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Abstract

MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant
biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays).
In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB
gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The
MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size.
Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution
strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes.
We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant
species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs,
demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may
evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-
MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction
potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating
maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our
comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this
gene family, and will facilitate future functional analysis of the MYB gene family in maize.
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Introduction

MYB transcription factor contains a conserved DNA-binding

domain (DBD), which is homologous to the DBD of animal c-Myb

[1]. This domain is generally composed of 1–4 imperfect repeats

[2,3]. Each repeat is approximately 50 amino acids in length and

encoded by 3 a-helices. When bound to specific promoter

sequences, the second and third helices form a helix-turn-helix

(HTH) structure [2,4]; the third a-helix is thought to play

a recognition role in binding to a short DNA sequence [5].

Moreover, each repeat contains regularly spaced tryptophan

residues, forming a tryptophan cluster in the 3-dimensional HTH

structure [6]. The first plant MYB gene was isolated from maize,

which encodes a c-MYB-like transcription factor involved in

anthocyanin biosynthesis [7]. Subsequently, an increasing member

of plant R2R3-MYB genes have been identified in a lot of plants.

Substantial data now exist on the roles of MYB transcription

factors in monocotyledonous and also in dicotyledonous plants

[4,8–12]. The most common type of plant MYB transcription

factor is R2R3-MYB (containing 2 repeats).

Up to now, numerous plant R2R3-MYB genes (R2R3-MYBs)

have been well annotated. The extensive expansion of this family

in plants suggests that its members perform diverse functions in

plant-specific processes. However, the only species for which the

functions of the MYB gene family have been widely studied, based

on the available genome sequence, is Arabidopsis. Recently, the

increasing availability of plant genome sequences has facilitated

a better understanding of this large gene family [13,14].

Nevertheless, relatively few members of the maize R2R3-MYB

gene family have been well functional characterized, comparing to

Arabidopsis. Moreover, the R2R3-MYBs characterized in maize are

limited in the control of phenylpropanoid metabolism pathway to

date [7,15–19]. In addition, the most recent comprehensive review

of MYB genes in maize predates the completion of genome

sequencing projects [13]. Consequently, the lack of genomic

knowledge complicates the analysis of MYB gene family in maize,

in particular the gene structures, intron pattern, phylogeny, and

expression patterns. The completion of the maize genome

sequence has enabled comparative genomics studies, and also

the identification of new maize MYB genes (ZmMYBs) [20–22]. It

is of interest for us that how many MYB genes exist in the maize

genome? Given the large size of the MYB gene family, and its

functionally diverse nature in Arabidopsis, genome data mining of

this gene family in maize is crucial to understanding the roles of

MYB transcription factors in maize physiological and biochemical

processes. Furthermore, analysis of the structural relationships

between Arabidopsis and maize MYB proteins would facilitate the

prediction of the functions of, as yet, uncharacterized genes.
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In the present study, we performed a genome-wide survey of the

R2R3-MYB gene family in maize. A total of 158 open reading

frames (ORFs) encoding R2R3-MYBs were identified, most of

which remain to be functionally characterized. Subsequently, the

deduced amino acid sequences encoded by the ORFs were

subjected to an overview analysis, to yield clues concerning the

evolutionary history of maize R2R3-MYB gene family. We

revealed that segmental and tandem duplication events have

contributed to the expansion of the maize MYB gene family.

Using phylogenetic analysis of the R2R3-MYB families in maize,

Arabidopsis, and other plant species, we designated these MYB

genes into 37 subgroups. This facilitated the identification of

shared and specific subgroups, suggesting the possible gene

retention, and also loss and expansion processes of the MYB

genes. By analysis of the intron pattern and conserved motif, we

provide additional evidence for the subgroup definition. In

addition, we also focused our investigation on mRNA expression

analysis of ZmMYBs in different maize organs, and also compared

the expression patterns of closely grouping paralogs. Since

ZmMYBs present a variety of expression patterns, therefore, the

presence of this large family in maize may be important in the

control of gene expression in corresponding organs. Our study will

serve as a foundation for future research into the functional roles of

maize MYB genes.

Results

157 Genes Encoding R2R3-MYB Proteins were Identified
in the Maize Genome
To identify MYB encoding genes in maize genome, a pre-

liminary BLASTP search was performed using the DBD sequences

of known maize MYB proteins as queries. In each case, a large

number of deduced amino acid sequences (.200 candidates)

containing MYB or MYB-like repeats are obtained. Only hits with

E values of ,1.0 were considered as members of this gene family.

Subsequently, the redundant sequences of candidate MYBs were

discarded from our data set, according to their chromosome

locations. In addition, the remaining maize MYBs possessing

incomplete ORFs were also excluded for further analysis. All

maize MYB proteins were manually inspected to ensure that the

putative gene models contained 2 or 3 MYB repeats, and that the

gene models mapped to unique loci in their respective genomes.

Finally, we identified 157 typical non-redundant R2R3-MYB

proteins, and also 1 AtCDC5-like R2R3-MYB protein in maize

genome. In order to distinguish the remaining R2R3-MYBs, we

provisionally named them ZmMYB1 to ZmMYB158, based on

the order of the corresponding chromosome locations identified

from the maize genome browser (Table S1).

