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For the assessment of the left ventricle (LV), echocardiography has beenwidely used to visualize and quantify geometrical variations
of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow
pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem
for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes
equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or
measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of
the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model
in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed
flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic
swirling patterns inside the LV over a cardiac cycle.

1. Introduction

Vortex flow imaging has recently attracted much attention
owing to a strong correlation between intraventricular flow
pattern and heart function [1–3]. Possible clinical indices
of cardiac functions can be obtained by characterizing and
quantifying the vorticity of intraventricular blood flow.There
are several studies to compute and quantify the blood
flow pattern inside the left ventricle (LV) by using ultra-
sound imaging scanner. Echo particle image velocimetry
(E-PIV) is representative of the commonly used method
[4, 5], which tracks the speckle pattern of blood flow.
However, the E-PIV is hardly a complete noninvasivemethod
because it requires the intravenous injection of contrast
agent.

As an alternative approach to reconstruct the velocity
of blood flow, color flow ultrasound-based techniques have
been proposed. Color flow ultrasound is also called C-mode
images, color Doppler images, color Doppler data, or color

Doppler ultrasound. Color flow images reflect the velocity
components projected on the direction of ultrasound beam
propagation [6].They are represented as the colors of red and
blue in a region of interest (ROI) box overlapped on echo
images. In general, red and blue colors indicate the velocity
components coming toward and receding from scanning
probe, respectively. Among the color flow ultrasound-based
techniques, one method is to reconstruct blood flow by using
the assumption of 2D divergence-free blood flow [7, 8]. It
decomposes each 2D velocity vectors into radial component
obtained from color flow data and unknown angular compo-
nent and computes the unknown component of blood flow
velocity under the 2D divergence-free condition. However,
it has limitation of oversimplification that ignores out-of-
plane flows. Another method is to use the beams of multiple
directions of colorDoppler ultrasound. It reconstructs the 2D
or 3D velocities of blood flow by using color Doppler data
acquired from the beams in two or three different directions
[9, 10]. However, the registration of multiple imaging planes
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Figure 1: Overall framework for LV blood flow reconstructions based on echocardiographic images.

by the multiple directional beams is a very challenging issue
in practical environment. Recently, we proposed a 2D incom-
pressible Navier-Stokesmodel to reconstruct intraventricular
flows using color Doppler data and LV boundaries extracted
from echocardiography data [11]. The model was designed to
cope with out-of-plane blood flows for the imaging plane by
introducing a mass source term of a source-sink distribution.
Although the 2Dmodel seemed to preserve the global kinetic
energy and vortex strength during cardiac cycle, the predicted
velocity and vorticity fields indicated that the model did not
precisely capture the location and shape of dynamic vortex
patterns.

In this paper, we propose a mathematical framework
in Figure 1 for reconstructing the blood flow in LV using
3D echocardiographic images and the color Doppler inten-
sity data. The framework includes a formulation of inverse
problem for undetermined velocity and pressure fields, LV
boundary tracking, and a forward simulation procedure to
generate synthetic flow data. Under the assumption that the
high frame-rate acquisition of 3D echocardiographic data
is available in the whole LV region, the color Doppler data
is directly embedded in the incompressible Navier-Stokes
equations, along with 3D LV boundary reconstruction. An
interpolation technique using multiple planar LV contours
extracted from the echocardiographic images is applied to
obtain the boundary conditions on the 3D LV boundaries.
We perform the forward simulation with the LV boundary
data from real intensity images. Based on the simulation
results, one-directional velocity component of the flow data
is obtained for synthetic color Doppler data. Using the
synthetic data, intracardiac blood flows inside LV are recon-
structed by solving the inverse model. Finally, we demon-
strate the robustness of the proposed model in visualizing
time-dependent vortex patterns over one cardiac cycle and
quantifying local and global errors for the reconstructed flow
fields.
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Figure 2: Description of 3D LV domain (Ω
𝑡
) and the coordinate

system. The arrows indicate the LV wall movements and flow
directions over the inlet and outlet valves at the diastole and systole
phases.

2. Methods

2.1. Problem Statement. This section describes a mathemati-
cal framework of inverse problem of recovering the velocity
distribution in LV by using color Doppler data. Let k(x, 𝑡)
denote the velocity of blood flow at position x and time 𝑡,
and let Ω

𝑡
be a 3D LV region at time 𝑡, as shown in Figure 2.

