eq 12 (left figures) and the cluster formed by the modularity approach of Eq 13 (right figures). From top to bottom the

cases Δt = 1, m = 3((a) and (b)), Δt = 1, m = 2 ((c) and (d)), Δt = 0, m = 4 ((e) and (f)). The node names represent the symbol of

the associated cryptocurrency as listed on the annexed table in the appendix (see S1 Table).

https://doi.org/10.1371/journal.pone.0227269.g005
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the same characteristics as money. i.e., they are fungible, divisible, acceptable, portable, durable

and have limited supply, while tokens are issued by the project, which can be used as a method

of payment inside the project’s ecosystem, in this way they are more like digital assets. Tokens,

unlike coins, are created on top of existing blockchains. By far the most common platform to

create tokens is the Ethereum platform. Other token platforms include Stellar, NEO, Omni,

and EOS.

In Table 4 it is shown the top ten in-degree and out-degree centrality ranking of cryptocur-

rencies, from the highest to the lowest. The first and fourth column represents the order num-

ber in terms of capitalization, the second and fifth the name of the cryptocurrency, the third

and sixth the type, i.e., coin or token, and finally, the seventh column specify from which plat-

form was created the token. The results show that the highest in-degree centrality values are

dominated by coins, while mainly tokens have the highest out-degree values. This result tells

us that coins are central in the sense of receiving information, while tokens are central in the

sense of sending information. Hereof, the direction of information transfer helps to discrimi-

nate between tokens and coins.

Table 3. Cluster identification.

Δt = 1, m = 3 Predictor (49) Response (51)

Cluster 1 83.67% 11.76%

Cluster 2 12.25% 82.35%

Cluster 3 4.08% 5.88%

Δt = 1, m = 2 Predictor (48) Response (52)

Cluster 1 87.5% 9.61%

Cluster 2 12.5% 90.38%

Δt = 0, m = 4 Predictor (56) Response (44)

Cluster 1 14.29% 22.73%

Cluster 2 28.57% 31.82%

Cluster 3 25% 15.91%

Cluster 4 21.43% 20.46%

Cluster 5 10.71% 9.09%

Percentage of coincidence between the predictor-response sets and the clusters found by the modularity approach for

different values of Δt and m.

https://doi.org/10.1371/journal.pone.0227269.t003

Table 4. In-degree and out-degree centrality.

in-degree out-degree

number name type number name type platform

2 ripple coin 42 komodo coin

8 eos coin 62 kyber network token ethereum

14 ethereum classic coin 81 funfair token ethereum

5 cardano coin 52 digixdao token ethereum

3 bitcoin cash coin 72 ethos token ethereum

20 icon coin 94 bancor token ethereum

9 iota coin 13 lisk token ethereum

23 raiblocks coin 53 gas token NEO

91 reddcoin coin 38 0x token ethereum

22 zcash coin 18 bitcoin gold coin

Top ten in-degree and out-degree centrality ranking of cryptocurrencies.

https://doi.org/10.1371/journal.pone.0227269.t004
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In some networks, it is appropriate also to accord a vertex high centrality if it points to oth-

ers with high centrality. There are two types of important nodes in this context: authorities

and hubs. Authorities are nodes that contain useful information on a topic of interest; hubs are

nodes that tell us where the best authorities are to be found [51]. Specifically, authority central-

ity is defined as the sum of the hub centralities yj which point to the node xi

xi ¼ a
Xp

j

Aijyj; ð14Þ

for i = 1, . . ., p, where α is constant. Likewise, Hub Centrality is the sum of the authorities xj

which point to the node yi

yi ¼ b
Xp

j

Aijxj; ð15Þ

for i = 1, . . ., p, with constant β. In matrix notation

x ¼ aAy; y ¼ bA
0
x ð16Þ

These expressions were proposed and developed by Kleinberg [52] into a centrality algo-

rithm called hyperlink-induced topic search or HITS.

In Table 5 it is shown the top ten hub and authority centrality ranking of cryptocurrencies,

from the highest to the lowest. The first and fifth column represents the order number in

terms of capitalization, the second and sixth the name of the cryptocurrency, the third and sev-

enth the type, i.e. coin or token, and finally, the fourth and eighth column specify from which

platform was created the token. The results show that there is not a clear pattern in the hub

centrality values, but authorities are dominated by coins. This can be interpreted as coins are

central authorities of the transfer entropy network in the sense that they are pointed in by a lot

of good hub cryptocurrencies. This means that coins are authorities in the ecosystem of

cryptocurrencies.

