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Physics-based simulations of walking have the theoretical potential to support clinical

decision-making by predicting the functional outcome of treatments in terms of walking

performance. Yet before using such simulations in clinical practice, their ability to identify

the main treatment targets in specific patients needs to be demonstrated. In this

study, we generated predictive simulations of walking with a medical imaging based

neuro-musculoskeletal model of a child with cerebral palsy presenting crouch gait. We

explored the influence of altered muscle-tendon properties, reduced neuromuscular

control complexity, and spasticity on gait dysfunction in terms of joint kinematics, kinetics,

muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon

properties by personalizing Hill-type muscle-tendon parameters based on data collected

during functional movements, simpler neuromuscular control by reducing the number of

independent muscle synergies, and spasticity through delayed muscle activity feedback

from muscle force and force rate. Our simulations revealed that, in the presence

of aberrant musculoskeletal geometries, altered muscle-tendon properties rather than

reduced neuromuscular control complexity and spasticity were the primary cause of

the crouch gait pattern observed for this child, which is in agreement with the clinical

examination. These results suggest that muscle-tendon properties should be the primary

target of interventions aiming to restore an upright gait pattern for this child. This

suggestion is in line with the gait analysis following muscle-tendon property and bone

deformity corrections. Future work should extend this single case analysis to more

patients in order to validate the ability of our physics-based simulations to capture the

gait patterns of individual patients pre- and post-treatment. Such validation would open

the door for identifying targeted treatment strategies with the aim of designing optimized

interventions for neuro-musculoskeletal disorders.
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1. INTRODUCTION

Cerebral palsy (CP) is themost common cause of motor disability
amongst children, affecting 2 to 3 per 1000 live births in Europe
(Surveillance of Cerebral Palsy in Europe, 2002). CP is caused by
a non-progressive lesion in the immature brain that may induce
inabilities to selectively control muscles, spasticity, and weakness.
These deficits undermine walking performance and, over time,
lead to secondary impairments, such as bone deformities
and muscle contracture, that may further deteriorate walking
abilities (Gage et al., 2009). Numerous treatments target these
impairments with the aim of improving walking performance,
such as single-event multi-level orthopedic surgeries (SEMLS)
to correct multiple bone and muscle impairments in a single
intervention (McGinley et al., 2012). Yet walking involves
complex interactions between the musculoskeletal and motor
control systems, which are both impaired in CP. Hence, the
treatment outcome does not only depend on the success of
the intervention in terms of musculoskeletal remediation but
also on the remaining motor control (Schwartz et al., 2016).
As a result, over the last decades, only modest, unpredictable,
and stagnant treatment outcomes have been documented for
children with CP (Schwartz, 2018). For example, SEMLS have
been reported to improve walking performance in only 25 to 43%
of the patients (Chang et al., 2006; Filho et al., 2008) and to lead
to clinically meaningful improvements over natural progression
in only 37% of the cases (Rajagopal et al., 2018). Physics-
based computer models that can predict the functional outcome
of treatments on walking performance have the potential to
improve this success rate by allowing clinicians to optimize
the clinical decision-making (e.g., by discriminating the effects
of musculoskeletal restoration due to surgical interventions to
those from tone reduction and physical therapy targeting motor
control impairments). However, predictive simulations are not
yet applied in clinical practice, in part due to computational and
modeling challenges.

Physics-based predictive simulations generate novel
movements based on a mathematical model of the neuro-
musculoskeletal system without relying on measured movement
data. Typically, these simulations consist in identifying muscle
excitations that follow a certain control strategy and drive
the musculoskeletal model to achieve a movement-related
goal (e.g., moving forward at a given speed). The relationship
between input muscle excitations and output joint kinematics
is thus fully determined by physics-based models, which allows
qualifying our simulations as predictive as typically referred to
in the literature (e.g., Miller, 2014; Lin et al., 2018). For such
simulations to be valuable in predicting the functional outcome
of treatments on walking performance, they should be based on
models that are complex enough to describe the musculoskeletal
structures and motor control processes underlying walking
that may be impaired and thus affected by treatment. Yet these
complex models are computationally expensive in predictive
simulations (Anderson and Pandy, 2001; Miller, 2014; Song and
Geyer, 2015; Lin et al., 2018; Ong et al., 2019) and, therefore, their
ability to predict the variety of gaits encountered under different
conditions (e.g., healthy and pathological gaits) has been only

scarcely explored in the literature. We recently developed a
simulation framework to generate rapid (i.e., about 30 min of
computational time) predictive simulations of gait with complex
models (Falisse et al., 2019b). Further, we demonstrated the
ability of our framework to predict the mechanics and energetics
of a broad range of gaits, suggesting that our models and
simulations were sufficiently generalizable for use in clinical
applications. Nevertheless, the ability of our simulations to
identify the main treatment targets in specific patients remains
untested. Specifically, for children with CP, simulations should
allow distinguishing the effects of musculoskeletal vs. motor
control impairments on walking performance to be able to help
clinicians optimize treatments.

Predicting the effects of impairments on walking performance
in children with CP requires the neuro-musculoskeletal model
to take these impairments into account. In this work, we
focus on two types of impairments: motor control impairments
that include spasticity and non-selective muscle control, and
musculoskeletal impairments that include bone deformities and
altered muscle-tendon properties.

The neural component of spasticity has been described as
a velocity-dependent increase in tonic stretch reflex responses
resulting from hyper-excitability of the stretch reflex (Lance,
1980). Following such description, models based on feedback
from muscle velocity have been developed to describe spastic
muscle activity [i.e., electromyography (EMG)] measured in
response to passive stretches (van der Krogt et al., 2016).
However, we previously showed that a model based on feedback
from muscle force and force rate better explains the muscle
activity response of spastic hamstrings and gastrocnemii to
passive stretches than length- and velocity-based models (Falisse
et al., 2018). Further, we found that a force-based model
could predict muscle activity in agreement with pathological
EMG during gait. Our simulations were nevertheless based
on measured movement data, which prevents investigating
the influence of spasticity on gait kinematics; an influence
that remains subject to debate (Dietz and Sinkjaer, 2007).
Predictive simulations have the potential to provide insights
into the role of spasticity during gait. In more detail,
incorporating the aforementioned spasticity models into the
neuro-musculoskeletal model theoretically allows evaluating the
impact of spasticity on gait performance by predicting the spastic
contribution to the generated muscle activations as well as
the resulting effects on the predicted joint kinematics and gait
energetics. Modeling spasticity is also a prerequisite to simulating
the effects of treatments aiming to reduce spasticity, such as
botulinum toxin-A (BTX) injections.