Assuming that blood flow is an incompressible Newtonian
fluid, the velocity k is governed by the incompressible
Navier-Stokes equations inside the time-varying LV region
Ω
𝑡
:

𝜕k
𝜕𝑡
+ k ⋅ ∇k = −

1

𝜌
∇𝑝 +

𝜇

𝜌
∇
2k in Ω

𝑡
,

∇ ⋅ k = 0 in Ω
𝑡
,

(1)
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where 𝜌, 𝜇, and 𝑝 are the density, viscosity, and pressure
of the blood, respectively. To determine k in (1) uniquely,
we need to impose proper boundary conditions of LV wall
motion involving the inlet and outlet conditions over the
inlet and outlet valves that are denoted by Γ𝐼 and Γ𝑂
in Figure 2, respectively. Since the velocity k obtained by
solving (1) is sensitive to boundary conditions, it is very
important to extract accurate LV wall motion. However, it is
almost impossible to capture 3D LV wall motion accurately
in practical environment. Therefore, supplementary infor-
mation of k is necessary for computing blood flow relia-
bly.

In this paper, we use the color Doppler data D, as the
additional information of one component of velocity, of the
form

D = a ⋅ k, (2)

where a is the ultrasound beam direction. Based on (1) and
(2), our reconstruction model assimilates velocity compo-
nents with the additional information. Details of the pro-
posed reconstruction model are explained in the following
section.

2.2. ReconstructionModel. We assume that the color Doppler
data provides the first component of velocity (to be precise,
a = [1 0 0]𝑇). Using the inner product of a and themomen-
tum equation in (1) with (2), we have

𝜕

𝜕𝑡
D + (D, V

2
, V
3
) ⋅ ∇D =

𝜇

𝜌
∇
2
D −

1

𝜌

𝜕

𝜕𝑥
𝑝 in Ω

𝑡
,

𝜕

𝜕𝑦
V
2
+
𝜕

𝜕𝑧
V
3
= −

𝜕

𝜕𝑥
D in Ω

𝑡
.

(3)

The above system of equations can be expressed as the
following matrix form:

[
[
[
[

[

𝜕D

𝜕𝑦

𝜕D

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

]
]
]
]

]

[

V
2

V
3

] =

[
[
[
[

[

−
𝜕D

𝜕𝑥
D −

𝜕

𝜕𝑡
D +

𝜇

𝜌
∇
2D

−
𝜕

𝜕𝑥
D

]
]
]
]

]

− [

[

1

𝜌

𝜕

𝜕𝑥
𝑝

0

]

]

in Ω
𝑡
,

(4)

where the relation between 𝑝 and k is given by

1

𝜌
∇
2
𝑝 = −∇ ⋅ (k ⋅ ∇k) in Ω

𝑡
. (5)

Remark 1. According to (4), if it is possible to measure
subsidiary Doppler data D

2
along a direction a

2
̸= a, the

velocity k can be explicitly expressed by

[

V
2

V
3

] =
[
[
[

[

𝜕D

𝜕𝑦

𝜕D

𝜕𝑧

𝜕D
2

𝜕𝑦

𝜕D
2

𝜕𝑧

]
]
]

]

−1

⋅ (
[
[
[

[

−
𝜕D

𝜕𝑥
D −

𝜕

𝜕𝑡
D +

𝜇

𝜌
∇
2D

−
𝜕D
2

𝜕𝑥
D −

𝜕

𝜕𝑡
D
2
+
𝜇

𝜌
∇
2D
2

]
]
]

]

−
1

𝜌

[

[

𝜕

𝜕𝑥
𝑝

a
2
⋅ ∇𝑝

]

]

) .

(6)

Hence, if two pieces of linearly independent Doppler data
are available, then the inverse problem can be simply solved
without the information of LV boundary 𝜕Ω

𝑡
.

To solve the velocity components V
2
and V

3
that satisfy

(4), we consider an iterative procedure as follows: for the 𝑛th
iteration, we find V𝑛+1

2
and V𝑛+1
3

such that

[
[
[

[

𝜕D

𝜕𝑦

𝜕D

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

]
]
]

]

[

V𝑛+1
2

V𝑛+1
3

] =
[
[

[

−
𝜕D

𝜕𝑥
D −

𝜕

𝜕𝑡
D +

𝜇

𝜌
∇
2D

−
𝜕

𝜕𝑥
D

]
]

]

− [

[

1

𝜌

𝜕

𝜕𝑥
𝑝
𝑛+1

0

]

]

in Ω
𝑡
,

(7)

where k𝑛 = (D, V𝑛
2
, V𝑛
3
) and 𝑝𝑛+1 satisfy

1

𝜌
∇
2
𝑝
𝑛+1
= −∇ ⋅ (k𝑛 ⋅ ∇k𝑛) in Ω

𝑡
. (8)