Regression framework

Now that the set of predictor-response variables has been determined and analyzed, we would

like to present a general regression model as the framework to forecast the response variables.

Table 5. Hubs and authorities.

Hubs Authorities

number name type platform number name type platform

98 particl coin 91 reddcoin coin

82 kin coin 63 monacoin coin

95 tenx token ethereum 80 dent token ethereum

90 chainlink token ethereum 2 ripple coin

87 neblio coin 73 pillar token ethereum

67 dentacoin token ethereum 23 raiblocks coin

50 revain token ethereum 77 factom coin

42 komodo coin 48 zclassic coin

97 santiment token ethereum 22 zcash coin

54 byteball coin 14 ethereum_classic coin

Top ten Hub and Authority centrality ranking of cryptocurrencies.

https://doi.org/10.1371/journal.pone.0227269.t005
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Thus, this section describes the model and the related problem of rank determination that

highlights the need to study some results from random matrices.

Consider the reduced-rank regression (RRR) model given by [53]

Y
s�1

¼ m
s�1
þ C

s�r;
X
r�1

þ ε
s�1

ð17Þ

where μ and C are unknown regression parameters, and the unobservable error variate ε of

the model has mean E(ε) = 0 and covariance matrix cov(ε) = E{εε0} = Sεε, and is distributed

independently of X. The difference from the classical multivariate regression model is that the

rank of the regression coefficient matrix C is deficient

rankðCÞ ¼ Z � minðr; sÞ: ð18Þ

The rank condition implies that there may be a number of linear constraints on the set of

regression coefficients in the model. Given a sample X,Y of observations, the goal is to estimate

optimally the parameters μ and C. Hence, the idea is to minimize the objective function

WðtÞ ¼ EfðY � m � CXÞ
0ΓðY � m � CXÞg; ð19Þ

where Γ is a positive definite symmetric matrix of weights, and the expectation is taken over

the joint distribution of X,Y.

RRR can be regarded as a unifying treatment of several classical multivariate procedures

that were developed separately from each other. If we set X (and r = s) by making the output

variables identical to the input variables and, in addition, set Γ = I, then we obtain Harold

Hotelling’s PCA and exploratory factor analysis. If we set Γ ¼ S� 1YY, then we have Hotelling’s

canonical variance and correlation analysis. A nonlinear generalization of RRR provides a flex-

ible model for artificial neural networks [54]. Nevertheless, one of the primary and most diffi-

cult parts of model determination is to assess the unknown value of parameter η, called the

effective dimensionality of the multivariate regression. The reduction in Wmin(η) obtained by

increasing the rank from η = η0 to η = η1, where η0 < η1, is given by

WminðZ0Þ � WminðZ1Þ ¼
XZ1

j¼Z0þ1

lj: ð20Þ

This relation depends upon Γ only through the eigenvalues {λj} of

N ¼ ΓΣYXΣ
� 1

XX
ΣXYΓ ð21Þ

However, the value of η and, hence, the number and nature of those constraints may not be

known prior to statistical analysis.

We are interested in estimate the parameter η for the particular case of Γ ¼ Σ� 1YY, i.e., the

canonical correlation analysis, and explore the properties and behavior of the number of fac-

tors through time. Our focus is on the high-dimensional settings under the random matrices

approach. Hence, in the next section, we introduce the theory step-by-step and describe the

results for the predictor-response sets of cryptocurrencies. The core of the technique is the

deep connection of the estimation of η via the Tracy-Widom distribution as we will see in

what follows.

Number of factors

The random matrix theory (RMT) is an important framework for analyzing limit distributions

of eigenvalues. Historically, RMT was developed to solve complex problems in nuclear physics
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and more recently in quantum chaos [55]. During the preceding decades, seminal applications

of RMT arose in the context of mesoscopic physics, biological microarrays, wireless communi-

cation and econophysics [56–60]. A common ingredient of the cited studies is the following

result, restated here using the terminology of high-dimensional statistics.

Let X be a p × n matrix, where the elements Xi,j are i.i.d. random variables with distribution

N(0, 1). Then, as p, n!1, such that n
p! c 2 ð0;1Þ, the spectral density of the Wishart

matrix W ¼ n� 1XX0 converges (a.s.) to the Marcenko-Pastur law [25]

rðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlmax � lÞðl � lminÞ

p

2pcl
; ð22Þ

where

l
max
min ¼ ð1�

ffiffi
c
p
Þ

2
: ð23Þ

In the econophysics community, the Marchenko-Pastur distribution is known as a univer-

sal result of Wishart matrices. If there is no correlation between financial variables, then the

eigenvalues of their correlation matrix should be bounded by this RMT prediction [59, 60].

