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SUMMARY

Stroke is a global health concern and it is imperative that therapeutic strategies with wide treatment time frames be developed

to improve neurological outcome in patients. Patients with diabetes mellitus who suffer a stroke have worse neurological out-

comes and long-term functional recovery than nondiabetic stroke patients. Diabetes induced vascular damage and enhanced

inflammatory milieu likely contributes to worse post stroke outcomes. Diabetic stroke patients have an aggravated pathological

cascade, and treatments that benefit nondiabetic stroke patients do not necessarily translate to diabetic stroke patients. There-

fore, there is a critical need to develop therapeutics for stroke specifically in the diabetic population. Stem cell based therapy for

stroke is an emerging treatment option with wide therapeutic time window. Cell-based therapies for stroke promote endogenous

central nervous system repair and neurorestorative mechanisms such as angiogenesis, neurogenesis, vascular remodeling, white

matter remodeling, and also modulate inflammatory and immune responses at the local and systemic level. Emerging evidence

suggests that exosomes and their cargo microRNA mediate cell therapy derived neurorestorative effects. Exosomes are small

vesicles containing protein and RNA characteristic of its parent cell. Exosomes are transported by biological fluids and facilitate

communication between neighboring and remote cells. MicroRNAs, a class of naturally occurring, small noncoding RNA sequen-

ces, contained within exosomes can regulate recipient cell’s signaling pathways and alter protein expression either acting alone

or in concert with other microRNAs. In this perspective article, we summarize current knowledge and highlight the promising

future of cell based and exosome therapy for stroke and specifically for diabetic stroke. STEM CELLS TRANSLATIONAL MEDICINE

2018;7:451–455

SIGNIFICANCE STATEMENT

Patients with diabetes mellitus who suffer a stroke have worse neurological outcomes and long-term functional recovery than
nondiabetic stroke patients. Given the differential challenges of treating strokes in diabetics compared to nondiabetics, this
perspective summarizes current knowledge and highlights promising cell based and exosome therapy for diabetic stroke.

INTRODUCTION

Ischemic stroke and diabetes mellitus (DM) are both major and
global health issues. DM is a strong predictor of ischemic stroke
incidence, particularly in DM patients younger than 65 years of
age [1]. Approximately 30% of stroke patients have DM [2]. Stroke
is a known leading cause of death and disability, and DM stroke
patients battle higher mortality rates, worse neurological func-
tional deficits, and higher risk of recurrent strokes which hinders
their long-term recovery and return to independent living com-
pared to non-DM stroke patients [3–5]. Comorbidity of stroke
with DM induces exacerbated microvascular and macrovascular
damage, which can have a profound impact on multiple organs, as
well as aggravate the pathological cascade after stroke [6–10].
While both diabetic men and women face high risk of stroke,
higher Hba1c levels in men, and microvascular complications in
women, were found to particularly increase stroke incidence [11].

Pre-clinical studies demonstrate that rodents with DM subjected

to stroke exhibit worse neurological outcome, increased blood

brain barrier (BBB) dysfunction, white matter damage, and inflam-

matory responses in the ischemic brain compared to stroke in

non-DM animals, as summarized in Figure 1 [6–10]. Therefore,

developing treatments specifically for DM stroke is necessary and

challenging.
Tissue plasminogen activator (tPA) remains the only pharma-

cological agent approved by the FDA to treat ischemic stroke.

Unfortunately, a significant majority of stroke patients do not

receive tPA within the therapeutic time window of 3–4.5 hours

from stroke onset [6, 9]. Diabetic stroke rats exhibit resistance to

thrombolytic reperfusion, and are susceptible to developing intra-

cerebral hemorrhage [12, 13]. Several novel therapeutics that

improve functional outcome and promote neuroprotection in

non-DM stroke have failed to yield similar outcomes when tested
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in DM-stroke animals as well as in human clinical trials [14, 15].
Given the differential challenges of treating strokes in diabetics
compared to nondiabetics, this review summarizes current knowl-
edge and highlights of promising cell based and exosome therapy
for diabetic stroke.