Note that proper boundary condition is needed to guarantee
the uniqueness of 𝑝𝑛 in (8). To describe boundary conditions
for V𝑛+1
2

, V𝑛+1
3

, and𝑝𝑛+1, we first simplify LVboundary near the
valves by considering linearly connected parts to the valves
in the LV domain. Since it is still challenging to accurately
capture the valve geometry in B-mode images, we focus on
the LV wall motion, while we ignore the motion of valves
in this paper. Then, we impose proper boundary conditions
on the simplified boundary. Considering the simplified LV
domain Ω

𝑡
, the corresponding boundaries near valves and

physical LV wall are defined as Γ𝑢
𝑡
and Γ𝑤

𝑡
= 𝜕Ω



𝑡
\ Γ
𝑢

𝑡
,
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respectively.Thus, the proposed reconstructionmodel can be
rewritten as,

[
[
[

[

𝜕D

𝜕𝑦

𝜕D

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

]
]
]

]

[

V𝑛+1
2

V𝑛+1
3

] =
[
[

[

−
𝜕D

𝜕𝑥
D −

𝜕

𝜕𝑡
D +

𝜇

𝜌
∇
2D

−
𝜕

𝜕𝑥
D

]
]

]

− [

[

1

𝜌

𝜕

𝜕𝑥
𝑝
𝑛+1

0

]

]

in Ω
𝑡
,

(9)

with the boundary conditions

V𝑛+1
2
= Vwall
2
,

V𝑛+1
3
= Vwall
3

on Γ𝑤
𝑡
,

𝜕V𝑛+1
2

𝜕n
= 0,

𝜕V𝑛+1
3

𝜕n
= 0

on Γ𝑢
𝑡
,

(10)

where k𝑛 and 𝑝𝑛+1 satisfy

1

𝜌
∇
2
𝑝
𝑛+1
= −∇ ⋅ (k𝑛 ⋅ ∇k𝑛) in Ω

𝑡
,

𝜕𝑝

𝜕n
= 0 on 𝜕Ω

𝑡
.

(11)

Here, the velocity components Vwall
2

and Vwall
3

are estimated
from LV boundary segmentation. Moreover, the Neumann
boundary condition is imposed to allow the reconstructed
flow to pass through Γ𝑤

𝑡
.

The 3D domain is discretized by 𝑁
𝑥
× 𝑁
𝑦
× 𝑁
𝑧
node

points, where 𝑁
𝑥
, 𝑁
𝑦
, and 𝑁

𝑧
are the numbers of nodes

along 𝑥, 𝑦, and 𝑧 directions, respectively, with uniform grid
size ℎ. we define discrete differential operators based on the
finite difference method as follows: D

𝑥
= I
𝑁
𝑧

⊗ I
𝑁
𝑦

⊗ D
𝑁
𝑥

,
D
𝑦
= I
𝑁
𝑧

⊗ D
𝑁
𝑦

⊗ I
𝑁
𝑥

, D
𝑧
= D
𝑁
𝑧

⊗ I
𝑁
𝑦

⊗ I
𝑁
𝑥

, and L =

(L
𝑁
𝑧

⊗ I
𝑁
𝑦

⊗ I
𝑁
𝑥

) + (I
𝑁
𝑧

⊗ L
𝑁
𝑦

⊗ I
𝑁
𝑥

) + (I
𝑁
𝑧

⊗ I
𝑁
𝑦

⊗ L
𝑁
𝑥

),
where ⊗ is the Kronecker product and

D
𝑛
=

[
[
[
[
[
[
[
[
[

[

0
1

2ℎ

−
1

2ℎ
0

1

2ℎ

d

−
1

2ℎ
0

]
]
]
]
]
]
]
]
]

]𝑛×𝑛

,

L
𝑛
=

[
[
[
[
[
[
[
[
[
[

[

−
2

ℎ2

1

ℎ2

1

ℎ2
−
2

ℎ2

1

ℎ2

d
1

ℎ2
−
2

ℎ2

]
]
]
]
]
]
]
]
]
]

]𝑛×𝑛

,

I
𝑛
=

[
[
[
[
[

[

1 0

0 1 0

d

0 1

]
]
]
]
]

]𝑛×𝑛

.

