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Fibroblast growth factors (FGFs) are classically known as hormonal factors and recent studies have revealed that FGFs have a key
role in regulating growth and development of several reproductive organs, including the testis. The testis is mainly consisted of
germ cells, Sertoli cells and Leydig cells to develop and maintain the male phenotype and reproduction. This review summarizes
the structure and fuctions of testis, the roles of FGFs on testicular development and potential involvement in testicular tumor and
its regulatory mechanism. Among 23 members of FGFs, the FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, and FGF-21 were involved and
describe in details. Understanding the roles and mechanism of FGFs is the foundation to modeling testicular development and
treatments in testicular disease. Therefore, in the last part, the potential therapy with FGFs for the testis of cancer and diabetes was
also discussed.

1. Introduction

Theadultmammalian testis is the important organwithin the
male reproductive system and has two major physiological
functions: the production of spermatozoa via spermatogen-
esis and testosterone (TE) via steroidogenesis [1]. Develop-
ment and maintenance of the male function of fertility are
all dependent on the activity of the germ cells, Sertoli cells,
and Leydig cells of the testis. Germ cells are one of the two
types of cells in the body and the other is somatic cells. During
the male development, germ cells originate from the gut of
the embryo and migrate to the developing gonads.Then they
can undergo mitosis or meiosis and differentiate into sperm
[2, 3], which fuses with oocytes during fertilization. Sertoli
cells, known as the nursery cell, affect and support germ cells
by anchoring junctions in seminiferous epithelium. Leydig
cells secrete testosterone to stimulate Sertoli cell activity and
germ cell proliferation (spermatogenesis) [4]. Germ cells are
also affected by follicle-stimulating hormone (FSH) that is
produced from the pituitary gland and is a key regulator in
the production and function of testosterone.

Beside being regulated by endocrine factors, function of
the testis are also mediated by paracrine pathway, including
hormones, growth factors, and cytokines [5–7]. Growth fac-
tors, such as fibroblast growth factors (FGFs), are important
hormone-related substances that promote cell proliferation,
regulate tissue differentiation, and modulate organogenesis
[8]. The FGF family consists of 23 members and have been
localized in some kind of cells of the male reproductive
tract and have shown to be important in regulating the
growth and the development of several reproductive organs,
including the testis [9, 10]. The regulation of testicular cell
growth is required for the maintenance of spermatogenesis
in the adult testis. On the other hand, testicular apoptosis,
as programmed cell death, also plays an important role
in controlling the number of male germ cells and elimi-
nating defective germ cells during testicular development
and spermatogenesis as well as preventing testicular tumor.
Testicular apoptosis is controlled by hormones and FGFs
[11–13]. The review article will outline the role of FGFs on
testicular development, proliferation and apoptosis in normal
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and pathological conditions, and the regulation of testicular
tumor.

2. FGFs Signaling

FGFs are hormonal factors that provide a range of determin-
ing and regulating functions in some tissues or organs [14, 15].
Although FGFs were first discovered as a mitogen on 3T3
fibroblasts, only some members of the FGF family promote
growth and strictly act on fibroblasts [2]. Among the 23
members of FGF family, seven subfamilies are further divided
based on phylogeny, common structural characteristics, and
sequence identity rather than on functional similarity [16].
FGF plays an important role in many processes including
development, morphogenesis, angiogenesis, hematopoiesis,
cell proliferation, differentiation, survival, andmigration [17–
19].

The biological significance of FGF signaling system for
human health and development is illustrated in recent obser-
vations [20]. The correct maintenance and regulation of FGF
signaling is evident from human and mouse genetic studies,
which showed a variety of developmental disorders including
dominant skeletal diseases, infertility, and cancer if some
signalingmutations lead to the disruption of FGFs [10, 21, 22].

Accumulating evidence indicates the role of FGFs as a
critical regulator for long-term energy balance and metab-
olism. In particular, the endocrine-acting FGF-19 subfamily
including FGF-19, FGF-21, and FGF-23 was shown to be
involved in glucose, lipid, bile acid, phosphate, and vitamin
D metabolism; however, the mechanisms underlying their
functions as metabolic regulators still need to be defined
[13, 23, 24].