CELL-BASED THERAPIES AND EXOSOME THERAPY FOR DIABETIC

STROKE

Cell-Based Therapy

Neurorestorative therapies using stem cell based and stem cell
derived exosomes hold promise as either stand-alone or as combi-
nation treatments with pharmacological agents to improve stroke
outcome in non-DM and DM patients. Cell based and stem cell
derived exosome therapy also has therapeutic benefits in other
neurological diseases such as traumatic brain injury, which has
been reviewed previously [16]. Since DM stroke induces extensive
neural and vascular damage, it is critical for therapeutic interven-
tions to promote remodeling of the neurovascular unit, which fun-
damentally describes the structural and functional interactions
between neurons, capillaries and glia in the brain. Pre-clinical
studies in animal models of stroke and DM stroke have shown
that cell therapies have long treatment time windows ranging
from several hours to days after stroke onset and improve neuro-
logical functional outcome by amplifying endogenous brain repair
mechanisms such as neurovascular remodeling, white matter
remodeling, and attenuating local and systemic inflammatory and
immune responses [17–23].

Several types of stem/progenitor cells from different sources
have been investigated in preclinical studies to test feasibility, effi-
cacy, and mechanisms of therapeutic effects in stroke. There are a
number of sources for stem cells such as mesenchymal stromal
cells (MSCs), human umbilical cord blood cells (HUCBCs), induced
pluripotent stem cells, neural stem cells and embryonic stem cells,
with the advantages and disadvantages of each discussed else-
where [24, 25]. In this brief review, we will discuss the therapeutic
effects of bone marrow derived MSCs (BMSCs), HUCBCs and exo-
somes derived from BMSCs and HUCBCs in diabetic stroke due to
the ease of harvesting exosomes from these cells, lack of ethical
barriers and clinical trials indicating safety, therapeutic efficacy

and feasibility of employing BMSCs and HUCBCs in patients with
other diseases.

Exosome Therapy for Diabetic Stroke

Exosomes are nanosized vesicles (�30–100 nm in diameter) which
facilitate intercellular communication and are capable of regulat-
ing cell function by delivering proteins, lipids, and nucleic acids.
Over the last few years, exosomes have emerged as a major medi-
ator of cell therapy derived therapeutic benefits, personalized tar-
geted drug delivery vehicles, as well as a biomarker and promising
treatment option for several neurological diseases [26–29]. Trans-
planted stem cells and exosomes stimulate host brain parenchy-
mal cells to generate a plethora of cytokines, growth factors and
trophic factors which promote endogenous brain repair mecha-
nisms while suppressing apoptotic signaling and inflammatory
responses [27], as summarized in Figure 2. As a result, functional
recovery following cell based and exosome therapy is often
observed as early as several days after treatment. Employing exo-
somes as therapeutic agents has several advantages over cell ther-
apy. Exosomes have no vascular obstructive effect, low risk of
secondary microvascular thrombosis and have a low risk of tumor
formation. Favoring clinical translation, a large quantity of exo-
somes can be derived from a small quantity of cells; exosomes are
stable and can be stored; exosomes can pass the BBB; and exo-
somes do not elicit immune rejection. Exosomes mediate benefit
by transferring genetic instructions, often via microRNA to concur-
rently stimulate and activate multiple restorative pathways [28,
29]. Therefore, by modifying microRNA content, exosomes can be
programmed to target specific restorative and protective path-
ways within recipient and target cells and systemic administration
of exosomes may be a means to deliver designer genetic instruc-
tions as well as the active components of cell-based therapy to
the central nervous system [27].

MSCs and MSC-Exosome Therapeutic Effects

MSCs are constituted by a heterogeneous collection of mesenchy-
mal stem and progenitor cells that can differentiate into osteo-
blasts, adipocytes, chondroblasts, myocytes, and neurons [30]. In
vitro, exposure of human BMSCs to ischemic rat brain tissue
increases their secretion of growth factors, and in vivo intravenous
administration of BMSCs in rodents, induces a time dependent
release of neurotrophins and angiogenic growth factors like brain-
derived neurotrophic factor, vascular endothelial growth factor
(VEGF), nerve growth factor, hepatocyte growth factor, and glial
cell derived neurotrophic factor [31–33]. In non-DM rodents,
intravenous, intra-arterial, intra-carotid or intra-striatal adminis-
tration of BMSCs at 1 or 7 days after stroke improves functional
outcome, enhances synaptogenesis, stimulates nerve regenera-
tion, mediates immunomodulatory effects, and reduces inflamma-
tion [34–37]. Human BMSCs administered intravenously at 3 days
after stroke in type 2 DM rats, significantly improves neurological
function, increases neurovascular remodeling and decreases
inflammatory responses without increasing BBB leakage or cere-
bral hemorrhage [23]. However, intravenous administration of
BMSCs at 1 day after stroke in type 1 DM rats does not improve
neurological function, and instead increases brain hemorrhage
and BBB leakage [15, 21]. These adverse effects have since been
attributed to an early and acute role of VEGF signaling and treat-
ment initiation time point. Exogenously administered MSCs can
secrete VEGF [32], as well as stimulate brain parenchymal cells
such as astrocytes to secrete VEGF [31], and while VEGF plays an