Conserved Residues in the MYB Domain
Similar to their counterparts in other plant species, the basic

regions of maize R2R3-MYB domains contained, on average,

,108 basic residues, with rare frequency of deletion or insertion

(,2%). By contrast, the region outside the DBD was the most

divergent in terms of length, and also amino acid composition.

Consistent with earlier reports, the R2 and R3 MYB repeats of

ZmMYBs contained characteristic amino acids, including a series

of evenly distributed and highly conserved Trp (W) residues

(Fig. 1).

As shown in Figure 1, 6 Trp (W) residues at positions 9, 29, and

49 in the R2 repeat, and 62, 81, and 100 in the R3 repeat, form

a hydrophobic core and serve as landmarks in the DBD of plant

MYB proteins. In general, these Trp (W) residues, excepting Trp-

62, are highly conserved in plant MYB DBDs. For example,

substitution at Trp-9, Trp-49, and Trp-100 is found in only 1

ZmMYB, respectively. By contrast, most of the ZmMYBs had

a substitution at Trp-62 (Fig. 1), and the exchanged amino acid

was predominantly hydrophobic, such as Phe (F) or (less

frequently) Ile (I), Leu (L), or Tyr (Y) (Fig. 1). In addition to these

highly conserved Trp residues, a cysteine (C) located in the DNA

recognition helix of R2 (Cys-45 in Fig. 1) was also completely

conserved in the ZmMYB proteins.

In order to clarify the relationships between MYB DBD regions

from different plants, we performed multiple alignment analysis of

the MYB proteins in maize and Arabidopsis. Figure S1 shows the

distribution of the 108 conserved amino acid residues in the

R2R3-MYB domain. It was revealed that the linker region of R2

and R3 repeats was highly conserved, and that 4 amino acids in

the first half of the linker (LNPE [L138 to E141 in chicken c-Myb

R2R3]) formed a highly conserved motif [23,24]. Interestingly, we

observed a similar motif in the linker region in maize and

Arabidopsis MYB proteins, as well (LRPD, Leu-53 to Asn-56 in

Fig. 1). In addition, the evolution of plant-specific R2R3-MYB

domain involved the insertion of a Leu residue (L) between the

second and third helices of R2 repeat [25]. In the present study,

we observed that up to 133 of the 157 typical ZmMYBs (about

85%) also had a Leu (L) insertion at the same site. However, the

remaining 24 ZmMYBs (about 15%) have an insertion of a glycine

(G), instead.

Phylogenetic Analysis of the Maize R2R3-MYB Gene
Family
Based on sequence similarity and topology, we subdivided the

157 typical members of the maize MYB gene family into 18

subgroups (designated S1–S18), according to clades with at least

50% bootstrap support (Fig. 2). Our results also showed that the

topologies and bootstraps derived using the NJ method of the

DBDs and the whole protein sequences were almost identical

(Fig. 2 and Fig. S2). Moreover, the tree topology of maximum

likelihood (ML) analysis was essentially the same with NJ trees as

well (Fig. S3), indicating that these 2 methods were in good

agreement.

In these 3 trees, only 2 ZmMYBs (ZmMYB021 and

ZmMYB029) did not fit into any subgroup, indicating ambiguous

clustering between the NJ and ML phylogenetic trees (Fig. 2; Figs.

S2 and S3). The low bootstrap support for the internal nodes of

these trees was in accordance with phylogenetic analysis of MYBs

in other organisms. It was likely due to the fact that the MYB

domain is relatively short, and that members within a subgroup

are highly conserved, with relatively few informative character

positions.

Conserved Gene Structure Support to Subgroup
Designation
In general, R2R3-MYBs possessed at least 1 intron in the DBD

and up to 87% (136) of the 157 typical ZmMYBs possessed 1–5

intron(s) in the DBD; these introns could be grouped into 12

patterns, based on their presence and positions (Fig. 3). In contrast,

outside the DBD, all but 20 of the 157 typical ZmMYBs lacked

introns.

The most common pattern was a typical splicing of 3 exons

and 2 introns (pattern a, 44% of ZmMYBs). Genes containing

either of the 2 introns in pattern a constituted another 2 major

groups of intron patterns, including subgroups S15 and S14

(Fig. 3, patterns b and c, respectively, accounting for ,23% of

ZmMYBs). In addition, ,13% of ZmMYBs contain no intron in

their DBD, forming the fourth main intron pattern (Fig. 3,

The MYB Transcription Factor Gene Family in Maize
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pattern d; Fig. 2, S16). The remaining patterns exhibited varying

intron positions (patterns e to l, accounting for ,20% of

ZmMYBs). Surprisingly, the phases in the same sites or patterns

were also almost conserved. In the major splicing patterns a, b,

and c, the introns phases were 1 and/or 2, respectively; where

the phase at the same position of the R2 repeat was 1, and that

at the R3 was 2 (Fig. 3).

In total, 29 conserved motifs with variable length (6–117 amino

acids) were detected in the C-terminals of the maize MYB proteins

(Table S2). We revealed that most members of a same subgroup

shared 1 or more identical motifs outside the MYB DBD. Among

which, some subgroup-specific motifs were previously character-

ized as additional functional properties, such as contributing to the

regulatory specificity [4,18]. The positions of the MYB domains

and also any conserved motifs are shown in Figure 2, D. In

contrast to previous studies [13], we observed that not only motif 1

(which was specifically conserved and directly followed the R3

repeat in some subgroups) but also some other motifs (including

motifs 3, 17, and 23) selectively and directly followed the R3

repeat in some subgroups (Fig. 2, D).