The inability to selectively control muscles has been described
through muscle synergies (Ivanenko et al., 2004), which are
independent groups of muscles activated in a fixed ratio by a
single input signal. Children with CP have been shown to use
fewer synergies (i.e., a simpler neuromuscular control strategy)
than typically developing (TD) individuals during walking (Steele
et al., 2015) as well as to use synergies exhibiting a greater
stride-to-stride variability (Kim et al., 2018). However, assessing
the relationship between simpler neuromuscular control and
impaired gait is difficult. For example, Shuman et al. (2019)
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showed that treatments such as BTX injections, selective
dorsal rhizotomy, and SEMLS minimally affected synergies
despite changing the walking patterns. Predictive simulations
have the potential to relate synergy complexity to impaired
walking abilities, which might help designing specific treatments
(e.g., physical therapy protocols) targeting impaired selective
motor control.

Bone deformities and resultant altered muscle path
trajectories make the use of generic musculoskeletal models
linearly-scaled to the subjects’ anthropometry inappropriate
for clinical analyses in children with CP. A well established
approach to capture these aberrant geometries is the use of
personalized models created from Magnetic Resonance Imaging
(MRI) (Arnold et al., 2001; Scheys et al., 2009, 2011a), where
personalized indicates that certain model parameters (e.g.,
muscle insertion points and joint axes) are fitted to the subject.
Such personalization has been shown to improve, for example,
the accuracy of moment arm estimation in children with CP
(Scheys et al., 2011b). Besides geometries, the muscle-tendon
properties are also altered in these children (e.g., smaller muscle
volumes and shorter fiber lengths as compared to TD individuals)
(Barrett and Lichtwark, 2010; Barber et al., 2011a,b, 2012; Smith
et al., 2011). This makes the use of Hill-type muscle-tendon
models with generic (i.e., anthropometry-based) parameters
unsuited for clinical studies. Indeed, such parameters may not
reflect altered muscle force generating capacities and, therefore,
result in unrepresentative simulations. To capture the impact
of altered muscle-tendon properties on walking performance,
the muscle-tendon parameters should be personalized. Different
approaches have been proposed for such purpose, including
methods based on angle-torque relationships from functional
movements (Lloyd and Besier, 2003; Falisse et al., 2017).

Predictive simulations have the potential to shed light upon
the influence of altered musculoskeletal properties, impaired
selective motor control, and spasticity on walking performance
by evaluating the isolated effects of these impairments. Yet
only few predictive analyses have used simulations for such
purpose. Recent modeling work showed that a musculoskeletal
model could reproduce an unimpaired walking pattern with
five synergies but not with two synergies similar to those seen
after neurological injury, suggesting that impaired control affects
walking performance (Meharbi et al., 2019). Another predictive
analysis explored the effects of aging on walking performance by
adjusting skeletal and neuromuscular parameters and reported
a predominant contribution of loss in muscle strength and
mass to reduced energy efficiency (Song and Geyer, 2018).
Both studies, however, relied on simple two-dimensional (2D)
models, neglecting motor control mechanisms in the frontal
plane. To the authors’ knowledge, no study has yet attempted
to relate patients’ clinical examination reports to the outcome of
predictive simulations evaluating the effects of musculoskeletal
and motor control impairments on walking performance based
on three-dimensional (3D) personalized models.

The purpose of this study was to evaluate the ability of
our predictive simulation platform to differentiate the effects of
musculoskeletal and motor control impairments on the impaired
walking pattern (i.e., crouch gait) of a specific child with CP. To

this aim, we evaluated the effect of these impairments on gait
patterns predicted by performance optimization (Figure 1A).
We first investigated the influence of using personalized rather
than generic muscle-tendon parameters, thereby assessing the
contribution of the child’s altered muscle-tendon properties
to the crouch gait pattern. We then evaluated the impact of
imposing a number of synergies lower than typically reported
for unimpaired individuals, thereby testing how reducing
neuromuscular control complexity affects walking performance.
We finally investigated the effect of spasticity modeled based on
muscle force and force rate feedback. In all cases, we used a MRI-
based musculoskeletal model of the child to take the aberrant
geometries into account. We found that altered muscle-tendon
properties rather than motor control impairments alone caused
a crouch gait pattern. As an additional analysis, we investigated
whether the child’s impairments impede a walking pattern similar
to TD walking or rather make such a walking pattern less
optimal. To this aim, we extended the performance criterion of
the predictive simulations with a tracking term that penalized
deviations from a TD walking pattern. We found that the
musculoskeletal impairments did not prevent an upright walking
pattern resembling TD walking but that upright walking was
less optimal than walking in crouch. Further work is necessary
to extend this single case analysis to more patients in order to
validate the ability of our physics-based simulations to capture
the gait patterns of individual patients pre- and post-treatment.

2. MATERIALS AND METHODS

The overall process to evaluate the effects of impairments
on walking performance through predictive simulations is
outlined in Figure 1B. The following sections provide details of
this process.

2.1. Experimental Data
We collected data from one child with diplegic CP (age: 10–
15 years; height: 125–150 cm; mass: 30–40 kg). The data
collection was approved by the Ethics Committee at UZ Leuven
(Belgium) and written informed consent was obtained from
the child’s parents. The child was instrumented with retro-
reflective skin mounted markers whose 3D trajectories were
recorded (100Hz) using amotion capture system (Vicon, Oxford,
UK) during overground walking at self-selected speed. Ground
reaction forces were recorded (1,000 Hz) using force plates
(AMTI, Watertown, USA). EMG was recorded (2,000 Hz) using
a telemetric Zerowire system (Cometa, Milan, Italy) from eight
muscles of each leg (rectus femoris, biceps femoris short head,
semitendinosus, tibialis anterior, gastrocnemius lateralis, vastus
lateralis, soleus, and gluteus medius). EMG from the rectus
femoris and vastus lateralis was of poor quality and excluded
from the analysis.

On the same day as the gait analysis, spasticity of the right
medial hamstrings and gastrocnemii was assessed using an
instrumented passive spasticity assessment [IPSA; described in
detail by Bar-On et al. (2013)]. Hamstrings and gastrocnemii
were passively stretched by moving knee and ankle, respectively,
one at a time from a predefined position throughout the full
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A B

FIGURE 1 | Overview of (A) clinical questions and corresponding simulations, and (B) methodology. MRI images are used to generate a musculoskeletal model of the

child with personalized geometries. This MRI-based model as well as experimental data collected during walking and instrumented passive spasticity assessments

(IPSA) are inputs to optimization procedures providing personalized estimates of Hill-type muscle-tendon parameters characterizing altered muscle-tendon properties

and personalized feedback gains characterizing spasticity. The framework for predictive simulations generates gait patterns by optimizing a cost function, describing a

walking-related performance criterion, subject to the muscle and skeleton dynamics of the MRI-based musculoskeletal model. We investigated the effects of

impairments on predicted gait patterns (dotted arrows): in Qi we evaluated the effect of altered vs. unaltered muscle-tendon properties by using personalized vs.

