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Abstract

Long-range chromosomal associations between genomic regions, and their repositioning in the 3D space of the
nucleus, are now considered to be key contributors to the regulation of gene expression and important links have
been highlighted with other genomic features involved in DNA rearrangements. Recent Chromosome Conformation
Capture (3C) measurements performed with high throughput sequencing (Hi-C) and molecular dynamics studies
show that there is a large correlation between colocalization and coregulation of genes, but these important
researches are hampered by the lack of biologists-friendly analysis and visualisation software. Here, we describe
NuChart, an R package that allows the user to annotate and statistically analyse a list of input genes with information
relying on Hi-C data, integrating knowledge about genomic features that are involved in the chromosome spatial
organization. NuChart works directly with sequenced reads to identify the related Hi-C fragments, with the aim of
creating gene-centric neighbourhood graphs on which multi-omics features can be mapped. Predictions about CTCF
binding sites, isochores and cryptic Recombination Signal Sequences are provided directly with the package for
mapping, although other annotation data in bed format can be used (such as methylation profiles and histone
patterns). Gene expression data can be automatically retrieved and processed from the Gene Expression Omnibus
and ArrayExpress repositories to highlight the expression profile of genes in the identified neighbourhood. Moreover,
statistical inferences about the graph structure and correlations between its topology and multi-omics features can be
performed using Exponential-family Random Graph Models. The Hi-C fragment visualisation provided by NuChart
allows the comparisons of cells in different conditions, thus providing the possibility of novel biomarkers identification.
NuChart is compliant with the Bioconductor standard and it is freely available at ftp://fileserver.itb.cnr.it/nuchart
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Introduction

The three-dimensional conformation of chromosomes in the
nucleus is important for many cellular processes related to
gene expression regulation, including DNA accessibility,
epigenetics patterns and chromosome translocations [1,2,3].

In recent years, many experimental techniques have been
developed to study the nuclear organization at an
unprecedented resolution. In particular, the Chromosome
Conformation Capture (3C) technology [4,5] and the
subsequent genomic variants (Chromosome Conformation
Capture on-Chip [6,7] and Chromosome Conformation Capture
Carbon Copy [8,9]) are revealing the correlations between
genome structures and biological processes inside the cell.
The technology relies on the idea that digestion and re-ligation
of fixed chromatin in cells allows the determination of DNA

contact frequencies and therefore insight into chromosome
topology.

The combination of high-throughput sequencing with these
techniques, which is generally called Hi-C, allows the
characterization of long-range chromosomal interactions
genome-wide [10,11,12]. Hi-C gives information about coupled
DNA fragments that are cross-linked together due to spatial
proximity, providing data about the chromosomal arrangement
in the 3D space of the nucleus. If used in combination with
chromatin immunoprecipitation, Hi-C can be employed for
focusing the analysis on contacts formed by particular proteins,
in a technique that is called ChIA-pet [13,14,15,16].

Hi-C is useful to identify active and non-active genome
domains, because chromosomal territories fold distinctively,
interact hierarchically as independent units, and contain
several genes with correlated expression profiles [17,18]. Both
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Hi-C measurements and molecular dynamics studies are
showing a certain degree of colocalization of coregulated
genes [19]. Puzzling this colocalization seems to work well for
certain families of genes while for other it remains more difficult
to achieve. Therefore, it would be important to use all the
available multi-omics information to investigate the
colocalization of functionally related genes. Both methylations
and histone patterns have a large influence in the spatial
organization of the genome in the nucleus, with important
differences according to the cell type. But there is growing
evidence that also CTCF and cohesin proteins act as genome-
wide organizers of chromatin architecture and controls the
organization of developmentally regulated intra and inter
chromosomal contacts [20,21,22]. This is in accord with
experimental Hi-C data, because as demonstrated by Botta
and collaborators, fragments are enriched of CTCF binding
sites [23]. Chromosomal organization and CTCF distribution
are also linked to cancer [24] and nuclear morphology studies
of tumour cells are achieving a lot of interest [25].