(12)

Using the above discrete operators, the following dis-
crete system for k𝑛

2
= [V

2(1,1,1)
, . . . , V

2(𝑁
𝑥
,𝑁
𝑦
,𝑁
𝑧
)
]
𝑇, k𝑛
3
=

[V
3(1,1,1)

, . . . , V
3(𝑁
𝑥
,𝑁
𝑦
,𝑁
𝑧
)
]
𝑇, and p𝑛 = [𝑝

(1,1,1)
, . . . , 𝑝

(𝑁
𝑥
,𝑁
𝑦
,𝑁
𝑧
)
]
𝑇

can be derived:

[

C
𝑦

C
𝑧

D
𝑦

D
𝑧

][

k𝑛+1
2

k𝑛+1
3

] = [

[

−diag (C)D
𝑥
C − Ċ + 𝜇

𝜌
LC

−D
𝑥
C

]

]

− [

[

1

𝜌
D
𝑥
p𝑛+1

0

]

]

.

(13)

Here, p𝑛+1 is the solution to

1

𝜌
Lp𝑛+1 = − [D𝑥 D

𝑦
D
𝑧] [I3

⊗ (diag (D)D
𝑥
+ diag (k𝑛

2
)D
𝑦
+ diag (k𝑛

3
)D
𝑧
)]

⋅
[
[

[

D
k𝑛
2

k𝑛
3

]
]

]

,

(14)

where C = [D
(1,1,1)

, . . . ,D
(𝑁
𝑥
,𝑁
𝑦
,𝑁
𝑧
)
]
𝑇, Ċ = [(𝜕D/𝜕𝑡)

(1,1,1)
,

. . . , (𝜕D/𝜕𝑡)
(𝑁
𝑥
,𝑁
𝑦
,𝑁
𝑧
)
]
𝑇, C
𝑦

= diag([(𝜕D/𝜕𝑦)
(1,1,1)

, . . .,
(𝜕D/𝜕𝑦)

(𝑁
𝑥
,𝑁
𝑦
,𝑁
𝑧
)
]), and C

𝑧
= diag([(𝜕D/𝜕𝑧)

(1,1,1)
, . . .,

(𝜕D/𝜕𝑧)
(𝑁
𝑥
,𝑁
𝑦
,𝑁
𝑧
)
]). Note that diagonal entries of C

𝑦
and C

𝑧

in (13) are the derivatives of measured data D. Since the
linear system in (13)may not be diagonally dominant and lead
to severe numerical instability, we consider a minimization
problem for k𝑛+1 = [k𝑛+1

2
, k𝑛+1
3
]
𝑇 with a regularization term as

follows:

min
k𝑛+1

Sk𝑛+1 − f𝑛+1

2

2
+ 𝜆
2 
k𝑛+1 − k𝑛



2

L
, (15)
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where 𝜆 is the regularization parameter and

S = [
C
𝑦

C
𝑧

D
𝑦

D
𝑧

] ,

f𝑛+1 = [
[

− diag (C)D
𝑥
C − Ċ + 𝜇

𝜌
LC

−D
𝑥
C

]

]

− [

[

1

𝜌
D
𝑥
p𝑛+1

0

]

]

.

(16)

The first term in (15) is a penalty termwhichmakes a solution
satisfy the proposed reconstruction model, while the second
term mitigates the ill-posedness of the diagonal matrices C

𝑦

and C
𝑧
. The minimizer of (15) is given by

k𝑛+1 = k𝑛 + (S𝑇S + 𝜆2I
2𝑁
)
−1

(S
𝑇
(f𝑛+1 − Sk𝑛)) , (17)

where𝑁 = 𝑁
𝑥
×𝑁
𝑦
×𝑁
𝑧
. During the iterative procedure, we

used a stopping criterion as


k𝑛+1 − k𝑛

2

‖k𝑛‖
2

< 10
−2
. (18)

2.3. Initial Guess. For better convergence in solving the
minimization problem in (15), we determine a proper initial
guess k0. For vorticity 𝜔 fl ∇ × k, we assume that projection
of the vorticity in a direction d parallel to the imaging plane
passing through two valves is negligible:

d ⋅ 𝜔 ≈ 0. (19)

For computational simplicity, the third component of d is set
to zero:

d = (𝑑
1
, 𝑑
2
, 0) . (20)

Here, 𝑑
1
and 𝑑

2
are determined by the Doppler data D and

divergence-free condition. From (19) and (20), we have

0 ≈ (𝑑
1
, 𝑑
2
, 0) ⋅ 𝜔

= 𝑑
1
(
𝜕

𝜕𝑦
V
3
−
𝜕

𝜕𝑧
V
2
) − 𝑑
2
(
𝜕

𝜕𝑥
V
3
−
𝜕

𝜕𝑧
V
1
)

= −𝑑
1

𝜕

𝜕𝑧
V
2
+ 𝑑
1

𝜕

𝜕𝑦
V
3
− 𝑑
2

𝜕

𝜕𝑥
V
3
+ 𝑑
2

𝜕

𝜕𝑧
V
1
.