generic muscle-tendon parameters in the muscle dynamics; in Qii we assessed the influence of reducing the neuromuscular control complexity by imposing a reduced

number of muscle synergies; in Qiii we explored the impact of spasticity on walking performance. Details on how we modeled these impairments are described in the

methods. As an additional analysis, Qiv, we evaluated how well the model was able to reproduce the gait pattern of a typically developing (TD) child by adding a term

in the cost function penalizing deviations between predicted gait pattern and measured gait data of a TD child. All these analyses can be combined as well as

performed in isolation. Details are provided in section “model-based analyses”.

range of motion (ROM). The stretches were performed at
slow and fast velocities. EMG was collected from four muscles
(semitendinosus, gastrocnemius lateralis, rectus femoris, and
tibialis anterior) using the same system and electrode placement
as used for gait analysis. The motion of the distal and proximal
segments were tracked using two inertial measurement units
(Analog Devices, ADIS16354). The forces applied to the segment
were measured using a hand-held six degrees of freedom load-

cell (ATI IndustrialMotion, mini45). The position of the load-cell
relative to the joint axis was manually measured by the examiner.

Muscle strength, selectivity, and ROM were evaluated
(Table 1) with a standardized clinical examination protocol

(Desloovere et al., 2006). The child had close to normal
ROM at the hip and ankle but bilateral knee extension

deficits, bilateral spasticity in most muscles, good strength in
most muscles although slight deficits in hip extensors, knee
extensors, and hip abductors, and good to perfect selectivity
in most muscles. MRI images were collected for the hip
region [i.e., pelvis and femur according to the protocol

described by Bosmans et al. (2014)]. The child was classified
at a level II in the Gross Motor Function Classification
System (GMFCS).

We processed the experimental gait and IPSA data, used
as input for the estimation of muscle-tendon parameters and
feedback gains (Figure 1; details below), with OpenSim 3.3 (Delp
et al., 2007) using the MRI-based model described below.

2.2. Personalized Musculoskeletal Model
Generation
A 3D musculoskeletal model with personalized geometries
was created from MRI images (Scheys et al., 2009, 2011a;
Bosmans et al., 2014). Bones of the lower limbs and pelvis
were segmented using Mimics (Materialize, Leuven, Belgium).
Anatomical reference frames, joint axes, and muscle origin
and insertion points were defined using a previously developed
workflow (Scheys et al., 2008). The model consisted of 21 degrees
of freedom (six between the pelvis and the ground; three at
each hip joint; one at each knee, ankle, and subtalar joint; and
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TABLE 1 | Clinical examination.

ROM Spasticity

Left Right Left Right

Hip flexion 145◦ 140◦ Hip flexion MAS 2 2

Hip extension –10◦ –10◦ Hip adduction (Knee

0◦) MAS

1.5 1.5

Hip abduction (Knee 0◦) 25◦ 25◦ Hip adduction (Knee

90◦) MAS

0 0

Hip abduction (Knee 90◦) 45◦ 45◦ Hamstrings MAS 1.5 1

Hip adduction 0◦ 0◦ Hamstrings Tardieu –70◦ /

Hip internal rotation (prone) 60◦ 70◦ Duncan-Ely MAS 1.5 1.5

Hip external rotation (prone) 25◦ 25◦ Soleus MAS 0 0

Hip internal rotation (supine) 25◦ 30◦ Soleus Tardieu / /

Hip external rotation (supine) 55◦ 50◦ Gastrocnemius MAS 1.5 1.5

Knee flexion 120◦ 120◦ Gastrocnemius Tardieu 0◦ 5◦

Knee extension –20◦ –15◦ Tibialis posterior MAS 0 0

Knee spontaneous position –30◦ –25◦ Clonus 0 0

Popliteal angle Unilateral –70◦ –65◦

Popliteal angle Bilateral –65◦ –60◦

Ankle dorsiflexion (Knee 90◦) 20◦ 25◦ Alignment

Ankle dorsiflexion (Knee 0◦) 15◦ 15◦ Left Right

Ankle plantarflexion 35◦ 35◦ Femoral anteversion 35◦ 35◦

Ankle inversion 40◦ 45◦ Tibia-femoral angle 25◦ 25◦

Ankle eversion 10◦ 10◦ Bimalleor angle 40◦ 40◦

Selectivity Strength

Left Right Left Right

Hip flexion 2 2 Hip flexion 4 4

Hip extension 1.5 1.5 Hip extension 3 3

Hip abduction 1.5 1.5 Hip abduction 3+ 3+

Hip adduction 2 2 Hip adduction 4 4

Knee flexion 1.5 1.5 Knee flexion 4 3+

Knee extension 1 1.5 Knee extension 3+ 3+

Ankle dorsiflexion (Knee 90◦) 1.5 1.5 Ankle dorsiflexion

(Knee 90◦)

4 4

Ankle dorsiflexion (Knee 0◦) 1.5 1.5 Ankle dorsiflexion

(Knee 0◦)

4 4

Ankle plantarflexion 1.5 1.5 Ankle plantarflexion 4 3+

Ankle inversion 1.5 1.5 Ankle inversion 4 4

Ankle eversion 2 1.5 Ankle eversion 4 4

ROM is range of motion. Spasticity, MAS is for Modified Ashworth Scale: 1 is low, 1+ is

medium, and 2 is high spastic involvement. Selectivity: 1 is medium, 1.5 is good, and 2 is

perfect selective control. Strength: 3 is medium and 4 is good strength; strength from 3

indicates ability to move against gravity. Clinically meaningful deviations from unimpaired

individuals are in bold.

three at the lumbar joint), 86 muscles actuating the lower limbs
(43 per leg), three ideal torque actuators at the lumbar joint,
and four contact spheres per foot (Delp et al., 1990, 2007).
We added passive torques to the joints of the lower limbs
and the trunk to model the role of the ligaments and other
passive structures (Anderson and Pandy, 2001). These passive
torques varied exponentially with joint positions and linearly
with joint velocities.

We used Raasch’s model (Raasch et al., 1997; De Groote
et al., 2009) to describe muscle excitation-activation coupling

(muscle activation dynamics) and a Hill-type muscle-tendon
model (Zajac, 1989; De Groote et al., 2016) to describe
muscle-tendon interaction and the dependence of muscle force
on fiber length and velocity (muscle contraction dynamics). We
modeled skeletal motion with Newtonian rigid body dynamics
and smooth approximations of compliant Hunt-Crossley foot-
ground contacts (Delp et al., 2007; Sherman et al., 2011; Seth
et al., 2018; Falisse et al., 2019b). We calibrated the Hunt-
Crossley contact parameters (transverse plane locations and
contact sphere radii) throughmuscle-driven tracking simulations
of the child’s experimental walking data as described in previous
work (Falisse et al., 2019b). To increase computational speed, we
defined muscle-tendon lengths, velocities, and moment arms as
a polynomial function of joint positions and velocities (van den
Bogert et al., 2013; Falisse et al., 2019b).