The 3D information is relevant also for the generation of the
immunological diversity, which is possible through the V(D)J
recombination mechanism that assembles gene segments into
functional immunoglobulin (Ig) and T-cell receptor (TCR)
genes. This rearrangement is directed by Recombination
Signal Sequences (RSSs), which flank each of the hundreds of
potential donor gene segments. DNA repair activities then re-
join the breaks at two distant cuts to generate functional genes
through chromosomal rearrangements [26]. Errors in V(D)J
recombination, including cleavage of cryptic RSSs outside the
immunoglobulin and T cell receptor loci, are associated with
oncogenic translocations observed in some lymphoid
malignancies [27].

Also isochores, large regions of DNA (greater than 300 Kb)
with high uniformity in guanine (G) and cytosine (C) content,
are probably associated to chromosomal rearrangements
because they show a high correlation with DNA breakpoints
[28]. Notably, it has been shown that the GC-content of
isochores is correlated with many other genomic features: gene
density, replication timing, recombinations, methylation
patterns, and distribution of transposable elements. Thus,
interpreting the mechanism underlying the evolution and spatial
organization of isochores is a major issue in understanding the
organization of genomes [29].

In the last 12 months few software (see Table 1 for a list and
brief description) have appeared that process Hi-C data for
showing inter and intra chromosomal interactions with the
possibility of loading annotations by employing data in bed file
format [30,31,32,33]. Although some studies about the analysis
of long-range interaction networks have been presented
[34,35], current approaches to Hi-C data analysis mostly rely
on the conversion of information into contact maps, which are
matrices of pair wise contact frequencies along the genome.
Also data normalization is performed directly on the contact
maps, with the aim of filtering out biases caused by fragment
length, mappability, and GC-content. Here, we present the R
package NuChart, which provides a systems biology view of
these data with the aim of giving a gene-centric Nuclear Chart
of the genome spatial organization. This is firstly accomplished

by providing a modified method of normalization, which is
adaptive and works directly on Hi-C fragments. Working at
sequence level allows exploiting a systemic view to this kind of
data, because entire pathways can be mapped into nuclear
maps to identify clusters of functionally aggregated genes.

NuChart integrates Hi-C information, describing the
chromosomal neighbourhood, with predicted CTCF binding
sites, isochores, potential cryptic RSSs, and other user-
provided genomic features, such as methylation patterns or
DNase hypersensitive sites, to infer how the nuclear three-
dimensional organization works in controlling gene expression.
Moreover, by exploiting the Exponential-family Random Graph
Models (ERGMs), NuChart analyses the structure of a
neighbourhood graph and also the relation of its topology with
respect to the mapped multi-omics features.

A typical question the software attempts to answer is the
following: what are the most important genomic features in the
space nearby a gene of interest? Given a list of genes or a
specific pathway, we can identify their neighbourhood in the 3D
nucleus organization by following Hi-C fragments and then
identifying the chromosomal domains that relate to the input.
This software could also provide information on spatial
proximity of gene promoters and the density of highly
expressed nearby genes that may point to some important
questions such the co-proximity of genes coding for protein
interacting pairs with respect to the nuclear pore localisation.

Design and Implementation

The NuChart package has been designed to provide a novel
gene-centric, pathway-oriented, multi-omics tool for the
representation and the statistical analysis of Hi-C data. The
package contains four sets of functions: (i) the first group to
load and normalize data; (ii) the second to create
neighbourhood graphs; (iii) the third to map genomic features
and expression data on graphs; (iv) and the last one to
compare and statistically analyse graphs of different cells or
experimental conditions.