(21)

Substituting V
1
= D in (21) yields

−𝑑
1

𝜕

𝜕𝑧
V
2
+ (𝑑
1

𝜕

𝜕𝑦
− 𝑑
2

𝜕

𝜕𝑥
) V
3
≈ −𝑑
2

𝜕

𝜕𝑧
D. (22)

We consider two combinations of 𝑦 and 𝑧 directional
derivatives of (22) and the second equation of (3)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(∗)

such that

−𝜕/𝜕𝑧(22) + 𝑑
1
(𝜕/𝜕𝑦)(∗) and 𝜕/𝜕𝑦(22) + 𝑑

1
(𝜕/𝜕𝑧)(∗). Then,

we have the following two equations:

𝑑
1
∇
2

𝑦𝑧
V
2
+ 𝑑
2

𝜕
2

𝜕𝑧𝜕𝑥
V
3
= (𝑑
2

𝜕
2

𝜕𝑧2
−
𝜕
2

𝜕𝑥𝜕𝑦
)D,

(𝑑
1
∇
2

𝑦𝑧
− 𝑑
2

𝜕
2

𝜕𝑥𝜕𝑦
) V
3
= (−𝑑

2

𝜕
2

𝜕𝑦𝜕𝑧
− 𝑑
1

𝜕
2

𝜕𝑧𝜕𝑥
)D,

(23)

with boundary conditions

V𝑛+1
2
= Vwall
2
,

V𝑛+1
3
= Vwall
3

on Γ𝑤
𝑡
,

𝜕V𝑛+1
2

𝜕n
= 0,

𝜕V𝑛+1
3

𝜕n
= 0

on Γ𝑢
𝑡
.

(24)

Using the discrete operators in Section 2.2, we obtain the
following linear system:

[

𝑑
1
L
𝑦𝑧

−𝑑
2
D
𝑧
D
𝑥

O 𝑑
1
L
𝑦𝑧
+ 𝑑
2
D
𝑥
D
𝑦

][

k0
2

k0
3

]

= [

[

(−𝑑
2
L
𝑧
− D
𝑥
D
𝑦
)D

(𝑑
2
D
𝑦
D
𝑧
− 𝑑
1
D
𝑧
D
𝑥
)D
]

]

,

(25)

whereL
𝑦𝑧
= (L
𝑁
𝑧

⊗I
𝑁
𝑦

⊗I
𝑁
𝑥

)+(I
𝑁
𝑧

⊗L
𝑁
𝑦

⊗I
𝑁
𝑥

) andL
𝑥
= I
𝑁
𝑧

⊗

I
𝑁
𝑦

⊗ L
𝑁
𝑥

. Therefore, we obtain the initial guess k0 = (V0
2
, V0
3
)

by solving (25).

2.4. Estimation of Boundary Condition: LV Contour Segmen-
tation. The proposed reconstruction model in (9) requires
time-dependent boundary conditions defined in (10). In
this study, for the 3D velocity boundary conditions on the
LV wall, time-varying LV boundaries are tracked and local
displacements of the LV wall are estimated. Similar to the
LV boundary tracking in 3D echocardiographic data [12], we
generate 3D LV surface by interpolating planar LV contours
tracked on multiple 2D echocardiographic imaging planes,
where each 2D LV contour is tracked by LV boundary track-
ing method on each imaging plane. Among various 2D LV
tracking methods, we use the LV tracking method combined
with the Lucas-Kanade method and a constraint formulated
by the global deformation of nonrigid heartmotion proposed
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in [13]: for each 𝑖th tracking point x
𝑖
(𝑡) = (𝑥

𝑖
(𝑡), 𝑦
𝑖
(𝑡)), we

estimate its velocity k
𝑖
= 𝑑x
𝑖
/𝑑𝑡 by minimizing

F
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1
, . . . , k

𝑛
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(26)

where x
(𝑖,1)
, . . . , x

(𝑖,1)
are neighborhood pixels of x

𝑖
and �̃� is

the regularization parameter and

X =
[
[
[
[

[

x
1
(0)
𝑇
1

.

.