2.3. Personalized Muscle-Tendon
Parameter Estimation
The force-length-velocity relationships describing the force
generating capacity of the Hill-type muscle-tendon model are
dimensionless and can be scaled to a specific muscle through five
muscle-tendon parameters: the maximal isometric force Fmax

m ,

the optimal fiber length l
opt
m , the tendon slack length lst , the

optimal pennation angle α
opt
m , and the maximal fiber contraction

velocity vmax
m (assigned to ten times l

opt
m ). In this study, we used

generic and personalized parameters when generating predictive
simulations of walking (Figure 1).

The generic parameters were derived by linearly scaling the
parameters of a generic musculoskeletal model (Delp et al.,
1990) to the child’s anthropometry. The linear scaling was only
performed for the optimal fiber lengths and tendon slack lengths.
The maximal isometric muscle forces were scaled based on body
massM (van der Krogt et al., 2016):

Fmax
m,subject = Fmax

m,gait2392

(
Msubject

Mgait2392

)(2/3)

, (1)

where gait2392 refers to the OpenSim gait2392model (Delp et al.,
1990, 2007).

The personalized parameters reflect the muscle force
generating capacity of the subject. Only optimal fiber lengths and
tendon slack lengths were personalized as gait simulations have
been shown to be the most sensitive to these two parameters
(De Groote et al., 2010). The personalization process was based
on an extension of an optimal control approach to solve the
muscle redundancy problem while accounting for muscle
dynamics (De Groote et al., 2016; Falisse et al., 2017). Solving
the muscle redundancy problem identifies muscle excitations
that reproduce joint torques underlying a given movement while
minimizing a performance criterion (e.g., muscle effort). We
augmented this formulation in different ways. First, we added
optimal fiber lengths and tendon slack lengths as optimization
variables. Second, we introduced a term in the cost function
minimizing the difference between muscle activations and scaled
EMG signals where scale factors were included as optimization
variables. Third, we assumed that muscles operate around their
optimal fiber lengths, and that maximal and minimal fiber
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lengths across movements should hence be larger and smaller,
respectively, than their optimal fiber lengths. Fourth, we assumed
that resistance encountered when evaluating the ROM during
the clinical examination may be, at least in part, attributed to
passive muscle forces. Hence, we included a term in the cost
function minimizing the difference between fiber lengths at
these extreme positions of the ROM and reference fiber lengths
generating large passive forces (Pitto et al., 2019). Finally, we
minimized optimal fiber lengths, assuming that children with
CP have short fibers (Barrett and Lichtwark, 2010). The problem
thus consisted in identifying muscle excitations and parameters
that minimized a multi-objective cost function:

Jestimation =

∫ tf

t0









w1‖a‖
2
2

︸ ︷︷ ︸

Muscle
effort

+w2‖a− EMG‖22
︸ ︷︷ ︸

EMG
deviation

+w3

∥
∥lmax

m − lmax
ref

∥
∥
2

2
︸ ︷︷ ︸

Passive forces in
extreme positions

+w4

∥
∥
∥l

opt
m

∥
∥
∥
1

︸ ︷︷ ︸

Short
fibers

+w5‖ar‖
2
2

︸ ︷︷ ︸

Reserve
actuators









dt,

(2)

where t0 and tf are initial and final times, a are muscle
activations, lmax

m and lmax
ref

= 1.5 are simulated and reference
fiber lengths, respectively, at the extreme positions of the ROM,
ar are reserve actuators, w1−5 are weight factors, and t is time.
This cost function was subject to constraints enforcing muscle
dynamics, that resultant muscle forces should reproduce joint
torques calculated from inverse dynamics, that fiber lengths
should cross their optimal fiber lengths during the movement,
and that the difference between activations and EMG should not
be larger than 0.1. Reserve actuators are non-physiological ideal
actuators added to muscle-generated torques to ensure that joint
torques from inverse dynamics can be reproduced. The weights
were manually adjusted to the following: w1 = 10 × 10−4,
w2 = 30 × 10−4, w3 = 3550 × 10−4, w4 = 1010 × 10−4,
and w5 = 5400 × 10−4. These weights primarily penalized
the use of reserve actuators and encouraged the generation
of passive forces in the extreme positions of the ROM. We
solved this problem while simultaneously considering data from
four gait trials of each leg and six passive stretches (IPSA
measurements) of the right hamstrings, rectus femoris, and
gastrocnemii at slow and fast velocities (one stretch per muscle
per speed). Data from 14 trials (gait and passive trials combined)
was thus included. Data from passive stretches of left leg
muscles was not available. Hence, we imposed that corresponding
parameters of both legs could not differ by more than 5%. The
parameters were allowed to vary between 50 and 200% of the
generic values.

2.4. Spasticity Model–Personalized
Feedback Gain Estimation
We modeled spasticity through delayed feedback from muscle-
tendon force and its first time derivative (i.e., force rate) (Falisse

et al., 2018). The model relates sensory information s (i.e., muscle
force and force rate) to feedback muscle activations as through a
first order differential equation:

τs
das

dt
=

{

−as, s ≤ Ts

−as + gs(s− Ts), s > Ts
(3)

where Ts is a feedback threshold, gs is a feedback gain, and
τs = 30 ms is a time delay.

We calibrated this model, separately for the hamstrings
and gastrocnemii, to reproduce the spastic muscle activity
measured in response to fast passive stretches during IPSA
measurements. The resulting personalized models describe the
neural component of spasticity measured through exaggerated
muscle activity. In more detail, we first determined the threshold
for force feedback as the value 20 ms before the EMG onset
(Staude and Wolf, 1999) and used a zero threshold for force
rate feedback. We then identified the personalized feedback gains
that minimized the difference between muscle activations from
muscle force and force rate feedback and EMG measured during
fast passive stretches (IPSA measurements). We performed such
optimization for the right medial hamstrings (i.e., biceps femoris
long head, semitendinosus, and semimembranosus) and for the
right gastrocnemii (i.e., gastrocnemius lateralis and medialis).
We used semitendinosus EMG to drive the three hamstrings
and gastrocnemius lateralis EMG to drive both gastrocnemii. We
normalized EMG using scale factors identified when estimating
the personalized muscle-tendon parameters. We described the
optimization process in detail in previous work (Falisse et al.,
2018). Finally, we incorporated the spasticity models with
personalized feedback gains in our framework for predictive
simulations to evaluate the spastic contribution to generated
muscle activations and the resulting effects on predicted joint
kinematics and gait energetics (Figure 1). Since we only had
IPSA measurement for the right leg, we used feedback gains and
thresholds identified with right leg data for left leg muscles. Gait
EMG data and spasticity, as clinically assessed (Table 1), were
comparable for both legs.