Numerous studies have focused on the expression and the
role of FGFs, including FGF-1 (aFGF), FGF-2 (bFGF), FGF-
4, FGF-5, FGF-8, FGF-9, FGF-13, FGF-18, and FGF-21 in the
testis [8, 10, 13, 25–27]. Moreover, the role of FGFs is different
and it will be involved in development, cell proliferation,
differentiation, and apoptosis in the testis.

3. Testicular Structure

The adult mammalian testis is a vital organ within the
scrotum of the male reproductive system and has two major
physiological functions as mentioned above [1]. The surface
of testis has a transparent layer of dense connective tissue,
named testicular tunica albuginea, providing a protective bar-
rier on the testis. The testicular tunica albuginea thicken and
extend into the testis which will be separated intomany small
testis lobules, filled with testicular essence [28, 29]. Testicular
essence is mainly composed of seminiferous tubules, which
are the functional units that produce spermatozoa during
spermatogenesis. Regulation is done largely by FSH and
testosterone produced from the pituitary gland and Leydig
cells, respectively.

Spermatogenesis takes place in the seminiferous tubule,
whereas steroidogenesis occurs in Leydig cells found in the
interstitium [30]. Each seminiferous tubule is composed of
the seminiferous tubule lumen and seminiferous epithelium
which is constituted by Sertoli cells and germ cells at different

stages of development: spermatogonia, primary sperma-
tocyte, secondary spermatocyte, pachytene spermatocytes,
round spermatids, elongating spermatids, and spermato-
zoon. Between these tubules is the interstitium, containing
the androgen producing Leydig cells, red blood cells, and
a blood vessel [1, 31]. The mature spermatozoa detaches
from the epithelium in the center of seminiferous tubule
in the process of sperm release, known as spermiation.
Development and maintenance of the male phenotype and
establishment of fertility are all dependent upon the activity
of the Sertoli cells and Leydig cells of the testis. Sertoli cell,
also known as the nursery cell, supports as many as 50 germ
cells in the epithelium and plays a crucial role in germ cell
maturation. Sertoli cells are associated with germ cells by
different anchoring junctions with the basement membrane,
such as cell to cell adherent junctions during different stages
of their development [1]. In essence, Sertoli and germ cells,
particularly spermatogonia, are resting on the basement
membrane at different stages of the seminiferous epithelial
cycle, relying on its structural and hormonal support [32].
Leydig cells are dependent on LH and FSH, and Sertoli cell
can also affect Leydig cell function. Testosterone secreted by
the Leydig cells acts with FSH to stimulate Sertoli cell activity
and spermatogenesis [33].

4. FGFs and Testicular Development

FGFs are classically considered to be paracrine factors and are
known for their roles in tissue patterning and organogenesis
during embryogenesis. FGFs have been localized in many
cells of themale reproductive tract and have been shown to be
important in the regulation for the growth and development
of several reproductive organs including the testis [8, 34, 35].
Studies have shown that FGF-9 signaling can stimulate mes-
enchymal cell proliferation and migration of mesonephric
cells into the testis during development, contributing to the
formation of the interstitial compartment of the testis [36].

In mammals, there is a poleward expansion of testiculo-
genic programs along the anteroposterior axis of developing
XY gonads. Sry (sex determining region of Chr Y) and
its target gene, Sox9, are essential in the supporting cells
for initiating Sertoli cell differentiation and testis formation
[37, 38]. Sry and Sox9 alone cannot drive center-to-pole
expansion of testiculogenic programs at the initial phase of
testis differentiation. However, FGF-9 signaling is crucial for
the maintenance of Sry and Sox9 expression, and FGF-9 can
act as a diffusible conductor for the poleward expansion of
tubulogenic programs and testis cord formation in develop-
ing XY gonads [39].