.

x
𝑛
(0)
𝑇
1

]
]
]
]

]

. (27)

The first term in (26) represents local motions corresponding
to the movements of speckle pattern in B-mode image based
on Lucas-Kanade method, while the velocity k

𝑖
is regularized

by the second term. From x
𝑖
(𝑡), for 𝑖 = 1, 2, . . . , 𝑁, 2D LV

contour Γ(𝑡) fl {(𝑥(𝑡, 𝑠), 𝑦(𝑡, 𝑠)) : 0 < 𝑠 < 1} at time 𝑡 is
interpolated so that

(𝑥 (𝑡, 𝑠
𝑖
) , 𝑦 (𝑡, 𝑠

𝑖
)) = x

𝑖
(𝑡) (28)

for 0 = 𝑠
1
< 𝑠
2
< ⋅ ⋅ ⋅ < 𝑠

𝑁
= 1.

2.5. Setting for Forward Simulation. For the forward simu-
lation, we use a series of real 3D LV volume data, acquired
by a Siemens ACUSON SC2000 imaging system with a
4Z1c probe. The acquisition conditions are given by the
transmitting center frequency 2.8MHz, themechanical index
0.92, and the thermal index 0.46. The dataset consists of 10
frames within the whole cardiac cycle. The multiple slices are
set to sagittal and coronal planes, as shown in Figure 3, and
we apply a 2D LV contour tracking method independently of
the sagittal and coronal planes. Although ultrasound images
including echo and color flow Doppler are obtained from
real-time measurements, the scanning time for ultrasound
images is bounded below due to dependence on the sound
speed. Lately, the development of ultrafast imaging system is
ongoing in some research groups. Such a system is expected
to have a frame-rate higher than 1,000 fps (for echo images)

Figure 3: Multiple views of 3D cardiac volume images. The left
column shows coronal, sagittal, and axial views in order, and right
column represents an image for 3D volume rendering.

Plane A

Plane B
Aorta valve

Mitral valve
0.07 m

0.08 m

0.05 m

0.031 m

0.02 m
0.018 m

Figure 4: LV model for numerical experiments. The model was
reconstructed from ultrasound images.

using plane wave beam-forming techniques. Unfortunately,
we do not have such an imaging system yet but have real 3D
echocardiography data.

Figure 4 illustrates 3D LV surface reconstructed by sim-
plifying valve geometry into the pipe-type structure and
integrating the LV contours tracked on the two orthogonal
imaging planes A and B, which correspond to the coronal and
sagittal planes in Figure 3, respectively. In the 3D LV model,
the lengths of two pipes corresponding to mitral and aorta
valves are set to be similar to the axial dimension of the LV
so that the pressure 𝑝 is developed well from the end of the
pipes to the interior of LV region.The cross sections ofmitral
and aorta pipes are modeled by elliptical and circular shapes,
respectively.

We use commercial software programs for convenience
in performing numerical simulations of the forward problem.
FreeCAD� is used to integrate the contours into 3D domain
at each frame and COMSOL�Multiphysics is used to import
the reconstructed 3D domains.The volume of the LV domain
and the area of LV wall are then computed at each time
step. We denote the variations of volume and area by 𝑉(𝑡)
and 𝐴(𝑡), respectively. Here, we consider 𝑑𝑉(𝑡)/𝑑𝑡/𝐴(𝑡) as
an average speed V at all surface points of the reconstructed
LV. The fluid-structure interaction (FSI) model in COMSOL
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Figure 5: Synthetic intraventricular velocity fields and out-of-plane vorticity component on imaging planes A and B in the first and second
rows, respectively, along with volume curves in the third row. On each volume curve, a red dot indicates the corresponding phase for the
velocity fields and vorticity contours.

Multiphysics is used to solve (1), assuming that the nodes of
the LV boundarymove along the outward normal direction n
with the average speed at each time step. The corresponding
velocity k at the nodes of the LV boundary are defined as

k = Vn on 𝜕Ω \ (Γ𝐼 ∪ Γ𝑂) . (29)

The Neumann boundary condition for pressure is applied at
the nodes:

𝜕𝑝

𝜕n
= 0 on 𝜕Ω \ (Γ𝐼 ∪ Γ𝑂) . (30)

Since the aorta valve is closed but the mitral valve remains
open during the diastole phase, we consider that no viscous
stress conditions for k with constant pressure are applied at
the inlet valve Γ𝐼, while zero-velocity conditions are applied
at the outlet valve Γ𝑂:

k = 0 on Γ𝑂,

n ⋅ (∇k + ∇k𝑇) = 0,

𝑝 = 𝑐
1

on Γ𝐼.