2.5. Muscle Synergies
We modeled the reduced neuromuscular control complexity
through muscle synergies. These synergies consisted of two
matrices: a Nsyn × Nf matrix H, where Nsyn is the number
of synergies and Nf is the number of frames, containing
synergy activations and a Nm × Nsyn matrix W, where
Nm is the number of muscles, containing weights that
determine the contribution of each muscle in each synergy.
Individual muscle activations were composed from synergies
as follows:

a = W ×H, (4)

where a has dimensionsNm×Nf . Importantly, we did not impose
personalized synergies when generating predictive simulations
(Figure 1). Instead, we modeled the effect of reducing the
neuromuscular control complexity by limiting the number of
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synergies per leg to four or three, thereby limiting the selection
of independent muscle activations. This represents a reduction
of the neuromuscular control complexity under the assumption
that five synergies describe healthy human locomotion (Ivanenko
et al., 2004).

2.6. Problem Formulation
We predicted gait patterns by optimizing a gait-related cost
function, independent of measured movement data, based on the
MRI-based musculoskeletal model described above. In addition
to optimizing performance, we imposed average gait speed and
periodicity of the gait pattern. We optimized for a full gait cycle
to account for asymmetry of CP gait. We solved the resultant
optimal control problem via direct collocation. The problem
formulation and computational choices are detailed in previous
work (Falisse et al., 2019b).

The cost function represents the goal of the motor
task. Based on previous work (Falisse et al., 2019b), we
modeled this task-level goal as a weighted sum of gait-related
performance criteria including metabolic energy rate, muscle
fatigue, joint accelerations, passive joint torques, and trunk
actuator excitations:

Jprediction =

∫ tf

0

1

d









w1

∥
∥Ė

∥
∥
2

2
︸ ︷︷ ︸

Metabolic
energy rate

+w2‖a‖
10
10

︸ ︷︷ ︸

Muscle
fatigue

+ w3

∥
∥q̈

∥
∥
2

2
︸ ︷︷ ︸

Joint
accelerations

+w4

∥
∥Tp

∥
∥
2

2
︸ ︷︷ ︸

Passive
torques

+ w5‖et‖
2
2

︸ ︷︷ ︸

Trunk
excitations







dt, (5)

where tf is unknown gait cycle duration, d is distance traveled

by the pelvis in the forward direction, Ė are metabolic energy
rates, a are muscle activations, q̈ are joint accelerations, Tp

are passive joint torques, et are excitations of the trunk
torque actuators, w1−5 are weight factors, and t is time. We
modeled metabolic energy rate using a smooth approximation
of the phenomenological model described by Bhargava et al.
(2004). This metabolic model requires parameters for fiber type
composition and muscle specific tension, which we obtained
from the literature (Uchida et al., 2016). We manually adjusted
the weight factors until we found a set of weights that predicted
human-like walking: w1 =

(

25/86/body mass
)

× 10−2, w2 =

25/86 × 102, w3 = 50/21, w4 = 10/15 × 102, and w5 = 1/3 ×
10−1. The weight factors were kept constant across simulations.
We added several path constraints enforcing a prescribed average
gait speed corresponding to the child’s average gait speed (d/tf =

1 m s−1), imposing periodic states over the complete gait cycle
(except for the pelvis forward position), and preventing inter-
penetration of body segments. It is worth mentioning that the
values of the weight factors strongly depend on the scaling of
the cost function terms (Falisse et al., 2019b), which explains the
different orders of magnitude. Proper scaling of the cost function

terms might allow using the same weight factors across subjects.
Yet it is also possible that such common cost function does not
exist and that weight factors should be personalized to capture
inter-subject differences in performance criteria. This is an area
for future research.

2.7. Model-Based Analyses
We investigated the differential effects of altered muscle-
tendon properties, reduced neuromuscular control complexity,
and spasticity on gait patterns predicted with the MRI-based
musculoskeletal model (Figure 1). In particular, we compared
predicted joint kinematics and kinetics, muscle activity, and
stride lengths to their experimental counterparts. We also
evaluated how impairments affected the metabolic cost of
transport (COT), defined as metabolic energy consumed per unit
distance traveled.

First, we tested the influence of altered vs. unaltered muscle-
tendon properties by using personalized vs. generic muscle-
tendon parameters in the muscle dynamics (Qi in Figure 1).
In this initial analysis, we did not include spasticity, nor
imposed synergies.

Second, we assessed the impact of reducing the neuromuscular
control complexity by imposing fixed numbers of synergies (Qii

in Figure 1). To assess the effect of reducing the number of
synergies, we compared the synergy activations resulting from
simulations with three and four synergies using the coefficient
of determination R2 and the synergy weights using Pearson’s
coefficient of correlation r. We generated simulations with
both sets of muscle-tendon parameters to explore the effect of
synergies in isolation as well as in combination with altered
muscle-tendon properties.

Finally, we evaluated the effect of spasticity in the three medial
hamstrings and two gastrocnemii of both legs (Qiii in Figure 1).
Wemodeledmuscle activations as the sum of feedforwardmuscle
activations and feedback muscle activations determined based on
the personalized (i.e., calibrated based on IPSA measurements)
spasticity models:

asum = aff + aFt + adFt , (6)

where aff are feedforward muscle activations, and aFt and

adFt are muscle activations from muscle force and force
rate feedback, respectively, computed based on Equation (3).
Feedback and feedforward activations can be interpreted as
spastic and non-spastic muscle activations, respectively. We
only tested the effect of spasticity based on the model with
personalized muscle-tendon parameters, since these parameters
were used to estimate the feedback gains. We tested the effect
of spasticity in combination with fine selective control (i.e.,
no synergy constraints) as well as with a reduced number of
muscle synergies.

As an additional analysis, we investigated whether the child
adopted an impaired crouch gait pattern because of neuro-
mechanical constraints or because it was more optimal (Qiv in
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Figure 1). To this aim, we added a term in the cost function that
penalized deviations from measured kinematics of a TD child:

Jtracking =

∫ tf

0







w6

∥
∥q− q̂

∥
∥
2

2
︸ ︷︷ ︸

TD kinematics
deviation







dt, (7)

where q are joint positions, q̂ are measured joint positions of a
TD child, and w6 = 100/20 is a weight factor. We generated
these simulations with personalized parameters as well as with
and without synergies. We did not include spasticity in this
analysis since it had little influence on the walking pattern in the
simulations described above.