Also, the role of FGF-9 on testis development is relative
with Wnt4, which can act as an antagonistic signal against
FGF-9 signaling in developing XY gonads [39]. The sup-
portive role of the central domain could be substituted by
exogenous FGF-9 supply, whereas reduction of Wnt4 activity
did not rescue the tubulogenesis defect in the pole segments
[10]. FGF-9 is also critical to a repression program in the
XY gonad that blocks the female gene expression that would
otherwise antagonize male development. Jameson et al. used
Fgfr-2/Wnt4 and Fgf-9/Wnt4 double mutant mice to show
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that FGF signaling promotes male sex determination by
repressing the female-promoting genes. Male development
would abort if the male signaling was unable to repress Wnt4
due to loss of either FGF-9 or FGFR-2 [25].

Interestingly, another study has identified Fgf-13 and Fgf-
18 as new candidate genes for the effect on testes differ-
entiation and pre-Sertoli cell function; however, the exact
mechanism of the involvement requires further investigation
[40]. Fgf-14 and Fgf-10 mRNA were also shown to be
predominantly expressed in mouse brain and testis by RNA
protection using a probe for Fgf-14 mRNA, but their role in
the testis has never been addressed [41, 42].

5. FGFs and Their Effect on
Testicular Leydig and Sertoli Cells

FGFs have been localized to many cells throughout the testis,
including Sertoli, Leydig, and germ cells. In vitro, FGFs as a
potent mitogenic factor stimulate both DNA synthesis and
cell multiplication of cultured pig Sertoli cells and also their
phenotypic expression [43]. FGF-2 was found to significantly
increase the number of Sertoli cells after culturing the cells
for 3 to 6 days in isolated fetal, newborn, or 3-day-old rats.
FGF-2 did not increase the [3H] thymidine labeling index of
Sertoli cells, indicating that FGF-2 was a survival factor for
these cells in vitro [44].

As a mitogenic factor, FGF-2 might also be involved in
the development of the immature testis. Indeed, immuno-
histochemical evidence indicates the presence of FGF-2 in
fetal Leydig cells [45] and mature Leydig cells [46].The effect
and mechanism of FGF-2 on testicular steroidogenesis were
investigated using cultures of purified porcine Leydig cells
from immature intact animals as a basis for a primary model.
FGF-2 increased basal and human chorionic gonadotropin
(hCG)-induced testosterone accumulation in the medium
following a long-term treatment in cultured Leydig cells.
FGF-2 also affected themaximal steroidogenic capacity of the
Leydig cells strongly suggest a pleiotropic role [47].

It is evident that locally produced factors are also involved
in the regulation of Leydig cell function. This includes
members of the FGF family which have been implicated in
the development of the rat testis [9]. Laslett et al. examined
the effects of FGF-1 and FGF-2 on Leydig cell steroidogenesis
by cells from 5-, 21-, and 90-day-old rats. They found that
both of FGF-1 and FGF-2 had stimulatory effects on basal LH-
stimulated testosterone production by fetal Leydig cells and
basal 5𝛼-androstane-3𝛼,17𝛽-diol production by immature
Leydig cells. There was no effect of FGF-1 and FGF-2 on
basal testosterone production by adult Leydig cells; however,
FGF1 alone inhibited LH-stimulated testosterone production
by adult Leydig cells in a dose-dependent manner. This
data demonstrated that the effects of FGF-1 and FGF-2 are
dependent on the specific stage of Leydig cell differentiation
and development andmay vary accordingly at different stages
of development [48].

FGF-8 is widely expressed in embryonic tissues and
apparently has a specific function in the elongation of the
body axis, morphogenesis of the central nervous system,
limb, and face. However, in adult mouse, Fgf-8 mRNA

expression has been detected by Northern blotting only in
the testis [49]. The Sertoli cells of testis are mitotically active
in the fetal testis at the time when the accumulation of Fgf-8
hybridization signal in the prespermatogonia was observed
[50]. Accordingly, a very low level of FGF-8 expression
in adult testis could be expected since the proliferation of
murine Sertoli cells decreases markedly after birth and ceases
during puberty [51].The timing of FGF-8 expression suggests
that it has a specific function in the maturation of the
seminiferous epithelium of testis [52].