The main function to import data into the R environment is
load_HITCSAM_file, which loads data in the Sequence
Alignment Map (SAM) format as provided by the Hicup [30]
software. Hicup is a well-established read-based software for
Hi-C data pre-analysis, which takes in input the bare FASTA
Quality (FASTQ) files and performs the mapping and a
preliminary filtering of the sequences. In particular, for each
read representing a digested fragment, Hicup analyses the
distance from the nearest restriction site to verify if the distance

Table 1. List of the available software for the analysis of Hi-
C data.

Software Institution Year Reference
Hicup Babraham Bioinformatics 2012 30
HClib Massachusetts Institute of Technology 2012 31
Homer University California, San Diego 2012 32
HiCT Institute Curie 2012 33

doi: 10.1371/journal.pone.0075146.t001
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is reliable (it should be less than a fixed threshold, otherwise
the corresponding Hi-C contact is filtered out). At the end, each
line of the input SAM file contains the information concerning a
sequenced read, representing a digested fragment, coupled
with its paired by the Hi-C experiment. The load_HITCSAM_file
function creates a data frame, the main data structure of the
NuChart package, on which all the other package functions
rely. By employing the convert_HITCSAM_matrix function, this
data structure can be turned at any time into the corresponding
contact map, in order to be analysed with other standard
software.

From the normalization point of view, NuChart presents a
modified version of the Hu et al. [36] approach (a simplification
of the original method of Yaffe and Tanay [37]). This is a

parametric model relying on a Poisson statistics and the
NuChart normalization works on the same basis, but providing
a score to each read, identifying half of the Hi-C contact,
instead of normalizing the contact map. This approach allows
preserving the sequence information for the creation of the
neighbourhood graph and for mapping the genomic features in
the following. The rationale is to safeguard through the
normalization the information about the sequences instead of
blurring the data of the reads within the contact map. Moreover,
this scoring approach involves the use of a user-selected
threshold, which allows performing a fine tuning of the
normalization, verifying which reads are filtered at different
values and regulating the algorithm consequently. As for the
approach of Hu et al. [36], the NuChart normalization relies on

Figure 1.  Neighbourhood graph of the gene LMO2 according to the Lieberman-Aiden et al.  Hi-C experiment.
doi: 10.1371/journal.pone.0075146.g001

NuChart

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e75146



the computation of local genomic features that describe the
fragment length, the GC-content and the sequence
mappability. At the same way, a normalizing window must be
specified, in order to build a local statistics for the parametric
model. In order to allow the combination of the two
normalization approaches, the Poisson model provided by Hu
et al. [36] has been re-implemented in the function
normalize_CONTACT_map.

The core of NuChart is the graph_interaction_genes function
that creates the neighbourhood graph of the genes provided as
input. This function creates a graph in which the vertices are
the genes and the edges are the Hi-C contacts represented by

the reads. Beside the input genes and the sequencing results,
the user specifies the restriction enzymes used for the
experiment and the related digested fragments (data about the
most common enzymes are provided with the package, but for
other particular combinations Hicup provides a perl script for
computing such files). These data are used to identify which
fragments belong to the input genes. Then, using the
association matrix represented by the coupled reads, each
fragment is associated with another fragment in a different
genomic region. If the identified fragment is within a gene an
edge is created on the graph between the starting gene and
the novel detected one. If the identified fragment is intergenic,

Figure 2.  Representation of the OCT4 (official name POU5F1) neighbourhood graphs according to the Dixon et al.
experiments with multi-omics annotations.  In particular, panel a) represents CTCF binding sites mapping, panel b) cryptic RSSs
mapping, panel c) isochores mapping, and panel d) DNase hypersensitive sites mapping.
doi: 10.1371/journal.pone.0075146.g002
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the corresponding genomic position is represented on the
graph as a singularity point (red dot) that, if the user desires,
can be then connected with the nearest upstream and
downstream genes in terms of genomic coordinates, which can
be very important for the subsequent analysis of colocalization
and coregulation.