We formulated our problems in MATLAB using CasADi
(Andersson et al., 2019), applied direct collocation using a
third order Radau quadrature collocation scheme with 150
mesh intervals per gait cycle, and solved the resulting nonlinear
programming problems with the solver IPOPT (Wächter and
Biegler, 2006).We applied algorithmic differentiation to compute
derivatives (Falisse et al., 2019a). We started each optimization
from multiple initial guesses and selected the result with the
lowest optimal cost. Initial guesses for joint variables were based
on experimental data. Specifically, for all simulations, we used
two initial guesses derived from experimental kinematics of
the CP and TD child, respectively. For simulations accounting
for synergies, we added initial guesses derived from simulated
kinematics with the lowest optimal costs produced without
synergies and with more synergies (e.g., with three synergies,

FIGURE 2 | Influence of the muscle-tendon parameters on the predicted walking gaits. Variables from the right leg are shown over a complete gait cycle; left leg

variables are shown in Figure S1. Vertical lines indicate the transition from stance to swing. Experimental data is shown as mean ± two standard deviations.

Experimental EMG data was normalized to peak activations. GRF is for ground reaction forces; BW is for body weight; COT is for metabolic cost of transport; lh is for

long head. Gait snapshots cover a gait cycle starting at right heel strike; left leg segments are more transparent.
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initial guesses were derived from the best kinematic solutions
with four synergies and without synergies). For simulations
accounting for spasticity, we added initial guesses derived from
simulated kinematics with the lowest optimal costs produced
without spasticity. In all cases, initial guesses for muscle,
trunk, and synergy variables were constant across time and
not informed by experimental data. Initial guesses for synergy
weights were constant across muscles and independent of
experimental data.

3. RESULTS

3.1. Gait Analysis
The child walked with a pronounced crouch gait pattern
characterized by bilateral knee extension deficits with reduced
knee ROM during swing, a lack of right ankle dorsiflexion at
the end of swing, excessive left ankle dorsiflexion, excessive
and deficient right and left hip adduction, respectively, and
excessive bilateral hip internal rotation (Figure 2 and Figure S1;
Movies 1, 2).

3.2. Influence of the Muscle-Tendon
Parameters
Using personalized vs. generic muscle-tendon parameters
resulted in a crouch (i.e., excessive knee flexion) vs. a more
upright gait pattern (Figure 2 and Figure S1; Movies 3, 4).
Personalized optimal fiber lengths and tendon slack lengths
were generally smaller and larger, respectively, than their generic
counterparts (Tables S1, S2). The use of personalized parameters
resulted in decreased deviations [smaller root mean square error
(RMSE)] between measured and predicted knee angles (RMSE of
17◦ and 11◦ for the left and right leg, respectively) as compared
to the use of generic parameters (RMSE of 43◦ and 25◦). The
gastrocnemius lateralis and soleus (ankle plantarflexors) were
activated earlier in stance with the crouch gait, as observed in
the child’s EMG. The vasti (knee extensors) activity was also
increased during stance when the model walked in crouch.
The COT was higher with the personalized parameters (crouch
gait; 3.45 J kg−1m−1) than with the generic parameters (more
upright gait; 3.18 J kg−1m−1). Predicted stride lengths were larger
than the average stride length of the child but were within two
standard deviations.

3.3. Influence of the Synergies With
Generic Muscle-Tendon Parameters
Reducing the number of synergies in combination with generic
muscle-tendon parameters did not induce the amount of crouch
that was experimentally measured in the child, although it
altered muscle coordination and increased COT (Figure 3 and
Figure S2, Movie 5). The right knee flexion angles increased
during stance with the reduction of the neuromuscular control
complexity but were still smaller than experimentally measured.
This was accompanied with increased rectus femoris (knee
extensor) activity. The synergies had a limited effect on the
left leg that had a straight knee pattern during stance. The
COT increased with the reduction of the neuromuscular control
complexity (3.58 and 3.90 J kg−1m−1 with four and three

synergies, respectively). The synergies had little effect on the
predicted stride lengths that were larger than the child’s average
stride length but were within two standard deviations. The
synergies of the three-synergy case were similar to the first three
synergies of the four-synergy case (average R2 and r over three
common synergy activations and weight vectors, respectively, of
both legs: 0.84 ± 0.19 and 0.83 ± 0.10). The additional synergy
in the four-synergy case was activated in early stance and at the
transition between stance and swing, and mainly consisted of
hip adductors.

3.4. Influence of the Synergies With
Personalized Muscle-Tendon Parameters
Reducing the number of synergies in combination with
personalized muscle-tendon parameters had a minor effect
on gait kinematics but altered muscle coordination and
increased COT (Figure 4 and Figure S3, Movie 6). Specifically,
synergies only had a slight effect on the kinematics during
the swing phase of the right leg but affected the activation
pattern of certain muscles (e.g., gastrocnemius medialis and
lateralis). The COT increased with the reduction of the
neuromuscular control complexity (3.94 and 4.09 J kg−1m−1

with four and three synergies, respectively). Stride lengths
slightly decreased with synergies but remained larger than
the child’s average stride length. The synergies of the three-
synergy case were similar to the first three synergies of
the four-synergy case (average R2 and r: 0.85 ± 0.05 and
0.87 ± 0.09, respectively). The additional synergy in the
four-synergy case was activated in early stance and at the
transition between stance and swing, and mainly consisted
of the gemellus, piriformis, tibialis posterior, and several
ankle plantarflexors.

3.5. Influence of Spasticity
Spasticity had a limited effect on muscle coordination and
almost no influence on gait kinematics (Figure 5 and Figure S4,
Movie 7). Specifically, spastic activity was predicted in the
medial hamstrings in early stance but this had, overall, a
minor effect on the total (i.e., combined spastic and non-
spastic contributions)medial hamstrings activity when compared
to simulations without spasticity. Bursts of spastic activity
were also observed in early swing. Medial hamstrings activity
contributes to knee flexion but since similar (timing and
magnitude) activity profiles were predicted with and without
spasticity, there was no difference in predicted knee flexion
angles. A constant low spastic contribution was predicted for
the gastrocnemius lateralis during stance, whereas a minor
contribution was predicted for the gastrocnemius medialis
during stance and at the transition between stance and swing.
Spasticity hence does not explain the lack of right ankle
dorsiflexion (i.e., increased plantarflexion) observed at the end
of swing in experimental data. Similar observations hold with
and without synergies. The COT increased when incorporating
spasticity (3.75 and 4.18 J kg−1m−1 with zero and four
synergies, respectively).
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FIGURE 3 | Influence of the synergies on walking gaits predicted with the generic muscle-tendon parameters. Variables from the right leg are shown over a complete

gait cycle; left leg variables are shown in Figure S2. Vertical lines (solid) indicate the transition from stance to swing. Panels of synergy weights are divided into

sections (A-I) to relate bars to muscle names provided in the bottom bar plot, which is an expanded version of the plot of weights with title 4 synergies: 3. Lh and sh

are for long and short head, respectively. Weights were normalized to one. Experimental data is shown as mean ± two standard deviations. Gait snapshots cover a

gait cycle starting at right heel strike; left leg segments are more transparent.