6. FGFs and Their Effects on
Testicular Germ Cells

6.1. Proliferation and Differentiation. FGFs have regulated a
broad range of cellular activities, including cell prolifera-
tion and differentiation in many organs during embryonic
development [53]. Fully functional sperm cannot develop
independently and rely heavily upon the unique environment
provided by the testis.The regulation of testicular cell growth
is essential in the developing testis and is required for the
maintenance of spermatogenesis in the adult testis. The
rapid rate of germinal cell proliferation and the continuation
requires the presence of specific growth factors in the adult
testis [54].

Some FGF members are also involved in the paracrine
regulation of testis germ cell growth. Supplement of FGF-
2 significantly increased the number of gonocytes separated
from either newborn or 3-day-old animals and cultured for 6
days. It was found that germ cells doubled in those cultures
compared to those in the control cultures. Treatment with
a neutralizing antibody against FGF-2 to control cultures
caused a significant decrease in the number of gonocytes
compared to that in untreated cultures. FGF-2 significantly
stimulated the proliferative activity of the gonocytes, indi-
cating that FGF-2 is involved in the survival as well as a
mitogenic factor for these cells. So, these data suggested that
FGF-2was an important factor at the start of spermatogenesis
[44].

FGF-9 signaling has also been shown to stimulate prolif-
eration of mesenchymal cells and migration of mesonephric
cells into the testis during development, contributing to
the formation of the interstitial compartment of the testis
[36]. It has been observed that FGFs stimulated mitotic
proliferation of primitive spermatogonia and spermatogenic
meiosis through tyrosine kinase receptors (FGFRs) par-
tially to enhance classical mitogen activated protein kinase
(MAPK) activity [55].

There was a lack of reports regarding FGFs directly in
regulation on cell proliferation and differentiation in the
testicular germ cells, so there will be a need for further study
and discussion in this field.

6.2. Apoptosis. Apoptosis, or programmed cell death, is
essential for the development and homeostasis in multicel-
lular organisms. Apoptosis also plays an important role in
controlling the number of male germ cells and eliminating
defective germ cells during testicular development and sper-
matogenesis [56]. In recent years, more and more evidence
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reported that ligands of FGF-1, -4, -8, -10, and -14 were
expressed in mouse or rat testes; however, only FGF-4 and
FGF-21 showed the directly antiapoptotic effects on germ
cells, including on some disease conditions [41, 42, 57].

In the present study, the Fgf-4 gene was expressed in
the testicular cells of adult mouse testes and may offer
insights into the biological significance in testicular functions
[27]. Yamamoto et al. demonstrated for the first time that
the Fgf-4 gene in the testis resulted in markedly enhanced
spermatogenesis and acts as a survival factor for germ cells
[58]. To further investigate the function and therapeutic
potency of FGF-4, transgenic mice with enhanced FGF-
4 expression in the testis were treated with adriamycin
(ADR), which is an anticancer drug causing severe testicular
toxicity. The result indicated that induced expression of
FGF-4 markedly enhanced the recovery of ADR-induced
testicular damage and adenoviruses carrying the Fgf-4 gene
ameliorated testicular toxicity of ADR.

Besides, as an important survival factor, FGF-4 protects
neural cells from nitric oxide-induced apoptosis [59]. Also,
FGF-4 inhibited apoptosis in the dental mesenchyme when
applied locally, suggesting the involvement of this gene in
the prevention of apoptosis in dental tissues in vivo [60]. To
investigate the potential role of FGF-4 as an antiapoptotic
agent in the testes of adult mice, the overexpressed FGF-
4 was exposed to mild hyperthermia inducing germ cell
apoptosis. Then the testicular cell apoptosis was checked by
TUNEL staining. The results indicated that FGF-4 signifi-
cantly reduced the apoptosis of germ cells, and the expression
of FGF-4 in the testes was upregulated in vivo when the
testes are exposed to heat stress [61]. Thereby, FGF-4 could
be an important factor for spermatogenesis and present a
new paradigm to treat impaired fertility. However, the exact
mechanism of FGF-4 on antiapoptosis in the testis remains
unclear.