The Expression Pattern of Maize R2R3-MYB Genes
The expression pattern of a gene is often correlated with its

function. Therefore, we analyzed the expression profiles of maize

MYB gene family as well. The results showed that most of the 157

typical ZmMYBs yielded positive RT-PCR results. However, few

ZmMYBs showed no expression signals (Fig. 2, C) which may be

pseudogenes, or may be expressed at specific developmental stages

or under special conditions. The wide expressions of ZmMYBs in

roots, stems, leaves, flowers, and seeds suggested that they may

involve in the development of all maize organs.

As shown in Figure 2, 59 out of the 157 typical ZmMYBs

were expressed in all 6 tissues tested, suggesting that they may

play regulatory roles at multiple developmental stages. However,

most of the ZmMYBs showed preferential expression within

different maize organs. For instance, 16 ZmMYBs showed

preferential expression in the root, 40 ZmMYBs showed

preferential expression in the stem, 34 ZmMYBs showed

preferential expression in the leaf, and 41 ZmMYBs showed

preferential expression in the seed. In addition, 29 ZmMYBs

showed the highest transcript accumulation in male catkins,

Figure 1. ClustalW amino acid sequence alignment of 157 typical maize R2R3-MYB domains. The shading of the alignment represents
different degrees of conservation among sequences; the dark shading indicates identical residues, the light shading indicates conservative changes.
The asterisks indicate conserved tryptophan residues (W) in the MYB domain. The positions of the three a-helices that form each MYB repeat are
marked as Helix 1 to Helix 3. Residues involved in interaction are marked with dots; genes with these residues are underlined.
doi:10.1371/journal.pone.0037463.g001
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38 ZmMYBs showed the highest accumulation in female

catkins, and 30 ZmMYBs showed approximately equal tran-

script accumulation in male and female catkins. Interestingly,

,136 out of the 157 typical ZmMYBs showed similar

expression patterns in female catkins and the seed, supporting

the hypothesis that they function in maize reproductive

development. In general, the expression patterns of closely

grouping paralogs are similar which suggests the function

similarity. The similar expression patterns of closely grouping

paralogs may suggest the function redundancy, while the

paralogs with different expression patterns may share similar

functions at different stage in plant development.

Chromosomal Distribution and Duplication Events of
Maize R2R3-MYB Genes
To date, the information regarding expansion events of the

R2R3-MYB gene family in maize remain unclear. In order to

investigate the relationship between genetic divergence and gene

duplication within the MYB gene family in maize, we determined

the chromosomal location of ZmMYBs, based on the information

from the maize genomic database.

The result showed that the ZmMYBs were distributed

throughout all the 10 maize chromosomes (Fig. 4). However, the

distribution appeared to be uneven. In general, the central sections

of chromosomes lack MYB genes. Relatively high densities of

ZmMYBs were observed in the bottom of all chromosomes,

Figure 2. Phylogenetic relationships, intron pattern, expression pattern, architecture of conserved protein motifs, and subgroup
designations in typical R2R3-MYB proteins from maize (Zm). A, The neighbor-joining (NJ) tree on the left includes 157 typical R2R3-MYB
proteins from maize. The tree shows the 18 phylogenetic subgroups (S1–S18) marked with colored backgrounds, to facilitate subfamily identification
with high predictive value. The numbers beside the branches represent bootstrap values (50%) based on 1000 replications. Eight proteins did not fit
well into clusters. The colorful marker in the tree indicates the corresponding intron distribution patterns, as shown in Figure 3, below. B, The gene
structure is presented by green exon (s), red MYB domain (s), blue UTR (s), and spaces between the colourful boxes corresponding to introns. The
sizes of exons and introns can be estimated using the horizontal lines; the number indicated the phases of corresponding introns. C, The expression
patterns of MYB genes in maize. The letter R above the column of expression data refers to root, ST refers to stem, L refers to leaf, FC refers to female
catkins, MC refers to male catkins, and S refers to seed. D, Architecture of conserved protein motifs in 18 subfamilies. The motifs on the right were
detected using MEME and are graphically represented as white boxes drawn to scale for a representative plant MYB protein of each subfamily.
doi:10.1371/journal.pone.0037463.g002
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excepting chromosome 5. In contrast, low densities were detected

in the top of most chromosomes, excepting chromosome 3.

Especially in the top half of chromosomes 4, 6, 7 and 9, large

chromosomal regions lacked ZmMYBs. Subsequently, we ana-

lyzed the gene cluster expansion events of ZmMYBs in maize

genome, based on these results.

Based on phylogenetic relationship and sequence similarity, we

identified 35 gene clusters with high levels of protein sequence

similarity (.90% within the DBD and .60% throughout the

protein) (Fig. 4). For instance, the entire protein sequences of

ZmMYB028 and ZmMYB106 shared 71% similarity, while those

of ZmMYB010 and ZmMYB073 shared 78% similarity. Never-

theless, not all of the sister pairs were genetically linked to each

other with respect to their corresponding chromosomal locations;

,19 pairs (24%) of ZmMYBs lying within recently duplicated

segmental chromosomes had a clear relative in these regions which

may have evolved from putative maize genome duplication events.