In statistics, it is of primary importance to consider null hypothesis tests. The Wishart matri-

ces that appear in the preceding result can be denoted by Wp(n, I), where I is the covariance

matrix of the population distribution of n−1 XX0. In our case, it is of interest to test the hypothesis

of identity covariance matrix, H0: S = I, against an alternative case HA: S 6¼ I, where S has some

more general structure. Using this approach, it is possible to compute a confidence interval for

accepting or rejecting the universal result of Wishart matrices of empirical datasets for the gen-

eral range of dimensions p and n. The approach to quantifying a confidence level is based on the

approximation to the null hypothesis’ distribution of the largest sample eigenvalue l̂1

Pfl̂1 > M : W �Wpðn; IÞg; ð24Þ

which is the probability of finding l̂ larger than an upper bound M, given that W = n−1 XX0 fol-

lows the Wishart distribution Wp(n, I). The following result of the random matrix theory leads

to the needed approximate distribution [10].

Assume A*Wp(n, I), p/n! γ 2 (0,1), and denote by l̂1 the largest eigenvalue in the

eigenvalue equation Au ¼ l̂u. Then, the distribution of the largest eigenvalue approaches that

of the Tracy–Widom Fβ law

Pfnl̂1 � mnp þ snpsjH0g ! FbðsÞ ð25Þ

where mnp ¼ ð
ffiffiffi
n
p
þ

ffiffiffipp Þ2, snp ¼ mnp
1ffiffi
n
p þ 1ffiffi

p
p

� �1=3

. There are elegant formulas for computing

the Tracy-Widom distribution functions:

F1ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2ðsÞ exp �

Z 1

s
qðxÞdx

� �s

F2ðsÞ ¼ exp �

Z 1

s
ðx � sÞ2qðxÞdx

� �

;

ð26Þ

in terms of the solution q of a nonlinear second-order differential equation q@ = sq + 2q3,

q(s)*Ai(s) as s!1, also known as the classical Painlevé type II equation. Functions in the

family Fβ are obtained numerically as a function of q. Even though some effort is required to
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solve for Fβ, from the point of view of applied data analysis, they are special functions, as is the

normal curve [61].

Let us provide an example of the relevance of the Tracy-Widom test. Suppose that in a sample

of n = 10 observations from a p = 10-dimensional Gaussian distribution N10(0, S), the largest

sample eigenvalue λ1 = 4.25 has been obtained. Given these dimensions, the support of the

Marchenko-Pastur distribution is bounded to the interval [0, 4] (see Eq (23)) Then, the question

in statistical terms is whether an observed largest eigenvalue of 4.25 is consistent with H0: S = I if

n = p = 10. The second-order Tracy–Widom approximation [62] yields 6% chance of observing

a value more extreme than 4.25 even if no structure is present, i.e., S = I. Considering the tradi-

tional 5% benchmark, this is not strong enough evidence to reject the null hypothesis H0 [63].

The Tracy-Widom test becomes relevant to the determination of the number of compo-

nents that must be retained in PCA, especially in the context of high-dimensional data, i.e., if

Oðn=pÞ ¼ 1. Beyond PCA, there are several classical problems in multivariate statistics that

can take advantage of this type of test. These problems can be generalized under the greatest

root distribution. It describes the null hypothesis of apparently different problems, including

multiple-response linear regression, multivariate analysis of variance, canonical correlations,

equality of covariance matrices, etc. [64]. The next definition from [65] states the greatest root

distribution formally.

Let A *Wp(l, I) be independent of B *Wp(n, I), where l� p. Then, the largest eigenvalue

θ of (A + B)−1B is called the greatest root statistic, and its distribution is denoted by θ(p, l, n).

It has the property

yðp; l; nÞ¼d yðn; l þ n � p; pÞ; ð27Þ

that is useful, in particular, if n< p.