Because some studies demonstrated that FGFs could
protect other tissues or cells from apoptosis though MAPK
signaling pathway [8, 61], the classical MAPK phosphoryla-
tion by FGF-4 was evaluated in purified germ cells in vitro to
examine the role of MAPK pathway in antiapoptotic effects
of FGF-4 on germ cells. Their results showed that FGF-
4 induced the phosphorylation of ERK1/2 in both Sertoli
and germ cells after stimulation. Thus, FGF-4 could trigger
the ERK/MAPK signaling pathway, which appears to induce
antiapoptotic effects in germ cells [61].

FGF-21 is a novel member of the FGF family iden-
tified by Nishimura et al. [62]. Some evidence indicates
FGF-21 as a critical regulator of long-term energy balance
and metabolism. Also there are some reports that FGF-21
improved the survival of pancreatic â-cells [63] and oxidized
low density lipoprotein- (ox-LDL) provided protection for
FGF-21 from apoptotic cell death in cardiac microvascular
endothelial cells [64]. In the testis, the expression of Fgf-21
mRNAwas founded [65], but the biological function of FGF-
21 in the testis remains unclear.

Our study showed that the deletion of Fgf-21 gene
does not affect testicular cell proliferation, but significantly
increases the spontaneous incidence of testicular apoptosis
accompaniedwith the increased ratio of Bax/Bcl2 expression.

It means that FGF-21 is involved in the regulation of testic-
ular germ cells apoptosis through mitochondrial-dependent
apoptosis pathway.

Testicular apoptotic cell death occurs inmany conditions,
including the normal spermatogenesis and also chronic dis-
eases such as diabetes. Diabetes induces testicular apoptotic
cell death predominantly through mitochondrial and endo-
plasmic reticulum (ER) stress associated cell death pathways,
whichmay bemetabolic abnormality induced oxidative dam-
age [66, 67]. Deletion of Fgf-21 gene significantly enhances
diabetes-induced testicular apoptosis along with the activa-
tion of mitochondrial-dependent apoptosis pathways, endo-
plasmic reticulum stress-dependent pathways, and oxidative
damage but did not change the expression of cleaved caspase-
3 and caspase-8, which was significantly prevented by the
supplementation of exogenous FGF-21. These results suggest
that Fgf-21 genemay be involved inmaintaining normal sper-
matogenesis and also protect the germ cells from diabetes-
induced apoptotic cell death probably via the prevention
of diabetes-induced oxidative damage or maintaining the
functions of mitochondria and endoplasmic reticulum [13].

Meanwhile, some studies have demonstrated that other
FGF family members such as FGF-1 and FGF-2 have the
similar antioxidative function [63, 64, 68]. However, the exact
underlyingmechanism of FGFs to decreasing oxidative stress
and maintenance of mitochondrial function is not clear, and
further studies are needed to explain it. Further analysis of
other genes of the FGF family in the testes can be performed
to get a better understanding of the germ cells network.

7. FGFs and Testicular Tumor

The incidence of malignant tumors of the testis is increasing
rapidly in industrialized countries. Even the etiology of testic-
ular cancer remains unknown, both congenital and acquired
factors have been associated with tumor development. Due
to FGFs being involved in embryonic testis development and
differentiation, a few studies have attempted to elucidate the
role of FGFs in testicular cancer [69, 70]. FGFs may promote
testicular growth and metastasis by different mechanisms,
mainly as the mitogens for tumor cells, induction of matrix
metalloproteinases (MMPs), and angiogenesis.

Early studies suggested that FGF-4 was overexpressed
in different germ cell tumors [71, 72]. Strohmeyer et al.
found significant association between FGF-4 and tumor
stage in non-seminomas, that is, some local tumors, tumors
with nodal or distant metastasis showing an overexpres-
sion of FGF-4 [71]. Another immunohistochemical study
on primary testicular germ cell tumors showed predom-
inant expression of FGF-4, FGF-8, and FGFR1 in non-
seminomatous and highly proliferative components of the
tumors.These results suggest that FGF-4 and FGF-8 are both
involved in testicular cancer [70].