3.6. Influence of Tracking the Kinematics of
a TD Child
Tracking the TD kinematics while using personalized muscle-
tendon parameters produced an upright gait pattern when

not incorporating synergies, but decreased the overall gait
performance (Figure 6 and Figure S5,Movie 8). Specifically, the

simulated gait had a similar COT (3.46 J kg−1m−1) as the

crouch gait pattern predicted without such tracking term but
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FIGURE 4 | Influence of the synergies on walking gaits predicted with the personalized muscle-tendon parameters. Variables from the right leg are shown over a

complete gait cycle; left leg variables are shown in Figure S3. Vertical lines (solid) indicate the transition from stance to swing. Panels of synergy weights are divided

into sections (A-I) to relate bars to muscle names provided in the bottom bar plot, which is an expanded version of the plot of weights with title 4 synergies: 3. Lh and

sh are for long and short head, respectively. Weights were normalized to one. Experimental data is shown as mean ± two standard deviations. Experimental EMG

data was normalized to peak activations. Gait snapshots cover a gait cycle starting at right heel strike; left leg segments are more transparent.

the contribution of most terms in the cost function increased,
suggesting that walking upright is not prevented by mechanical
constraints (i.e., aberrant musculoskeletal geometries and altered
muscle-tendon properties) but is less optimal, due to these

mechanical constraints, than walking in crouch for this child.
The contribution of the muscle fatigue term increased by 29%, in
part driven by higher activations of the glutei. The contribution
of the joint acceleration, metabolic energy rate, and passive joint
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torque terms increased by 15, 15, and 36%, respectively, when
walking upright. Similarly, passive muscle forces increased when
walking upright for the iliacus and psoas (hip flexors), and
biceps femoris short head (knee flexor). Knee flexion increased
when adding synergies but did not reach the angle that was
experimentally measured in the child (Figure S6). Nevertheless,
this suggests that reduced neuromuscular control complexity
may contribute to crouch gait. The gastrocnemius lateralis
and soleus (ankle plantarflexors) were also activated earlier
during stance with synergies. Imposing synergies increased
the COT (4.12 and 4.05 J kg−1m−1 with four and three
synergies, respectively).

4. DISCUSSION

We demonstrated the ability of predictive simulations to explore
the differential effects of musculoskeletal and motor control
impairments on the gait pattern of a child with CP. In this specific
case study, aberrant musculoskeletal geometries combined with
alteredmuscle-tendon properties explained the key gait deviation
of the child, namely the crouch gait pattern. Accounting for
aberrant geometries alone (i.e., MRI-based model with generic
muscle-tendon parameters) did not result in a crouch gait
pattern. Despite altered muscle-tendon properties and aberrant
geometries, the model could still adopt a more upright gait
pattern (TD kinematics tracking). Yet such pattern was less
optimal as it induced higher muscle fatigue compared to
the crouch gait pattern. These simulations thus suggest that
adopting an upright gait pattern for this child might produce
an early onset of fatigue, which might explain in part why
the child walks in crouch. Importantly, not only fatigue, but
also joint accelerations, passive joint torques, and metabolic
energy rates increased with an upright gait pattern, potentially
contributing to the child’s selection of a crouch gait pattern. It
is worth underlining that we performed a single case study to
demonstrate the ability of physics-based simulations to explore
causal relations between musculoskeletal mechanics and motor
control impairments on the one hand and gait mechanics and
energetics on the other hand. This case study therefore does
not validate the ability of our framework to predict subject-
specific gait patterns. Future work will focus on validating the
framework for predicting post-treatment gait patterns based on a
larger population.

Decreasing the neuromuscular control complexity through
a reduced number of synergies had, for this child, a lower
effect on the simulated gait patterns than muscular deficits
as evaluated when comparing simulated gait patterns obtained
with personalized and generic muscle-tendon parameters.
Nevertheless, the synergies resulted in increased knee flexion
in several simulations, indicating that impaired selective motor
control may contribute to gait deficits as suggested in prior
simulation studies (Meharbi et al., 2019). In this study, we
imposed the number of synergies but not the synergy structure
(synergy weights and activations were optimization variables
and not informed by experimental data). We thus explored the
effect of reducing the neuromuscular control complexity but not

the impact of imposing the child’s experimental synergies. We
expect this impact to be limited for this child since he had a
good selectivity.

Our predictive simulations generated both movement
patterns and the underlying synergies. Only imposing the
number of synergies resulted in synergies that presented
common features with those reported in the literature, such
as one synergy activated during early stance and composed
by the glutei and vasti, and one synergy activated during late
stance consisting of the glutei, ankle plantarflexors, and iliacus
(De Groote et al., 2014). This suggests that synergy structures
might emerge from mechanical constraints and performance
optimization during walking. Future research should explore this
hypothesis based on a larger population.

Decreasing the number of synergies resulted in a larger COT
for this child, as may be expected with a higher level of co-
activations. This finding has been hypothesized in previous
studies (Steele et al., 2017; Meharbi et al., 2019) but not tested
explicitly. It is indeed difficult to dissociate the influence of
the neuromuscular control complexity on the COT through
experiments or based onmeasured data, since many other factors
[e.g., spasticity (Hemingway et al., 2001) and weakness (van der
Krogt et al., 2012)] might also play a role. Overall, our predictive
simulations allow exploring the effects of isolated impairments
on gait energetics, which was not possible through analyses based
on measured data.

Spasticity had a minor influence on the predicted gait
kinematics, suggesting a low impact of spasticity on gait
performance for this child. This hypothesis is in agreement with
several studies reporting a lack of correlation between spasticity
as diagnosed during passive movements and determinants of gait
(Ada et al., 1998; Marsden et al., 2012; Willerslev-Olsen et al.,
2014). However, it would be premature to draw such conclusion
based on this single case study. First, spasticity was only
taken into account for the medial hamstrings and gastrocnemii,
whereas the rectus femoris and several hip flexors and adductors
were also reported to be spastic (Table 1). Including these
other muscles may have an influence on walking performance.
Second, experimental data from the spasticity assessment was
only collected for the right leg, whereas bilateral spasticity
was reported (Table 1). We optimized the feedback parameters
using that data but used the resulting parameters for both legs,
which might affect our predictions. Third, we used feedback
parameters optimized from passive stretches to predict spasticity
(i.e., reflex activity) during gait, assuming no reflex modulation.
This assumption is in line with the decreased reflex modulation
reported for patients with spasticity (Sinkjaer et al., 1996; Faist
et al., 1999; Dietz, 2002; Dietz and Sinkjaer, 2007). Yet further
research is needed to ensure that the same model is valid in
passive and active conditions. Note that the current model does
not distinguish between concentric and eccentric contractions,
whereas spasticity is presumably only manifest upon muscle
stretch. Finally, the optimized feedback gains depend on EMG
that was normalized using scale factors optimized during the
muscle-tendon parameter estimation. However, these factors
may not truly reflect the magnitude of the spastic responses,
whichmay result in an under- or over-estimation of the predicted
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FIGURE 5 | Influence of spasticity on the predicted muscle activity. Activations from right leg muscles only are shown over a complete gait cycle; left leg activations

are shown in Figure S4. When accounting for spasticity, total activations (green) combine spastic (solid black) and non-spastic (dotted black) activations. Vertical lines

indicate the transition from stance to swing. Experimental data is shown as mean ± two standard deviations. Experimental EMG data was normalized to peak

activations. Lh is for long head. Gait snapshots cover a gait cycle starting at right heel strike; left leg segments are more transparent; the snapshots are for the case

with no synergies.