These multiple pairs linked each of at least 8 potential segmental

duplications (Fig. 4, colored bars with numbers).

In addition, a series of tandem duplications were observed in

maize genome as well. In total, we detected 24 (15%) very closely

related ZmMYBs (ZmMYB006/ZmMYB011; ZmMYB101/

ZmMYB091; ZmMYB113/ZmMYB115; ZmMYB148/

ZmMYB149; ZmMYB152/ZmMYB153; ZmMYB156/

ZmMYB157; ZmMYB046/ZmMYB048/ZmMYB057;

ZmMYB098/ZmMYB102/ZmMYB103; ZmMYB096/

ZmMYB097/ZmMYB105; and ZmMYB133/ZmMYB140/

ZmMYB141) in a single cluster, respectively. These ZmMYBs

were physically located near to each other in a syntenic region of

related chromosomes, forming 10 ZmMYB sister pairs (Fig. 4,

colored boxes).

Comparative Analysis of Plant R2R3-MYB Proteins
To update the functional clades with the predicted ZmMYBs,

we performed a phylogeny reconstruction of the complete

Arabidopsis R2R3-MYB superfamily (126 members) and 52 well-

characterized R2R3-MYBs from other plant species, using the NJ

method in Mega4 (Fig. 5 and Fig. S4), and the maximum

likelihood (ML) method in PhyML (Fig. S5), respectively. With the

exception of a few nodes with low support, the phylogenetic trees

derived from each method had very similar topologies. Based on

our results and also referring to previous studies of the Arabidopsis

MYB gene family [3,4], we subdivided these MYB genes into 37

subgroups (Fig. 5).

As shown in Figure S4, 29 out of 37 subgroups were present

both in maize and Arabidopsis. Thus, it is likely that the appearance

of most genes in these species predates the divergence of monocot/

eudicots. This may represent the ancient origin of MYB genes that

have played a conserved and crucial role during plant evolution.

Meanwhile, some species-specific subgroups were also observed,

indicating that MYB genes may have evolved or been lost in

a single species, following divergence. For example, members of

subgroup G12 were recently identified as being involved in

glucosinolate biosynthesis [26–29] (Fig. 5). However, no ZmMYBs

were clustered within this subgroup, possibly because the

glucosinolate compounds were Cruciferae plant-specific [30]. In

another example, subgroup G15 consisted of AtMYB0/GL1,

AtMYB66/WER, and GhMYB109, all of which are involved in

epidermal cell development [31–34]. Nevertheless, in maize, there

appears to be no orthologs in this subgroup, suggesting the possible

gene loss and/or lineage-specific expansions, which may reflect

species-specific adaptations. While subgroup G6 is more likely to

be eudicot-specific clade, for which contains MYBs from as many

as 13 eudicot species, forming a separate branch with higher

support value.

In addition, 4 of the 37 subgroups contained only MYB

members from maize, suggesting a gene acquisition mechanism

from the most recent common ancestor with Arabidopsis, during

the evolution. Our expression analysis revealed that maize

R2R3-MYBs have a variety of expression patterns in different

tissues. Therefore, we believe that these species-specific sub-

Figure 3. Schematic of the intron distribution patterns within the maize R2R3-MYB DNA-binding domains. Alignment of DNA-binding
domains is representative of 12 intron patterns, named from a to l. Locations of introns are indicated by white triangles. The number within each
triangle indicates the splicing phases of the MYB domain sequences: 0 refers to phase 0; 1 refers to phase 1; and 2 refers to phase 2. The number of
ZmMYB proteins with each pattern is given on the right. The correlation of intron distribution patterns and phylogenetic subfamilies is provided in
Figure 2.
doi:10.1371/journal.pone.0037463.g003
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groups may regulate essential biological processes during maize

development.

Discussion

Characteristics of Maize MYB DNA-binding Domain
In the present study, we identified a putative full set of R2R3-

MYBs in the maize genome, comprising a total of 157 typical

R2R3-MYB encoding genes. In addition to the highly conserved

Trp amino acid residues (W) in the DBD domain, we observed

alternative highly conserved residues, and also some important

amino acid substitutions (Fig. S1). The highly conserved residues

were generally distributed at both ends of each repeat, especially in

the third helix. Our results indicate that during the evolution, the

third helix is more conserved than the first 2 helixes. It was

previously demonstrated that the residues in the third helix are

important for DNA binding activity, by interaction with the DNA

bases in the major groove, when bound to DNA [34]. Therefore,

the highly conserved characteristic of the third helix may indicate

functional conservatism among different plant species during

MYB evolution, while species-specific genes may be derived from

key residue exchanges in this region. Accordingly, the substitutions

in the third helix may result in recognition of novel target genes

and/or may significantly impair the DNA-binding activity. This,

in turn, dictates the transcriptional regulatory role in most

biological processes.

In general, the distributions of conserved amino acids among

the MYB DBDs of both maize and Arabidopsis were very similar,

indicating that the amino acid residues in this domain are highly

conserved across plant MYB genes. Nevertheless, 15 out of the 108

(about 14%) positions differed between these 2 species (Fig. S1).