Figure 1. Diabetes exacerbates stroke pathology and results in
poor neurological functional outcome. Abbreviation: BBB, blood
brain barrier.
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important role in mediating angiogenesis, in the acute phase of
stroke in non-DM rats, administration of VEGF increases cerebral
microvascular perfusion, BBB permeability, hemorrhage, and
infarction volume [38]. Astrocyte derived VEGF-A has been impli-
cated in promoting BBB disruption in the acute inflammatory
lesions of multiple sclerosis in mice [39]. The adverse effects of
VEGF are likely to be aggravated in DM stroke due to the extensive
vascular damage induced by DM and stroke [40]. However, at
delayed time points such as 48 hours after stroke, VEGF adminis-
tration was found to enhance angiogenesis in the ischemic
penumbra and contribute to neurological recovery in non-DM rats
[38]. Compared to non-DM rats, in the ischemic brain of type 2
DM rats VEGF follows a trend of increase by day 1 and decrease
by day 3 after stroke [23]. In concert, these studies indicate that
treatment initiation time point is critical and requires optimization
when treating DM stroke. MSC treatment in DM stroke rats was
found to increase cerebral artery wall thickness while decreasing
artery internal diameter indicating that MSC treatment may
increase atherosclerosis-like vascular changes [15, 23].

Treatment with MSC derived exosomes at 24 hours after
stroke in non-DM rats, was at least equivalent to the therapeutic
effects of MSCs, andMSC-exosome treatment improves functional
recovery, enhances neurite remodeling, neurogenesis, and angio-
genesis in the ischemic brain [27]. In type 2 DM rats subjected to
stroke, treatment with exosomes derived from bone marrow of
type 2 DM rats initiated 3 days after stroke, was found to signifi-
cantly improve long-term functional recovery, decrease BBB leak-
age and hemorrhage and increase white matter remodeling [41].

MicroRNAs play vital roles in stem cell function and therapeu-
tics. MicroRNAs are a class of naturally occurring, small noncoding
RNA sequences. MicroRNAs contained within exosomes are
transported to both neighboring and remote sites via body fluids,
and exosomal microRNA can alter multiple genes and signaling

pathways in target cells by acting either alone or in concert with
other microRNAs [42]. Therefore, tailored exosomes with enriched
beneficial microRNA can potentially enhance the therapeutic
effects of stem cell derived exosomes for treatment of stroke and
other diseases. In vitro studies show that microRNA-17–92 cluster
promotes oligodendrogenesis, neurogenesis, and axonal outgrowth
[28]; and miR-133b transferred via exosomes to astrocytes and neu-
rons increases neurite outgrowth [43]. In addition, treatment of
stroke with exosomes derived from miR-133b-overexpressed MSCs
as well as miR-17–92 cluster enriched exosomes were found to sig-
nificantly improve brain plasticity and post stroke functional out-
come compared to treatment with MSC derived exosomes [28, 29].
Optimizing the microRNA content of MSC derived exosomes to
maximize therapeutic potential is of prime interest.

HUCBCs and HUCBC Derived Exosome Therapy of

Diabetic Stroke

HUCBCs are a rich source of hematopoietic, mesenchymal and
neural stem/progenitor cells, are easily obtainable without any
ethical concerns; and have low risk of graft-versus-host disease.
Non-DM rodents subjected to stroke and treated with intravenous
HUCBC therapy 1, 7 or even 30 days after stroke exhibit significant
functional recovery [44, 45]. HUCBCs administered intravenously
to type 1 and type 2 DM rats and mice at 1 or 3 days after stroke
significantly promotes functional recovery [17–19]. HUCBC treat-
ment after DM stroke also significantly increases the expression of
Angiopoietin-1, an important protein in the regulation of angio-
genesis, vascular maturity and stabilization [19]. HUCBC derived
therapeutic effects are mainly derived from stimulation of endog-
enous brain repair mechanisms via parenchymal cell stimulation
and release of trophic factors and modulation of inflammatory
responses such as attenuating pro-inflammatory T helper cell type
1 (Th1) response, amplifying anti-inflammatory T-helper 2 (Th2)