There is an interesting connection between the greatest root statistic and Tracy-Widom dis-

tributions. In the study of Johnstone [13], it is shown that with appropriate centering and scal-

ing, the distribution of the logit transform W of θ approximates a Tracy-Widom distribution:

Wðp; l; nÞ � mðp; l; nÞ
sðp; l; nÞ

!
d F1; ð28Þ

where

Wðp; l; nÞ ¼ logityðp; l; nÞ ¼ log
yðp; l; nÞ

1 � yðp; l; nÞ

� �

ð29Þ

is the logit transform of θ, and the centering and scaling parameters are defined by

mðp; l; nÞ ¼ 2 log tan
�þ g

2

� �

; s3ðp; l; nÞ ¼
16

ðlþ n � 1Þ
2

1

sin 2ð�þ gÞ sin� sin g
; ð30Þ

where the angle parameters γ, ϕ are defined as

sin 2
g

2

� �
¼

minðp; nÞ � 1=2

l þ n � 1
; sin 2 �

2

� �

¼
maxðp; nÞ � 1=2

l þ n � 1
: ð31Þ

At this point, we are interested in describing a procedure for determining parameter η
in the RRR model by using the greatest root statistic, which will reconcile both frameworks.

This is traditionally accomplished by the canonical correlation analysis (CCA). The respective

approach involves partitioning a collection of variables into two sets. Consider a set X with q
variables and a set X with p variables. The objective is to find maximally correlated
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combinations η = a0x and ϕ = b0y. Even though CCA has maximal properties similar to those

of PCA, the objective of canonical correlation concerns the relationship between two groups of

variables instead of interrelationships within a set of variables.

Suppose that (X,Y) is a data matrix of n observations on q + p variables such that each sam-

ple is independent of the others and has the populations distribution Np+q(μ,S). Assume the

sample covariance matrix S partitioning

S ¼
SXX SXY

SYX SYY

 !

: ð32Þ

The sample squared canonical correlations (r2
i ) for i = 1, . . ., k = min(p, q) are obtained as

the eigenvalues of MS ¼ S� 1YYSYXS
� 1
XXSXY, whereas the population counterparts are given by the

eigenvalues of MS ¼ S� 1YYSYXS
� 1
XXSXY [65]. Note that the nonzero eigenvalues of MS are the

same as the nonzero eigenvalues of N in Eq (21) for Γ ¼ S� 1YY, which is precisely the CCA case

in the general RRR model.

We are now interested in describing the procedure of testing the null hypothesis of inde-

pendence of the two sets of variables H0: S12 = 0 by using the Tracy-Widom test. First, let us

point out the next result concerning joint independence of partitioned Wishart matrices.

Let M *Wp(n, S), and partition matrix M into submatrices M11 of dimensions a × a
and M22 of dimensions b × b, where a + b = p and n> a. Define the product of matrices

M3 ¼ M22 � M21M
� 1

11
M12. Then [65],

1. M3 has the distribution Wb(n − a, S3) and is independent of (M11, M22),

2. if S12 = 0, then M22 � M3 ¼ M21M
� 1

11
M12 has the distribution Wb(a, S22), and M21M

� 1

11
M12,

M11, and M3 are jointly independent.

On the other hand, the hypothesis technique of the Union Intersection Test (UIT) uses the

statistic based on the largest eigenvalue r2
1

of MS.

However, MS can be written as [M3 + (M22 − M3)]−1(M22 − M3), where M22 = nSYY,

M3 ¼ nðSYY � SYXS
� 1
XXSXYÞ, and M22 − M3 satisfies the independence condition of the greatest

root statistic. Therefore, under H0: S12 = 0, r2
1

has the distribution θ(p, n − q − 1, q), and the

Tracy-Widom approximation can be applied.

The previous derivation shows a procedure for statistically determining the rank η of an

RRR model through the RMT framework. Specifically, it has established the connection of the

Tracy-Widom distribution to testing the null hypothesis H0: S12 = 0 in the particular case of

CCA for general RRR models. In what follows, the applied methodology for finding the num-

ber of significant components or factors in the CCA using our datasets of predictor and

response cryptocurrency variables is described.

Analysis of predictor-response cryptocurrency factors

The first step in using these techniques with real-world data is based on numerically solving

the system of equations in Eq (26), taking into account the Painlevé equations with the bound-

ary condition that as t!1, q(t) asymptotically converges the Airy function Ai(t). We solve

these nonlinear differential equations with an relative tolerance error of 1 × 10−12, following

the approach described in [61]. Table 6 shows a subsample of the obtained values. The first

and second columns display values of x,y on the plane of the Tracy-Widom distribution,

respectively. The third column shows the cumulative density value (cdv) corresponding to the
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respective values of x,y; the result of subtracting that value from 1 determines the level of sig-

nificance in the statistical test of Tracy-Widom.