The patients with seminoma or nonseminoma showed
a significant elevation of FGF-2 either at the serum level
and/or in the tumor tissue expression. Analyzing human
teratocarcinoma cells in vitro also showed that low con-
centrations of FGF-2 stimulated their proliferation, whereas
higher concentrations induced cell migration [73]. Other
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studies with other kinds of tumors showed that there was an
autocrine FGF-2 activation loop to control ERK1/2 activation
and then FGF2 downregulates E-cadherin expression to
induce cell invasion through activation of PI3K/AKT/mTOR
and MAPK/ERK signaling [74, 75].

Beside the directly regulatingmitosis andmigration of tu-
mor cells, FGFs also showed the lymphangiogenic and angio-
genic effects. FGF-2 stimulated proliferation andmigration of
lymphatic and vascular endothelial cells, which is associated
with AKT/mTOR/p70(S6 kinase) and MAPK/ERK path-
way activation and intracellular Ras-JNK signaling down-
regulation [76–78].

Even though there is no direct evidence to prove that
FGFs affect testicular tumor metastasis through regulating
MMPs, a few researches have showed the connection between
FGF family andMMPmembers. For example, FGF-1 initiated
the endothelial cell migration through activating MMP-1
to facilitate angiogenesis [79]. FGF-1 also induces MMP-9
expression in breast cancer cells to accelerate tumor invasion
and metastasis [80]. These studies suggested that mTOR and
MAPK/ERK pathways and MMP members may all involve
in directly regulating FGFs on testicular tumor, which needs
further studies to be proved.

8. FGFs Potential Therapy in Clinics

Because FGFs are involved in the complex signaling network
in both normal and malignant testis tissues, they represent
potential diagnostic markers and/or targets for therapy of
testicular sterility and cancer. FGF-2 was elevated in the
tissue and serum of patients with testicular cancer, including
the seminomatous as well as nonseminomatous tumors.
Therefore, FGF-2 may represent a promising new diagnostic
marker for testicular cancer with high sensitivity [81].

Meanwhile, FGFs, as proangiogenic cytokines, may facil-
itate angiogenesis to promote cancer development through
binding with their receptors, FGFR1-4. Correspondingly, a
few drugs targeting the FGF ligand-FGF receptor interaction
are promising for the treatment of cancer, including testicular
cancer. FGFR directed therapeutics are subcategorized as
either selective FGFR inhibitors or multitargeted tyrosine
kinase inhibitors [82]. For example, Brivanib is an oral and
potent nonselective inhibitor of FGF/VEGF and now has
been used in the late-phase clinical trials [83].

On the other hand, the neovascularization function of
FGFs will provide effective therapy to ischemia disease. For
example, utilization of sustained release system of FGF-
2 has shown sufficient neovascularization in diabetic limb
ischemia. The method may provide a more effective thera-
peutic angiogenesis in patients with diabetes. Clinical trial
of therapeutic angiogenesis for severe hindlimb ischemia has
already started [84]. Supplements of FGFs have a potential
benefit in protecting testicular ischemia-reperfusion injury
[85].

9. Summary

FGF signaling is critical for a broad range of determining and
regulating functions including development, angiogenesis,

hematopoiesis, cell proliferation, differentiation, and migra-
tion in some cells and organs. Numerous studies have
focused on the expression and roles of FGFs in testis. FGFs
are involved in the regulation of testicular development
and maintaining germ cells functions in the normal and
pathogenic conditions. FGFs promote testicular tumor devel-
opment andmetastasis. However, the underlying mechanism
of FGFs roles in testis is not very clear and is required to be
clarified. Understanding the role and mechanism of FGFs is
the foundation in the discovery of treatments in testicular
cancer, infertility, and diabetic complications.
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