However, the difference was not significant, and it was generally

a transpose of the residues at the same site, based on the

percentage (Fig. S1). For instance, more ZmMYBs have a Val-31

(A) residue and Ile-31 (S) residue in the R2 repeat of the MYB

DBD. By contrast, in Arabidopsis, the first two common residues at

the same position were Ile-31 (S) and Val-31 (A), respectively. Our

findings indicate that such sites in the DBD domain may have

limited variability among certain residues.

Moreover, it has been demonstrated that some substitutions in

the MYB DBD have a dramatic effect on the DNA-binding

activity of MYB proteins [5,23,24]. For example, Cys-41 in the R2

repeat was highly conserved in typical R2R3-MYB DBD during

evolution (Fig. 1), which was demonstrated to be essential for the

DNA-binding activity of a maize R2R3-MYB gene, P1 [35].

Surprisingly, up to 33% (52 out of 157) of the ZmMYBs had

a substitution at Cys-41, which may also effect the functions of

corresponding ZmMYBs, as well. In addition, it was further

reported that substitution of residues within the linker region led to

reduced stability of protein–DNA complexes, and even loss of

DNA-binding ability [35,36]. Surprisingly, in our study,

5 ZmMYBs have a substitution at Pro-55 (P) by Ala (A) in the

linker region, and are consequently predicted to affect the binding

ability.

Structure, Protein Domain Relationships, and Evolution
of Maize MYB Family Genes
Phylogenetic analysis of the ZmMYB gene family showed that

the genes in the same subgroups or subclades generally contained

the same intron pattern (Fig. 2, B), with the position(s) of the

intron(s) being fully conserved. Moreover, the number of introns

in the MYB DBDs appeared to be limited; among the 157

Figure 4. Chromosomal locations, region duplication, and predicted cluster for maize R2R3-MYB genes. The chromosomal position of
each ZmMYB was mapped according to the maize genome. The chromosome number is indicated at the top of each chromosome. The number
below indicates the number of ZmMYBs in each chromosome. The scale is in mega bases (Mb). The colored boxes indicate groups of predicted gene
cluster with paralogous and syntenic genes on the chromosomes. The colored bars with numbers on the chromosomes indicate the 8 predicted
duplication regions.
doi:10.1371/journal.pone.0037463.g004
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typical ZmMYBs, a majority of ZmMYBs (97%) had no more

than 2 introns. These results validate our classification of

ZmMYBs, and indicate that the intron patterns and their

corresponding splicing phases are not random, but highly

conserved. Introns would be inserted or excised from the MYB

coding region in a subfamily-specific manner, suggesting that the

introns have been specifically inserted into plants and retained in

the genome, during the evolution. In addition, we observed an

excess of phase 1 and 2 introns, and of assymmetric exons within

the MYB DBD, which may facilitate alternative splicing (AS)

[37,38], such as exon shuffling and intron retain events [39,40].

Corresponding, we detected AS event (2–6 events) in 23 of the

157 typical ZmMYBs, resulting in a variety of transcripts from

a single gene (Table S1).

Most plant MYB proteins are composed of a set of conserved

motifs in the C-terminal and the protein architectures are

remarkably conserved within specific subgroups. Members of the

same subgroups generally shared 1 or more identical motifs

outside the MYB DBD. The schemes of protein motifs of

individual members of the MYB gene family indicated structural

similarities within subgroups, further supporting the subgroup

definition in phylogenetic analysis. This also may indicate that the

highly conserved protein motifs are protein domain combinations,

often lineage-specific. Although most of these conserved motifs

remain to be functional elucidated, it is likely that some play

important roles in the transcriptional regulation of target genes

and may promote further functional diversification in specific

lineages.

In general, multiple members of a specific gene family are

believed to result from the long evolutionary history of

a particular organism. The individual members of a gene family

reflect a succession of genomic rearrangements and expansions,

caused by extensive duplication and diversification during the

course of evolution [13]. In the present study, we observed that

large-scale segmental duplication and tandem duplication events

were logically the contributors to the expansion of the MYB gene

family in maize, following their divergence. Interestingly, the

DBDs between ZmMYB148/ZmMYB149, ZmMYB015/

ZmMYB042, and ZmMYB140/ZmMYB141 were completely

identical. Excepting for a few differences in the C-terminal, their

corresponding whole sequences were also very similar (.90%).

Thus, it is inferred that new gene initially resulted from the

duplication, and thereafter from a series of synonymous and/or

non-synonymous mutations in the whole sequence (especially in

the MYB DBD), to perform new functions. In addition, the

presence of 3 tandem arrays of ZmMYB006/ZmMYB011;

ZmMYB046/ZmMYB048/ZmMYB057; and ZmMYB148/

ZmMYB149 (located on the recently duplicated segmental

chromosome in chromosomes 1, 3, and 10, respectively) suggests

tandem duplication of the ancestor of these genes posterior to the

most recent segmental duplication (Fig. 4).