Next, we apply CCA to the set of cryptocurrency variables. In this analysis, the predictor

and response variables previously obtained in the section on variable selection are regarded as

sets X,Y, respectively, where the response variables Y are led by a time step of Δt = 1 hour, as

they were in the variable selection analysis. However, when applying the standard CCA, we

observed numerical instabilities because some underlying variables were nearly collinear. To

avoid this issue, the regularized version of the CCA is applied [66]. In this approach, covari-

ance matrices SXX and SYY are replaced by

SXX þ lIx

SYY þ lIy;
ð33Þ

where Ix, Iy are identity matrices of the same dimensions as the corresponding covariance

matrices SXX,SYY, and λ is a regularization parameter. Applying the regularized CCA ensures

that the relevant covariance matrices have numerically stable inverse matrices. This transfor-

mation only affects the eigenvalues, which suffer a translation by the same amount λ, but the

eigenvectors remain unchanged. Accordingly, we compute the eigenvalues of matrix Ms, con-

sidering a regularization parameter λ = 0.01. Then, under the greatest root distribution θ(p,

n − q − 1, q) with parameters p = 49 (the number of predictor variables), q = 51 (the number of

response variables), and n = 4531 (the number of observations after the time horizon reduction

by considering lag-lead returns) using Eqs (28)–(31) results in obtaining 36 factors explaining

93.59% of variance at the significance level of α = 0.01.

Fig 6 shows the percentage of explained variance as a function of the number of factors.

Although, in CCA, the increments of the predictor and response components are considered

symmetrically, the fixed lag time of Δt = 1 provides the predictive element. The dashed vertical

gray line represents the cutoff point where the number of significant components is deter-

mined. The inset graph shows the same but on a semi-log scale. The plot does not show an

abrupt change in the curve. Hence, if we use the elbow criterion, it would not be possible to

determine the appropriate number of components to be considered in the model. Moreover,

Table 6. Tracy-Widom values.

x y cdv

..

. ..
. ..

.

1.995 0.017669 0.989510

2.000 0.017535 0.989598

2.005 0.017402 0.989685

2.010 0.017270 0.989771

2.015 0.017139 0.989857

2.020 0.017009 0.989942

2.025 0.016880 0.990026

2.030 0.016751 0.990110

2.035 0.016623 0.990193

2.040 0.016497 0.990276

..

. ..
. ..

.

Subsample of values x, y on a plane and the corresponding cdv of the Tracy-Widom distribution.

https://doi.org/10.1371/journal.pone.0227269.t006
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compared with the resampling approach, the computational time of the Tracy-Widom test is

negligible since we only need to compute the table of the significance level once.

In addition, Table 7 shows the number of factors and percentage of explained variance for

λ 2 {0.1, 0.01, 0.001, 1 × 10−4, 1 × 10−5} and α 2 {0.1, 0.01, 0.001}. It is observed the number of

factors oscillates between 34 and 37, while the corresponding explained variance is between

91.42% and 94.56%. Additionally, the number of factors seems to reach a stable value of 36 as

λ, α become smaller.

Furthermore, the dynamic behavior of the number of factors can be analyzed. To this end,

we partition the whole sample period and choose a set of subsample data matrices for four

weeks (n = 672 hours) and a moving window of one week (168 hours). As a result, we obtain

m = 23 subsample data matrices to which CCA is applied for the set of predictor-response vari-

ables obtained in the section on variable selection while considering the entire period of time.

Fig 7a shows the estimated number of factors as a function of the moving window for a

fixed level of significance α = 0.01 and various values of the regularization parameter λ 2 {0.1,

0.01, 0.001, 1 × 10−4, 1 × 10−5, 1 × 10−6}, whereas Fig 7b presents the same analysis, but for a

fixed value of λ = 0.01 and various levels of significance α 2 {0.1, 0.01, 0.001, 1 × 10−4, 1 × 10−5,

1 × 10−6}. In all cases, the estimation of the number of factors was performed using the same

proposed procedure as in the analysis of the entire period (Eqs (28)–(31)). We observe in Fig

7a that the number of factors increases as the value of λ decreases, reaching a stable behavior at

λ = 1 × 10−5, where the number of factors does not change for smaller values of λ and is thus

similar to that observed at λ = 1 × 10−6. In contrast, in Fig 7b, the number of factors decreases

as the value of α decreases, but the temporal behavior seems to have the same tendency as in

Fig 6. Explained variance in CCA. Percentage contribution to variance as a function of the component. The inset graph show the

same but on a semi-log scale.

https://doi.org/10.1371/journal.pone.0227269.g006
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Fig 7a. The fact that the number of factors decreases with the contraction of the time horizon

is a natural behavior explained by Harding in [11]. Nonetheless, all cases exhibit a high value

on November 24, 2018 independent of the magnitude.