In other words, starting from the genomic coordinates of
fragments belonging to the input genes, and using
experimental associated reads as a cross-reference table, Hi-C
connected genes are mapped on the graph. In order to
compare genomic coordinates of reads, fragments, and genes,
the function graph_interaction_genes makes an extensive use
of the package biomaRt (although human and mouse data are
shipped with the package in order to improve performance).
Using this approach it is possible to identify the neighbourhood
graph of the genes provided by the user, according to the Hi-C
experiment under analysis, overcoming the problem of
intergenic contacts by expanding these singularity points to the
nearby genes. As an example, Figure 1 shows the
neighbourhood of the gene LMO2 according to Lieberman-
Aiden et al. [11] Hi-C data (SRA:SRR027963)

As mentioned, the connections established by fragments are
mapped as edges in the output graph, while vertices represent
the genes connected by fragments. This procedure is
performed for all the input genes and can be automatically
repeated many times, making the output of one neighbourhood
analysis the input for the following iteration. The possibility of
iterating this analysis permit to follow progressively the
connections provided by Hi-C data, enabling the opportunity to
explore increasingly the chromosomal territories that concern
the initial set of genes. Noteworthy, the
graph_interaction_genes function is implemented to take into
account genome-wide data, which allows searching both for
inter and intra chromosomal fragments. Moreover, the function
can deal with multiple connections between genes and also

with loops inside single genes, in order to provide a complete
genome-wide description of the chromosomal three-
dimensional conformations.

In other words, the graph_interaction_genes function is able
to generate, relying on the igraph package, the neighbourhood
graph by iterating the Hi-C contact research process according
to a user-selected parameters, which allows to extend the
analysis far away from the input genes or to focus the attention
only to the near proximity of them. The neighbourhood graph
can be drawn using the common plot function, which can
redirect static graphs to any R device, or using tkplot, that
enables a user-interactive graph drawing facility. Although
igraph contains a lot of functions and many different options to
represent graphs, if the user would like to use a different tool
for visualization (such as the R packages Rgraphviz, graph,
and network or also Cytoscape) the graph can be exported in
many formats, by employing the function write. graph.
Moreover, beside the graph, NuChart provides as output two
tables describing respectively the vertices (genes) and the
edges (Hi-C contacts) of the neighbourhood graph.

Based on this core implementation, NuChart provides two
important functions. The first, graph_interaction_pathways,
enables the creation of neighbourhood graphs for full-
annotated networks, thanks to the possibility of querying both
KEGG (using KEGGREST) and REACTOME (using biomaRt)
to download the list of genes of a user-selected pathway.
Considering the importance that Hi-C profiles can have in
describing the spatial conformation of a specific genomic
region, NuChart implements also a function for mapping the
neighbourhood of specific chromosomal regions. In detail, the
function graph_interaction_coord allows to select a specific
genomic interval in order to create a graph of the Hi-C contacts
that involve genes in that region. This feature can be
particularly interesting to highlight differences in the
organization of chromosomes from a cytogenetic point of view,

Figure 3.  Normalization of chromosome 17 Hi-C data according to the Lieberman-Aiden et al. experiment.  In panel a) the
Hu et al. normalization is shown, while in panel b) the read-based normalization performed with NuChart (threshold 0.9) is
presented to show the reproducibility with respect to the Hu et al. approach. Panel c) represents the NuChart read-based
normalization performed using a more restrictive threshold (threshold 0.99).
doi: 10.1371/journal.pone.0075146.g003
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potentially providing the possibility of identifying novel
biomarkers related to the spatial conformations of specific
genomic regions.

Due to the large number of operations the
graph_interaction_genes function must perform for creating the
neighbourhood graph, in particular while working with a large
number of genes or considering a whole pathway, the main

computational routine has been implemented to exploit, if
present, the multicore package. In detail, there is a switch
controlling the entrance in the iterative search for Hi-C contacts
in the neighbourhood of a selected genes: if the multicore
package is loaded into the R environment the function exploits
all the available cores for parallelizing the procedure, otherwise
the common sequential approach is performed.