(31)

During the systole phase, the boundary conditions in (31) are
imposed in the opposite way:

k = 0 on Γ𝐼,

n ⋅ (∇k + ∇k𝑇) = 0,

𝑝 = 𝑐
2

on Γ𝑂.

(32)

In this study, we set 𝜌 = 1050 kg/m3 and 𝜇 = 0.00316Pa⋅s for
the density and viscosity of the blood flow, respectively [14].
Stroke volume is about 70mL, heart rate is 60 perminute [15],
and ratio of the diastole to one cardiac cycle is set to 0.6 [16].

3. Results and Discussion

3.1. Forward Simulation of Blood Flow in LV. We perform
the forward numerical simulation using the FSI model in
COMSOL Multiphysics in order to obtain 3D synthetic
flow data inside the moving LV domain. Figure 5 shows
synthetic intraventricular velocity and out-of-plane vorticity
fields on two orthogonal imaging planes. The velocity and
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Figure 6: Error change depending on the regularization parameter
𝜆
2.

vorticity fields on planes A and B are shown in Figures
5(a)–5(d) and Figures 5(e)–5(h), respectively. The velocity
fields are illustrated with velocity vectors, while the colored
contours in Figures 5(a)–5(h) represent the out-of-plane
vorticity fields. Here, warm (such as red) and cool (such as
blue) colors correspond to clockwise and counterclockwise
rotating vortex patterns, respectively. In addition, Figures
5(i)–5(l) indicate the time-varying LV volumes marked by
a red dot at selected time frames in the cardiac cycle. Since
we only consider ten samples from echocardiographic images
over one cardiac cycle, the volume curve does not capture
early and atrial waves. At the early stage of the diastole phase,
Figures 5(a) and 5(e) indicate that two counterclockwise
rotating vortices formed near the inlet. Later, the two vortices
move toward the apex while maintaining their shape, and
the left vortex starts to interact with the lateral LV wall, as
shown in Figures 5(b) and 5(f). Due to the interaction, the left
clockwise rotating vortex disappears in Figures 5(c) and 5(g),
while the counterclockwise rotating vortex occupies the area
near the apex and leads tomaking a larger swirling pattern. In
the systole phase, the counterclockwise rotating vortexmoves
to the right LV wall and the corresponding blood flow heads
toward the outlet valve, as shown in Figures 5(d) and 5(h).

3.2. Reconstruction of Blood Flow in LV. Before proceeding
further, we investigate the errors of the reconstructed velocity
fields that are assessed with respect to the change of 𝜆2 from
10
−7 to 10−1 in order to optimize the regularization parameter

in (15). The reconstruction error is determined based on 𝐿
2
-

norm error between the reconstructed velocity fields k𝑟 and
the forward data k𝑓:

√∑
𝑁
𝑡

𝑡=1

k𝑟 − k𝑓


2

2

√∑
𝑁
𝑡

𝑡=1

k𝑓


2

2

, (33)

where 𝑁
𝑡
is the number of time steps. Figure 6 indicates the

minimum error at 𝜆2 = 10−6, which is used to reconstruct the
blood flow in LV.

Table 1: Comparison of 𝐿
2
-norm errors for the velocity field

recovered by the proposed reconstruction model and synthetic
velocity field. The first and second columns represent normalized
pointwise error of velocity and vorticity in 𝐿

2
, respectively. The

third and fourth columns represent normalized 𝐿
2
-norm in global

energy estimates of velocity and vorticity, respectively. Here, ‖k‖2 =
√∑(V2

1
+ V2
2
+ V2
3
), Δk = k𝑟 − k𝑓, Δ𝑘/𝑘𝑓 = |‖k𝑓‖2 − ‖k

𝑟
‖2|/‖k

𝑓
‖2,

Δ𝜔 = 𝜔
𝑟
− 𝜔
𝑓, and Δ𝑘

𝜔
/𝑘
𝑓

𝜔
= |‖𝜔

𝑓
‖2 − ‖𝜔

𝑟
‖2|/‖𝜔

𝑓
‖2. Note that

the superscripts 𝑓 and 𝑟 denote the forward and reconstructed data,
respectively.