To investigate a possible relation between the dynamics of the number of factors and the

return of the exchange value of cryptocurrencies, two indices were constructed from the pre-

dictor and response variables. Let Ix(l) be the composite index constructed by averaging over

all the predictor variables during subsample periods l = 1, . . ., m. Similarly, we denote by Iy(l)
the composite index constructed in the same manner, but considering the response variables.

Table 8 shows the correlation values between these composite indices in relation with the

Table 7. Number of factors as a function of λ and α.

λ α Number of factors Explained variance (%)

0.1 0.1 35 92.54

0.1 0.01 35 92.54

0.1 0.001 34 91.42

0.01 0.1 36 93.59

0.01 0.01 36 93.59

0.01 0.001 35 92.48

0.001 0.1 37 94.56

0.001 0.01 36 93.59

0.001 0.001 36 93.59

1 × 10−4 0.1 37 94.56

1 × 10−4 0.01 36 93.59

1 × 10−4 0.001 36 93.59

1 × 10−5 0.1 37 94.56

1 × 10−5 0.01 36 93.59

1 × 10−5 0.001 36 93.59

Number of factors and the respective explained variance (as a percentage) for various values of the regularization

parameter λ and significance level α.

https://doi.org/10.1371/journal.pone.0227269.t007

Fig 7. Number of factors as a function of time. Estimated factors for subsample data matrices over four weeks with a moving

window of one week. (a) The level of significance is set at α = 0.01, and the regularization parameter λ is varied. (b) The

regularization parameter is set at λ = 0.01, and the significance level α is varied.

https://doi.org/10.1371/journal.pone.0227269.g007
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variation of the number of factors as a function of time. We observe a moderate anticorrelation

in all cases, ranging from −0.29 to −0.52. This result suggests that the variation in the number

of factors over time is influenced by the behavior of the composite returns of the predictor and

response cryptocurrencies. This result can be used in future work to modeling the collective

behavior of the cryptocurrency market under a predictive model using as a predictor the time

series created by the variation of the number of factors through time.

To identify the compositions of the predictor-response factors, i.e., if the weights contribute

equally or if there are peaks where some cryptocurrencies have a dominant contribution, we

compute the inverse participation ratio (IPR). This measure originates from physics, where it

is used as a measure of localization [67]; however, in the context of econophysics, it allows us

to determine the number of components that participate significantly in each eigenvector asso-

ciated with the predictor-response factors. The IPR of eigenvector Vk is given by

IPRðkÞ ¼
Xr

j¼1

jVkðjÞj
4
; ð34Þ

where k = 1, . . ., r, and r = p or q, depending on whether eigenvectors Vk are associated with

the predictor or response factors, respectively. This quantity is bounded between 1/r and 1. If

eigenvector Vk is localized only in one component, or equivalently, if only one coin has a dom-

inant weight contribution, then IPR(k) = 1. In contrast, if Vk is not localized or is uniformly

distributed over r weights, then IPRk = 1/r. In Fig 8, we plot IPR for (a) the predictor factors

and (b) the response factors of the entire sample period, varying the regularization parameter

λ 2 {0.1, 0.01, 0.001, 1 × 10−4, 1 × 10−5, 1 × 1 0−6} and setting the level of significance to

α = 0.01. We do not change α in this analysis because doing so does not alter the results. We

observe first that the behavior of IPR does not change significantly for either predictors or

responses as λ is varied. A relevant point is that by considering IPR we can distinguish between

the localized factors, i.e., those that have dominant weights related to specific cryptocurrencies,

and the nonlocalized factors that have uniform coin contributions.

Thus, Fig 9 shows a plot of the weight contribution of the predictor and response factors

with the highest IPR. Based on a visual inspection, we have chosen the predictor factors identi-

fied with k = 2, 14, 40 and 44 and the response factors identified with k = 2, 49, 50 and 51 as

Table 8. Correlations between Ix, Iy and the number of factors.