Figure 4.  Neighbourhood graph of the gene BRCA1 according to the Lieberman-Aiden et al. experiment.  Gene expression
data about colon cancer experiment GDS3160 have been mapped on the graph to show the enhanced description (and prediction)
power that the graph representation has in relation to gene co-expression with respect to the approach relying on genomic
coordinates.
doi: 10.1371/journal.pone.0075146.g004

NuChart

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e75146



Considering the importance that chromosomal territories
assume in gene expression coregulation, NuChart provides the
possibility to map on the neighbourhood graph expression data
from ArrayExpress and Gene Expression Omnibus (GEO).
Using the get_expression function, it is possible to download
expression data from these repositories (using respectively the
R/Bioconductor packages ArrayExpress and GEOquery), to
perform a standard normalization and a differential expression
analysis of them (using limma or samr), in order to identify

down-regulated and up-regulated genes in the neighbourhood.
These data are used to provide different weights (according to
the logarithm of the fold change) and colours to the vertices of
the graph (respectively green is used for down-regulation and
red for up-regulation).

NuChart also provides the possibility of mapping on the
edges of the neighbourhood graph genomic features that are
known to be involved in chromosomal recombination, looping
and stability. Noteworthy, the software contains the

Figure 5.  Neighbourhood graph of the 17q21.32 cytoband concerning the Homeobox B cluster (HOXB) of genes according
to the Lieberman-Aiden et al.  Hi-C experiment.
doi: 10.1371/journal.pone.0075146.g005
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map_FEATURES_file function that can be used to load any
kind of annotations provided as bed file to characterize the
neighbourhood graph. In particular, the package comes with
data concerning predicted cryptic RSSs [38], indication of
possible CTCF binding sites [39], and isochore distribution [40].

All these genomic features have been pre-computed both on
the human (hg19) and murine (mm9) genomes, and are
available as bed files, ready to be mapped on the edges of the
neighbourhood graphs. For example, Figure 2 shows the OCT4
(official name POU5F1) graph according to Dixon et al. [12] Hi-

Figure 6.  Representation of the OCT4 (official name POU5F1) neighbourhood graphs in four different runs from the Hi-C
experiments of Dixon et al. to show inter and intra run modifications.  In the panel a) and b) on the top part of the figure, the
sequencing runs are from human embryonic stem cells (hESC), while panel c) and d) are from human foetal lung fibroblasts
(IMR-90).
doi: 10.1371/journal.pone.0075146.g006
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C data (SRA:SRR400261) annotated with information about
CTCF binding sites (a), predicted cryptic RSSs (b), isochores
(c) and DNase hypersensitive sites (d). Nonetheless, it is
possible to compute on the fly, working directly on the fragment
sequences related to each edge, predictions about the
presence of cryptic RSSs (map_RSS_computed), CTCF
binding sites (map_CTCF_computed), and enriched GC-
contents (map_ISO_computed). In order to exploit the
computation on the fly of these features, the user must load the
BSgenome package concerning the genome under analysis.
This is essential while working on species different from human
and mouse, but it can be also exploited, by forging a user-
defined specific BSgenome data package, to analyse genomes
rich of genomic variations, which can have altered genomic
features with respect to the normal ones.

The last group of functions has been designed to describe,
compare and statistically analyse graphs. The first function
graph_statistics computes global indexes such as density,
connectivity and diameter which describe the graph as a whole,
and local indexes, such as node degree, betweenness and
closeness that describe in detail the neighbourhood of each
gene of the graphs. The second function, graph_correlation
has been implemented to correlate graph, by transforming
them into adjacency matrices and then calculating their
Pearson correlation. This is a key aspect because it allows the
comparison of the spatial conformation of a gene
neighbourhood between different sequencing runs performed
on the same cells, between the same cells under different
conditions, or between different types of cells. A third function,
graph_ergm, has been designed to statistically analyse the
structure of the neighbourhood graph and the relation between
its topology and the annotated multi-omics features. In
particular, this function relies on the package ergm that
provides an integrated set of tools to fit and analyse networks
based on the Exponential-family Random Graph Models.