FIGURE 6 | Influence of tracking the TD kinematics on predicted walking gaits. Variables from the right leg are shown over a complete gait cycle; left leg variables are

shown in Figure S5. Vertical lines indicate the transition from stance to swing. Experimental data is shown as mean ± two standard deviations. Muscle fatigue is

modeled by activations at the tenth power. Passive muscle forces are normalized by maximal isometric muscle forces. Sh is for short head. Gait snapshots cover a

gait cycle starting at right heel strike; left leg segments are more transparent. The influence of synergies on predicted walking gaits is depicted in Figure S6.
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spastic activity during gait. In previous work (Falisse et al., 2018),
we showed that predicted spastic responses of the gastrocnemii
were in agreement with large EMG signals observed in early
stance in subjects landing on their toes. In this study, the
child had a flat foot landing and we did not observe such
EMG rise, therefore suggesting that the effect of spasticity of
the gastrocnemii during gait might be limited for this child.
Interestingly, our model captured this phenomenon as it did not
predict large spastic activity in early stance.

Our analysis suggests that muscle-tendon properties rather
than selective motor control and spasticity should be the target
of interventions aiming to restore an upright posture for this
child. This suggestion is in line with the surgical report and one-
year post-operative gait analysis. Specifically, the child underwent
SEMLS consisting of bilateral rectus femoris transfer, distal
femur extension and derotation osteotomy, tibia derotation,
and patella distalization that successfully addressed the knee
extension deficits and restored the upright gait pattern. The
intervention also included bilateral BTX injections in the psoas
(hip flexor) and gracilis (hip flexor, adductor, and knee flexor)
to reduce spasticity. However, BTX injections are unlikely to
have had an effect one year post-treatment (Molenaers et al.,
2010), suggesting a limited contribution of reduced psoas and
gracilis spasticity on restored knee extension. Note that our
study did not investigate the sensitivity of the predicted walking
patterns to bone misalignment as we considered the same
aberrant geometries for all analyses. Studying the effect of
bone deformities on the gait pattern should be considered in
future work.

Our simulations with personalized muscle-tendon parameters
captured salient features of the child’s walking pattern.
Nevertheless, they deviated from measured data in different
ways. In particular, our model did not adopt the observed flat
foot landing. Such pattern might have different underlying roots.
On the one hand, it might be an ankle strategy to add functional
limb length and compensate for the knee extension deficits. Our
simulations did not predict such compensation strategy but also
lacked knee flexion in early stance as compared to measured data
(Figure 2). Increased knee flexion might strengthen the need
for ankle compensation, causing the model to adopt a flat foot
landing. On the other hand, it might be due to contracture of
the plantarflexors (Wren et al., 2005; Mathewson et al., 2015)
although this hypothesis is less likely for this child who had a
normal ROM in terms of plantarflexion.

Other factors might have contributed to the deviations
between predicted and measured movements. First, the
musculoskeletal model had generic rather than personalized
(i.e., MRI-based) geometries for feet and tibias. Since the child
later underwent a surgery that included bilateral tibia derotation,
these generic geometries might have contributed to the gait
deviations. Second, the clinical examination indicated that the
child’s trunk was leaning forward. This is likely a compensation
strategy, since no fixed lordosis was reported. However, our
model had a very simple trunk representation (i.e., one joint
with three degrees of freedom), limiting the emergence of
compensation strategies. How to model the trunk to capture
such compensations remains an open question. Third, our

control strategy likely did not capture all complex control
mechanisms that might be at play during gait. For instance,
we did not consider in our cost function criteria such as head
stability (Menz et al., 2003) and pain that might contribute to
gait control. Further, we designed our cost function based on
previous work with a healthy adult but the same performance
criterion might not hold for children with CP. Nevertheless, our
cost function predicted, as expected, a crouch gait pattern with
personalized parameters and a more upright gait pattern with
generic parameters, suggesting that it captured at least part of the
child’s control strategy. Finally, the personalized muscle-tendon
parameters might not accurately capture the effect of the child’s
altered muscle-tendon properties. In previous work (Falisse
et al., 2017), we underlined the importance of incorporating
experimental data from multiple functional movements when
calibrating muscle-tendon parameters in order to obtain valid
parameter estimates (i.e., representative of the subject). In this
study, the available experimental data was limited to walking
trials and passive stretches from one leg. Hence, it is likely that
some parameters were calibrated to fit the experimental data
but did not truly reflect the force-generating capacities of the
child. When used in conditions different from the experiments,
these parameters may hence result in non-representative force
predictions. A challenge for upcoming research will be the
design of experimental protocols to collect experimental data
that contains sufficient information for providing valid muscle-
tendon parameter estimates while accounting for physiological
limitations of impaired individuals and practical limitations
of clinical contexts. It is also worth noting that our parameter
estimation procedure only adjusted optimal fiber lengths and
tendon slack lengths, whereas other parameters may need to be
personalized, such as maximal isometric muscle forces, tendon
compliance, or maximal muscle contraction velocities. The
muscle force-length-velocity relationships might also be altered
in children with CP due to their longer sarcomere lengths.
Overall, further tuning of the neuro-musculoskeletal model and
validation of the simulation framework outcome with a large
population are necessary for augmenting the representativeness
of the simulations.

5. CONCLUSION

This study used predictive simulations to identify the main
treatment targets for a child with CP. The results showed that,
in the presence of aberrant musculoskeletal geometries, altered
muscle-tendon properties rather than reduced neuromuscular
control complexity and spasticity were the primary driver
of the impaired crouch gait pattern observed for the child.
Based on this observation, we would recommend altered
muscle-tendon properties to be the primary target of clinical
interventions aiming to restore a more upright posture, which
is in line with the surgical report and one-year post-operative
gait analysis. Validation of our simulation workflow through
analysis of more cases is, however, necessary to build confidence
in the simulation outcomes. Such validation would open the
door for predicting the functional outcome of treatments on
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walking performance by allowing in silico assessment of the
effect of changes in the neuro-musculoskeletal system on the
gait pattern.
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