λ α Corr(Ix, #factors) Corr(Iy, #factors)

0.1 0.01 -0.29 -0.27

0.01 0.01 -0.45 -0.44

0.001 0.01 -0.40 -0.41

1 × 10−4 0.01 -0.43 -0.45

1 × 10−5 0.01 -0.43 -0.44

1 × 10−6 0.01 -0.43 -0.44

0.01 0.1 -0.42 -0.41

0.01 0.01 -0.45 -0.44

0.01 0.001 -0.46 -0.45

0.01 1 × 10−4 -0.52 -0.51

0.01 1 × 10−5 -0.49 -0.46

0.01 1 × 10−6 -0.47 -0.45

Pearson correlations between the composite indices Ix, Iy and the number of factors (denoted by #factors). The same

values of λ and α as in Fig 6 are considered.

https://doi.org/10.1371/journal.pone.0227269.t008
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the more localized factors. As a result, returning to the preceding Fig 9, it is observed that

there are a few cryptocurrencies with high weights, as expected, while the majority of crypto-

currencies oscillate around zero. This phenomenon is even more representative for the

response factors of cryptocurrencies. For example, if we consider cryptocurrencies for which

the absolute value of the weight is larger than 0.4, we observe that tether, steem, bitshares, zil-
liqa and request network (numbered 7, 8, 13, 27 and 44, respectively) are the more representa-

tive cryptocurrencies for the selected predictor factors, whereas cryptocurrencies iota, zcash,
raiblocks, maker, walton, iostoken and gxshares (numbered 8, 16, 17, 24, 25, 41 and 42, respec-

tively) are the equivalent for the response factors (see S1 Table for reference). In general, these

factors fluctuate around zero but have a strong peak for a specific currency. These are the cor-

responding relevant currencies in a predictive model and has to do with the more and less

diversified portfolio, and its association with the risk of investing in a portfolio. Specifically, we

could explore investing in a mixed portfolio for a predictive model. It can be said that they are

the components with the greatest weight that are involved in the predictive model. A model

could be tested only with those components as future work.

Additionally, Fig 10 shows a plot of the dynamic behavior of IPR for each k = 1, . . ., r,
denoted by IPRk, as a function of time using the same set of subsample data matrices

Fig 8. IPR. Inverse participation ratio for the entire sample period of time for various values of the regularization parameter λ. (a)

Predictor factors. (b) Response factors.

https://doi.org/10.1371/journal.pone.0227269.g008

Fig 9. Factor weights. Contribution weight of each coin for the factors with the highest IPR. (a) Eigenvector weights associated with

the predictor factors k = 2, 14, 40 and 44. (b) Eigenvector weights associated with the response factors k = 2, 49, 50 and 51.

https://doi.org/10.1371/journal.pone.0227269.g009
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constructed above, where again r = p for the predictor factors and r = q for the response fac-

tors, and settings α = 0.01 and λ = 0.01 are used. It is observed in general that the last factors

are more localized in the sense of IPR. For example, the last predictor factors 46, 47, 48 and 49

show the highest IPR values consistently over time (see Fig 10a), while the last response factors

49, 50 and 51 exhibit this behavior as well (see Fig 10b). Based on these results, we can call

these last factors the specific-predictor and specific-response modes, respectively.

To finalize this analysis, it is important to verify if the factors are correlated in the esti-

mated sample because highly correlated predictor factors provide redundant information

about the response and can lead to overfitting. Therefore, Fig 11a and 11b show, for the entire

sample period, the normalized distribution ρ(σij) of correlations between all pairs of factors

σi,j, i, j = 1, . . ., r, where i 6¼ j, and r = p for the predictor factors, and r = q for the response fac-

tors, respectively. Similarly, Fig 11c and 11d show, for the set of subsample data matrices, the

normalized distribution rðsm
ij Þ of correlations between all pairs of factors sm

i;j; i; j ¼ 1; . . . ; r
and m = 1, . . ., 23, where i 6¼ j, and again, r = p for the predictor factors, and r = q for the

response factors, respectively. In this last case, symbol m represents that the normalized dis-

tributions ρ(σm) of correlations σm have taken into account m = 23 subsample matrices (con-

structed using the entire six-month sample) to calculate the densities. In all shown cases,

settings α = 0.01 and λ = 0.01 have been used. In general, Fig 11 does not show significant

correlations in any case. Hence, the estimated predictor and response factors are correlated

in neither the estimation sample nor the considered subsample windows. Therefore, the pre-

dictor factors do not provide redundant information about the response in the predictive

model, which out-of-sample analysis does not exploit here because it falls outside the scope

of this study and is left for a future study, where different Γ structures will be considered (see

Eq 21).