𝑡/𝑇 ‖Δk‖2/‖k
𝑓
‖2 ‖Δ𝜔‖2/‖𝜔

𝑓
‖2 Δ𝑘/𝑘

𝑓
Δ𝑘
𝜔
/𝑘
𝑓

𝜔

0.05 16.7% 62.4% 0.4% 4.1%
0.15 11.8% 20.4% 0.2% 3.0%
0.25 18.7% 29.3% 2.9% 6.2%
0.35 15.9% 26.0% 3.1% 4.8%
0.45 16.8% 27.6% 0.3% 4.5%
0.55 20.9% 30.9% 1.4% 4.9%
0.65 26.8% 38.6% 2.0% 6.7%
0.75 29.9% 45.1% 5.0% 6.9%
0.85 32.2% 50.4% 0.4% 4.1%
0.95 32.2% 48.6% 0.4% 4.1%

We consider one-directional velocity component of the
synthetic flow data from the forward simulation as color
Doppler data. Based on the velocity component, the velocity
fields in LV are reconstructed by solving the minimization
problem in (15). For better convergence, the initial guess k0 is
obtained by solving (25) at each time step. The reconstructed
solution k𝑛 is obtained by repeatedly updating the minimizer
in (17) until the stopping criterion (18) is satisfied. Figure 7
illustrates the performance of the proposed reconstruction
model. During the diastole phase in Figures 7(i)–7(k), the
present reconstruction model clearly captures the counter-
clockwise rotating flow patterns as well as incoming velocity
vector fields heading to the apex, as shown in Figures 7(a)–
7(c) and 7(e)–7(g). Moreover, Figures 7(d) and 7(h) clearly
show the movement of the counterclockwise rotating vortex
to the right LV wall for the systole phase in Figure 7(l). It
is worth noting that the proposed model provides accurate
reconstructions of the blood flow in a strong vortex region,
while the model seems to smooth out small-scale vortex
patterns due to the regularization. The maximummagnitude
of local velocity error is less than 0.16m/s and 0.29m/s
during the diastole and systole phases, respectively. Note that
the maximum speeds in the diastole and the systole cycle
are 0.62m/s and 1.2m/s, respectively. This implies that the
maximum error scaled by the maximum speed in LV is
around 25% during the whole cardiac cycle.

For further quantitative comparison, we investigate
reconstruction errors of the velocity and vorticity fields based
on the local 𝐿

2
-norm errors and the differences in the global

energy estimation, as listed inTable 1.The local velocity errors
are less than 21% during the diastole phase, while the errors
are slightly increased up to 32% during the systole phase.
In the diastole phase except for the early stage, the local
vorticity errors are less than 30%. However, the vorticity
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Figure 7: Reconstructed intraventricular velocity and out-of-plane vorticity fields on imaging planes A and B in the first and second rows,
respectively, along with volume curves in the third row. On each volume curve, a red dot indicates the corresponding phase for the velocity
and vorticity fields.

errors are increased up to 50% in the rest of the cardiac
cycle, because the blood flow in LV exhibits weak vorticity
patterns, relative to the diastole phase. Although the local
reconstruction errors are not ignorable, the differences of the
global energy estimates between the reconstructed flow fields
and reference data are less than 7% both for the velocity and
for vorticity fields. Thus, the pointwise errors at the local
regions may not affect the major features of vortex flows.
Furthermore, compared to the previous 2D reconstruction
model [11], Table 1 confirms that the proposed 3D model
provides better reconstruction performance in terms of local
and global errors of the velocity and vorticity fields.

4. Conclusions

We proposed a mathematical framework involving a recon-
struction model for three-dimensional blood flow inside LV.
This framework consists of the extraction of time-varying
LV boundaries from multiple echocardiographic images, the
forward simulation of the blood flow, and the reconstruc-
tion model that combines 3D incompressible Navier-Stokes
equations with one-direction velocity component from the
synthetic flow data (or color Doppler data) from the forward

simulation (or measurement). Assuming that an ultrasound
imaging device provides color Doppler data in the whole 3D
LV region, we formulated an inverse problem to reconstruct
the blood flows, directly embedding the Doppler data in the
Navier-Stokes equations and incorporatingwith the extracted
LV boundaries. To generate synthetic Doppler data, we
performed the forward simulation of the blood flow using the
FSI model and extracted one-directional velocity component
of the synthetic flow data. The blood flow inside LV was
reconstructed by solving the inverse problem with a proper
initial guess of unknown velocity components. Similar to
the forward simulation, time-evolving vortex patterns over a
cardiac cycle were clearly found in the reconstructed velocity
and vorticity fields obtained from the proposed model.
We also quantified the reconstruction errors based on the
local and global differences between the reconstructed and
synthetic flow data. Compared to the previous reconstruc-
tion model [11], the proposed model significantly improves
the performance of the reconstruction of the blood flow.
Through the numerical simulation, we demonstrated the
feasibility and potential usefulness of the proposed model
in reconstructing the intracardiac blood flows inside the
LV.
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