Phylogenic Relationship and Functions of Maize MYB
Family Genes
R2R3-MYB transcription factors play important roles in the

regulation of secondary metabolism, the control of cell shape, the

response to various stress conditions, and hormone responses in

higher plants. In spite of their large number and significance, very

few of these genes have been functionally characterized in

monocots, such as maize. In general, the orthologs clustered in

a subgroup or subclade (functional clade) shared similar gene

architecture structure and functions, indicating recent common

evolutionary origins. In other words, knowledge of the functions of

certain members should facilitate the confirmation of paralogous

and orthologous functional relationships. Phylogenetic compara-

tive analysis of R2R3-MYBs in different plant species revealed

considerable diversification and conservation of the MYB gene

family in plant. The major groups/subgroups contained members

of orthologous genes belonging to maize, Arabidopsis, and/or other

plant species, suggesting that the appearance of many of these

genes predates monocot/eudicot divergence. However, species-

specific groups/subgroups also existed which were evolved or lost

during expansion of the MYB gene family, resulting in functional

divergence. Though the roles of most ZmMYBs remain to be

elucidated, it is likely that members of a given group/subgroup

may have recent common evolutionary origins and also a con-

served function.

According to our analysis, most ZmMYBs are clustered with

orthologs of plant R2R3-MYBs in different subgroups (Fig. 5 and

Fig. S4), suggesting the functional conservation of plant MYBs.

Many outstanding examples of functional conservation are

demonstrated in our analysis. For example, subgroup G7 consists

of 10 plant MYBs, including 4 ZmMYBs p1, p2, MYB-IF25, and

MYB-IF35, implicated in the control of flavonol biosynthesis [16–

18,41–46]. Subgroup G5 clusters 6 MYBs from different species

involved in the control anthocyanin biosynthesis [7,47–51]. In

accordance with the expression profile analysis, the two maize

counterparts (ZmMYB134/C1 and ZmMYB104/PL) in this sub-

group showed preferential expression within the flower (Fig. 2, C).

While in subgroup G4, members of AtMYB4, AtMYB32, EgMYB1,

TaMYB4, PhMYB4, ZmMYB028/Zm31, and ZmMYB073/Zm42

are associated with negatively regulation of phenylpropanoid

biosynthesis; for example, AtMYB4 acts as a negative regulator of

sinapate ester biosynthesis through regulating the expression of the

gene encoding cinnamate 4-hydroxylase (C4H), whereas

ZmMYB31 and ZmMYB42 repress lignin biosynthesis by down-

regulating caffeic acid O-methyl-transferase (COMT) gene expres-

sion [19,52–57]. Moreover, all of these genes possess the C2

motifs, known to participate in repression of phenylpropanoid

biosynthesis, further supporting the hypothesis of structure and

function similarity of MYB genes.

Plant MYB transcription factors are also well known to play

a key role in the control of plant development. Subgroup G34

consists of 5 RS2/AS1/PHAN orthologs (including ZmMYB021/

RS2) involved in organ development by repressing expression of

the KNOX genes that are required for normal initiation and

Figure 5. Phylogenetic tree of the R2R3-MYB proteins from maize (Zm), Arabidopsis (At), and other plant species. The neighbor-joining
tree includes 158 R2R3-MYB proteins from maize, 126 R2R3-MYB proteins from Arabidopsis, and a further 52 R2R3-MYB proteins from other plant
species. The proteins are clustered into 37 subgroups (triangles), designated with a subgroup number (e.g., G1). Subfamilies are represented as
collapsed triangles, with depth and width proportional to sequence divergence and size, respectively. The black triangles indicate that the subgroup
includes ZmMYBs and AtMYBs; the hatched and white triangles indicate that the subgroup includes or excludes ZmMYBs, respectively. Bootstrap
values,50% are not shown in the phylogenetic tree. Four proteins did not fit well into clusters. The first 25 subgroups were designated as previously
reports of AtMYBs by Stracke et al. (2001) and Dubos et al. (2010). The subgroups were listed in round bracket with annotated functions, for
reference. 12 new subgroups were added because of the increased data set.
doi:10.1371/journal.pone.0037463.g005
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development of lateral organs (Fig. 5) [58–62]. In subgroup G14,

13 ZmMYBs clustered together with a group of Blind-like MYB

genes that are involved in plant development, such as

axillary meristem regulation, and lateral organ formation, etc

[63–66]. Although no Blind-related genes have been reported in

maize to date, the ZmMYBs clustered in this subgroup share high

sequence similarity with these Blind-related genes, suggesting

a similar functional feature of these ZmMYBs in plant de-

velopment. An interesting question for future research will be to

investigate whether these maize MYB orthologs within this

subgroup have retained the ancestral function or have evolved

new functions.

Another well-known role of plant MYB transcription factors is

controlling the cell fate. For instance, subgroup G9 contains

several plant MIXTA-like genes (Fig. 5). These closely related

MIXTA-like genes are proved to be involved in conical-papillate

petal cell development, petal trichome differentiation and petal

morphogenesis, respectively [67–72]. In addition, excepting the

highly conserved DBD, a conserved sequence motif (AQWE-

SARxxAExRLxRES) exists downstream of the DBD of the

MIXTA-like MYB proteins [70]. 4 ZmMYBs (ZmMYB009,

ZmMYB025, ZmMYB068, and ZmMYB077), also grouping within

this subgroup, have been shown to possess the same motif (Fig. 6).

This finding strongly supports a similar role for these orthologs in

cell fate in maize.