Figure 2. Mechanisms of cell-based and exosome therapy induced neurorestorative effects after stroke in diabetic rodents. Abbreviations:
BBB, blood brain barrier; EC, endothelial cell; HUCBC, human umbilical cord blood cells; MSC, mesenchymal stromal cell; OL,
oligodendrocyte.
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response, decreasing pro-inflammatory and increasing anti-
inflammatory cytokines, and macrophage polarization from pro-
inflammatory M1 to anti-inflammatory M2 phenotype [18, 19,
46]. In the ischemic brain parenchyma of rats subjected to stroke,
HUCBC treatment significantly decreases infiltration of granulo-
cytes and monocytes, and decreases astroglial and microglial acti-
vation [47]. HUCBC treatment after stroke can also modulate
peripheral immune responses and rescue stroke induced gross
spleen size and CD81 T-cell number decrease which correlates
with the extent of ischemic injury to the brain [48].

DM and stroke both alter microRNA-126 expression which
regulates angiogenesis and endothelial cell function. Type 2 DM
has been associated with decreased endothelial cell expression
of microRNA-126 [49]. Stroke in type 2 DM mice significantly
decreases microRNA-126 expression in blood serum and ischemic
brain tissue compared to non-DM stroke mice [17]. In type 2 DM
mice subjected to stroke, HUCBC treatment significantly increases
microRNA-126 expression in serum as well as in ischemic brain tis-
sue compared to non-DM stroke mice, while treatment with
microRNA-126 knockdown HUCBCs drastically attenuates the
therapeutic effects of HUCBCs; indicating that microRNA-126 sub-
stantially contributes to HUCBC derived therapeutic effects in DM
stroke [17]. MicroRNA-126 is primarily expressed in endothelial
cells.We found that exosomes derived from brain endothelial cells
contain higher levels of miR-126 than exosomes derived from
other types of cells such as smooth muscle cells, neurons, astro-
cytes and MSCs [50]. In type 2 DM stroke mice, brain endothelial
cell derived exosome treatment increases brain and serum miR-
126 expression, and significantly improves neurological outcome,
cognitive function, and axon, myelin and vessel density [50].
Therefore, identifying key microRNA involved in meditating neuro-
restorative events after stroke and modulating microRNA content
of exosomes by manipulation of parent stem cells, can potentially
amplify the therapeutic effects of exosomes for the treatment of
stroke.

SUMMARY AND FUTURE DIRECTIONS

Cells-based and exosome therapies are powerful tools to promote
endogenous brain repair mechanisms after stroke. Cell and exo-
some therapy using BMSCs and HUCBCs are promising treatment
options for DM stroke with low ethical barriers, wide treatment
time frames, and high translational feasibility. Some of the chal-
lenges of cell therapy such as finding matching donor, low yield
and adverse effects such as thrombosis, may be overcome by

employing exosomes for stroke treatment. Largely, exosome ther-
apy appears to be safe without adverse effects; however, exo-
somes may facilitate intercellular membrane exchange and the
spread of infectious agents like prions [51].

The content of exosomes consisting primarily of proteins, non-
coding RNAs, and lipids vary depending on the donor cells and cell
culturing and exosome harvesting conditions. Since the therapeu-
tic efficacy of exosomes depend on the intercellular transfer of
their content, and microRNAs appear to play an important role in
mediating exosome function, optimization of donor cell cultures
and characterization of exosome content, particularly that of the
key microRNAs mediating therapeutic benefits are warranted. The
effects of exosome therapy on immune system need to be fully
understood. To facilitate clinical translation, high purity, low cost,
and large scale exosome isolation techniques need to be
developed.

Two clinical trials have reported therapeutic benefits of admin-
istering culture-expanded autologous MSCs in patients with ische-
mic stroke compared to placebo control group [52, 53]. Another
clinical trial reports that stereotactic placement of modified MSCs
(SB623) at the margin of stroke in patients with chronic motor defi-
cits at >6 months after their initial stroke was safe and improved
clinical outcome at 12 months after stroke [54]. However, the
study groups of these trials were small and large clinical trials to
evaluate the safety and efficacy of MSCs (NCT01922908), adipose
tissue derived MSCs (NCT01678534), HUCBCs (NCT02580019,
NCT02397018, NCT03004976), MSC-exosomes enriched by miR-
124 (NCT03384433) for treatment of stroke and intracerebral
hemorrhage (NCT03371329) are still at a preliminary stage.
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