Conclusions

In general, random matrices seem to be a promising tool for performing factor determination

in financial and economic problems. Nevertheless, extensive theoretical studies related to ran-

dom matrices have not yet been applied by practitioners. In part, this lack of use is due to the

absence of a simple statistical test that provides reliable results. Accordingly, to fill this gap, we

describe the connection between the RRR models and the Tracy-Widom test used to deter-

mine the number of significant factors or components in the reduced CCA case of the general

Fig 10. IPR as a function of time. Dynamic inverse participation ratio for the set of subsample data matrices described above. The

regularization parameter and level of significance are set to λ = 0.01 and α = 0.01, respectively. (a) Predictor factors. (b) Response

factors.

https://doi.org/10.1371/journal.pone.0227269.g010
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RRR models. The main advantage of the proposed procedure is avoiding the subjective ele-

ment of visual inspection and the computational cost of the resampling approach. Further-

more, the distributional Tracy-Widom test is conceptually related to a more general

mathematical framework and involves many branches of basic mathematics and theoretical

physics.

In particular, the results obtained here show that a large number of factors are statistically

significant in the dataset of cryptocurrencies. Hence, contrary to what a visual inspection sug-

gests, this methodology allows for the retention of more factors. Moreover, the dynamic

behavior of the number of factors seems to be related with the dynamic of the composite index

of predictor and response cryptocurrencies. As such, future research in this direction could

yield insights allowing one to anticipate drops in exchange rates. Furthermore, an IPR analysis

suggests the existence of specific-predictor and specific-response factors. These factors are the

eigenvectors associated with the smallest singular values obtained using CCA, where only a

few cryptocurrencies have remarkable weights and account for the dynamic.

Another contribution of this study is the variable selection methodology based on informa-

tion theory. We used TE to measure the flow of information between cryptocurrencies’ return

Fig 11. Distribution of correlations between factors. (a) Correlations between predictor factors determined by considering the entire

sample period. (b) Correlations between response factors determined by considering the entire sample period. (c) Correlations

between predictor factors determined by considering all the subsample components. (d) Correlations between response factors

determined by considering all the subsample components. In all cases, settings α = 0.01 and λ = 0.01 have been used.

https://doi.org/10.1371/journal.pone.0227269.g011
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variables and specify the predictor and response variables. Since TE can be regarded as a gen-

eralization of the Granger causality test under some circumstances, we can cover many scenar-

ios, including possible nonlinear dependencies between the variables. Actually, the STE

estimation shows better performance over Granger causality test for simulated systems with

linear and nonlinear interactions. The STE can detect the cluster structure, while Granger cau-

sality fails to discriminate between the modeled interaction blocks and indicate a higher num-

ber of spurious causal dependencies.

In the application to cryptocurrencies we propose a heuristic criterion related to the in-

degree and out-degree of the nodes observed if the TE estimation is treated as a graph. Again,

the symbolic approach to estimating TE has the advantage of having a distributional test.

Therefore, our selected set of response and predictor variables has an associated p-value, which

is always preferred in the econometric community and makes our results more robust from

the statistical perspective. In addition, implementation through the symbolic version is less

expensive computationally compared to other approaches such as binning and kernels, and

consequently can be used in a large dimensional data set.

The modularity and centrality results give us an understanding of the structure of crypto-

currencies that do not emerge at first glance. We have confirmed that our selected response

and predictor variables have a natural cluster structure at least under the modularity

approach. Additionally, we have found that modularity validates our selection rule of the sets

of predictive and predicted variables. It has also been found that cryptocurrencies called

tokens are central in the sense of sending information, while coins are central in the sense of

receiving information, in addition to being the authorities under the HITS algorithm. This

gives us glimpses of new structures that had not been reported before in the literature and

provides a better understanding of the characteristics of cryptocurrencies beyond their pre-

dictive power.

An interesting future research direction is to explore other RRR models with a different Γ
structure and explore the consequences of their predictive power in different scenarios. Simi-

larly, it is exciting to explore further the clustering structure of the cryptocurrencies under the

multivariate STE. In addition, its consequences in the theory of portfolios using the significa-

tive predicted and predictor eigenvalues to minimize the risk associated with an investment

scenario. Finally, it is important to study the case of S 6¼ I to take into account spatio-temporal

correlations. The last problem is related to the well-known dynamic factor models in the

econometric literature and has the advantage of being more explanatory and linked with struc-

tural predictive models such as vector autoregressive (VAR) and vector error correction mod-

els (VECM).
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ties. Physica A. 2001; 299(1-2):181–187. https://doi.org/10.1016/S0378-4371(01)00294-1

16. Burda Z, Jurkiewicz J, Nowak MA, Papp G, Zahed I. Free Lévy matrices and financial correlations. Phy-
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