GAMYB or GAMYB-like genes encode a highly conserved

subgroup of R2R3-MYB proteins that have been implicated in

GA signal transduction [72–77]. In our phylogenetic tree,

6 ZmMYBs together with barley (Hordeum vulgare) GAMYB, rice

GAMYB, tomato GAMYB, Lolium temulentum GAMYB and 7

Arabidopsis GAMYB-like genes were clustered in subgroup G18

(Fig. 5). The expressions of these genes were all previously

demonstrated to be consistent with their roles in GA-mediated

processes [78–82]. Moreover, it was further suggested that GAMYB

gene contains a unique intron located at the 39 end of its ORF.

Interestingly, the 6 ZmMYBs included in this subgroup also have

an intron at their C-terminal, implying that they belong to

a distinct clade within the MYB transcription factor family (data

not show). Furthermore, GAMYB was indicated to be negatively

regulated by the microRNA (miRNA) family member, miR159

[75,82–84]. Based on recently available genome-wide character-

ization of microRNA genes in maize [85], we revealed that 3 of

these 6 maize GAMYB-like genes (ZmMYB049, ZmMYB080, and

ZmMYB119) were predicted to be the target genes of maize

miR159, based on similarities. Interestingly, the targets of miR159

in plant MYB gene family were limited to the GAMYB-like genes

to date [76,83]. However, our results indicate that, excepting

miR159, miR319 may be also implicated in regulating 2 maize

GAMYB-like genes (ZmMYB049 and ZmMYB119) in this sub-

group. In addition, miR828 and miR858 have been confirmed to

target several R2R3-MYBs in Arabidopsis as well [86]. In our study,

we did not found any ZmMYB as the target of miR828 or

miR858, but we revealed that miR160 and miR159 may target 8

additional ZmMYBs (ZmMYB004, ZmMYB054, ZmMYB101,

ZmMYB103, ZmMYB119, ZmMYB122, ZmMYB140, and

ZmMYB155). Because of these genes were clustered in 4 different

subgroups (Fig. S4), it is indicated that microRNA may be

extensively involved in regulating the expressions of MYB genes.

Our findings suggested the roles of these miRNAs in post-

transcriptional regulation and transcription networks, and provide

a valuable framework for further elucidation of miRNA functions

in the MYB gene family.

In general, the C-terminal regions of MYB proteins often

possess protein–protein interaction domain. To date, the in-

teraction of R2R3-MYB protein, basic helix-loop-helix (bHLH)

transcription factor and WD40 protein has been well studies

[7,87,88]. The interaction of MYB protein and bHLH protein was

firstly reported in two of maize MYB proteins C1 and Pl [7].

Subsequently, in Arabidopsis, up to 13 R2R3-MYB proteins

(including AtMYB3, AtMYB4, AtMYB5, AtMYB7, AtMYB0/

GL1, AtMYB23, AtMYB32, AtMYB66/WER, AtMYB75/PAP1,

AtMYB90/PAP2, AtMYB113, AtMYB114 and AtMYB123/

TT2) were also implicated in interaction with bHLH proteins

and a WD40 repeat protein, TTG1[47,89–93]. It was further

reported that 6 highly conserved amino acid included in a motif

([DE]Lx2[RK]x3Lx6Lx3R; Fig. 1) in the first two helixes of R3

repeat were necessary for the interaction with bHLH protein

[87,94]. Interestingly, these 6 residues are also found in

8 ZmMYBs that were clustered the same subgroups (G4, G5

and G28, Fig. 1 and Fig. S4), strongly suggests the function

similarity of them. These results showed that the combinatorial

regulation mechanism may involve in many plant biological

processes, including the anthocyanin biosynthesis [48,53],

proanthocyanidin and synapate ester biosynthesis [47,49,52], as

well as trichome and root hair patterning [90] etc.

In total, 9 out of the 37 MYB subgroups lack any functionally

characterized members. The existing knowledge of the functions of

the R2R3-MYB gene family in plants is summarized in Table S3.

This data will facilitate the characterization of each subgroup of

the maize MYB gene family.

Figure 6. A putative motif conserved in group G9 proteins. Black and gray shading indicate the presence of identical and conserved amino
acid residues, respectively, in .75% of the aligned sequences. Consensus amino acid residues are shown below the alignment. The ‘‘x’’ indicates no
conservation at this position.
doi:10.1371/journal.pone.0037463.g006
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Methods

Identification of MYB Protein in Maize
To identify maize genes encoding MYB proteins with at least 1

possible DBD, we performed a BLASTP search (http://www.

phytozome.net/search.php) at the Joint Genome Institute (JGI)

(http://www.phytozome.net/cgi-bin/gbrowse/maize/), and/or

the MaizeSequence (http://www.maizesequence.org/index.html)

genome database, using the amino acid sequences of the known

maize R2R3-MYB DBDs (about 108 amino acids) as queries. To

verify the reliability of our results, the functional and structural

domains were predicted by PROSITE profiling (http://www.

expasy.org/tools/scanprosite/) [95] and SMART analysis (http://

smart.embl-heidelberg.de/) [96], respectively.

In addition, the sequences of 126 Arabidopsis R2R3-MYB proteins

[4] were downloaded from the TAIR Arabidopsis genome (http://

www.arabidopsis.org/). The predicted proteins of 52 well-known

plantR2R3-MYBgeneswere collected from theNationalCenter for

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/

).

Sequence Analysis
Toanalyze thesequencefeaturesof the157typical identifiedmaize

R2R3-MYB proteins, we performed multiple alignment analyses of

the MYB DBDs by ClustalW (www.ebi.ac.uk/clustalw/) [97]. In

order to obtain optimized alignment, the deduced amino acid

sequences were adjustedmanually using BioEdit (version 7.0.0) with

the default parameters (Pittsburgh Supercomputing Center; http://

www.psc.edu/biomed/genedoc/) [98].

The intron pattern represents an independent criterion to

support subgroup designations of phylogenetic analysis. Therefore,

we analyzed the intron pattern (including the distribution,

position, and phases) of the maize R2R3-MYB encoding genes.

Based on the results of BLASTP searches in the maize genome

database, we obtained the information on cDNA sequences,

genomic sequences, intron distribution pattern, and phases and

intron/exon boundaries of the genes. We also obtained in-

formation on the chromosome locations of each gene from the

results of BLASTP at MaizeSequence.

In order to identify potential protein motifs outside the maize

R2R3-MYB DBDs, we used the MEME version 3.5.7 tool [99],

with the following parameter settings: the distribution of motifs,

0 or 1 per sequence; maximum number of motifs to find, 100;

minimum width of motif, 6; maximum width of motif, 300; and

the motif must be present in all members within the same

subgroup. In addition, only motifs with an e-value #1e–10 were

kept for further analysis. Subsequently, the MAST program was

used to search detected motifs in protein databases [100].

Construction of the Phylogenetic Trees
In order to obtain clues about the evolutionary history of the

R2R3-MYB gene family in maize, we constructed a neighbor-

joining (NJ) tree, based on the multiple sequence alignment of all

predicted maize MYB DBDs, using MEGA version 4.0. For

statistical reliability, we conducted bootstrap analysis with 1000

replicates. To test the reliability of the result, we performed

maximum likelihood (ML) analysis of the MYB DBDs, using the

software PhyML (http://atgc.lirmm.fr/phyml/) [101], as well as

a NJ analysis of whole ZmMYB protein sequences by MEGA4.0.

To compare the evolutionary relationship of different plantMYB

genes, we further constructed a phylogenetic tree of the

158 ZmMYBs, 126 AtMYBs, and 52 well-known R2R3-MYB

proteins, using the NJ method of MEGA, with the following

parameters: Poisson correction; pairwise deletion; and bootstrap

(1000 replicates). To validate the results from theNJmethod, we also

constructed a maximum likelihood (ML) tree using the software

PhyML with bootstrap of 1000 replicates. Tree files were viewed

using FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).

Expression Analysis of R2R3-MYB Gene Family in Maize
Using reverse transcription (RT)-PCR analysis, we analyzed the

expression information of the 157 typical ZmMYBs. All gene-

specific primers were designed to avoid the conserved region

(based on the C-terminal regions of ZmMYB sequences),

amplifying products of 100–400 bp long. The specific primer for

the maize actin gene was used as an internal control (310 bp). The

detailed PCR primer sequences are shown in Table S4.

RNA of roots, stems, leaves, and flowers of maize cultivar

Chuandan 13 was isolated from plants with 8–10 cm inflor-

escences. The corresponding plant tissues of maize were harvested

and ground in liquid nitrogen. Total RNA was extracted using

Trizol reagent (Invitrogen, Germany), according to the manufac-

turer’s instructions, and treated with DNase I (Promega, USA).

First-strand synthesis of cDNA was performed using an oligo (dT)

primer and M-MuLV RT kit (Takara Biotechnology, Japan) (2 mg
of total RNA was used for RT in a 20-ml reaction volume). Each

PCR pattern was independently verified in at least 3 replicate

experiments performed under identical conditions. PCR products

were fractionated on 1% agarose gels containing ethidium

bromide, and photographed under UV light. To confirm the

validity of RT-PCR, approximately 10 samples were randomly

selected for sequencing (data not shown).
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19. Fornalé S, Sonbol FM, Maes T, Capellades M, Puigdomènech P, et al. (2006)

Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-

transferase genes by two new maize R2R3-MYB transcription factors. Plant
Mol Biol 62:809–823.

20. Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU,
et al. (2003) Maize genome sequencing by methylation filtration. Science

302:2115–2117.

21. Martienssen RA, Rabinowicz PD, O’Shaughnessy A, McCombie WR (2004)
Sequencing the maize genome. Curr Opin Plant Biol 7:102–107.

22. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. (2009) The B73 maize

genome: complexity, diversity, and dynamics. Science 326:1112–1115.

23. Hegvold AB, Gabrielsen OS (1996) The importance of the linker connecting

the repeats of the c-Myb oncoprotein may be due to a positioning function.

Nucleic Acids Res 24:3990–3995.

24. Van Aalten DM, Grotewold E, Joshua-Tor L (1998) Essential dynamics from

NMR clusters: dynamic properties of the Myb DNA-binding domain and
a hinge-bending enhancing variant. Methods 14:318–328.

25. Williams CE, Grotewold E (1997) Differences between plant and animal Myb

domains are fundamental for DNA binding activity, and chimeric Myb
domains have novel DNA binding specificities. J Biol Chem 272:563–571.

26. Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI (2007) The
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