Therefore, NuChart can be used to create statistical models of
neighbourhood graphs by implementing maximum likelihood
estimators, which are calculated using Markov Chain Monte
Carlo (MCMC) [41]. Although ERGMs is the default statistical
framework for the analysis of graphs, NuChart can be
interfaced with other R packages by exploiting the igraph data
structure.

Results and Discussion

NuChart has been designed to improve both analysis and
representation of Hi-C data, by employing a gene-centric,
pathway-oriented approach to the treatment of chromosome
capture information A first task addressed by the package is
the normalization of data, which still represents an open issue
in Hi-C data analysis. We propose a combination of methods
that enable an unmet flexibility for the biologist, which can both
perform a read-based normalization, selecting the most
suitable threshold according to his experience and sensibility,
and convert data into a contact maps to combine, if desired,
also a matrix based normalization. An example of the
reproducibility of the Hu et al. [36] approach for normalization
with respect to our read-based approach is presented in Figure
3, which concerns Lieberman-Aiden et al. [11] Hi-C data
(SRA:SRR027963) of chromosome 17. In the left panel, the
common contact map normalization is presented, in the central
one the read-based normalization with a threshold reproducing
the Hu et al. [36] approach is shown, while in the right panel a
more strict normalization is presented.

The representation of Hi-C data using a graph approach,
oriented at overcoming the common view relying on genomic
coordinates, is a step forward the available representation
tools, in particular considering the capability of mapping multi-
omics features on the graph. The possibility of representing
expression profiles on the graph allows analysing the co-

Table 2. Correlations between the neighbourhood graphs of three different genes (OCT4, TP53 and POLR2A) in four
different runs of the Dixon et al. experiments (SRR400261, SRR400262 about human embryonic stem cells (hESC) and
SRR400263, SRR400264 about human foetal lung fibroblasts (IMR-90)).

OCT4 SRR400261 SRR400262 SRR400264 SRR400265
SRR400261 100% 66.9% 0.5% 0.6%
SRR400262 66.9% 100% 0.4% 7.9%
SRR400264 0.5% 0.4% 100% 40,4%
SRR400265 0.6% 7.9% 40,4% 100%
TP53 SRR400261 SRR400262 SRR400264 SRR400265
SRR400261 100% 33.8% 0.4% 0.5%
SRR400262 33.8% 100% 0.6% 0.7%
SRR400264 0.4% 0.5% 100% 20,4%
SRR400265 0.6% 0.7% 20,4% 100%
POLR2A SRR400261 SRR400262 SRR400264 SRR400265
SRR400261 100% 50.9% 2.2% 0.2%
SRR400262 50.9% 100% 0.2% 0.2%
SRR400264 2.2% 0.2% 100% 70,4%
SRR400265 0.2% 0.2% 70,4% 100%

Intra runs variability is much lower than inter run variability.
doi: 10.1371/journal.pone.0075146.t002
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expression of mapped genes, providing a strongest correlation
than the one provided by the mere chromosomal coordinates.
As an example, we show in Figure 4 the neighbourhood graph

of the gene BRCA1 according to Lieberman-Aiden et al. [5] Hi-
C data (SRA:SRR027963), with mapped the expression profile

Figure 7.  Goodness of fit diagnostics charts for three topological features of the stochastic estimator for the HOXB cluster
of genes neighbourhood graph according to the Lieberman-Aiden et al.  Hi-C experiment. The thick black line represents the
real data concerning the analysed graph, while the boxplot shows the statistical properties of the estimator achieved by employing
stochastic simulations. In the top panel the analysis of the estimated model in relation to the degree distribution of the HOXB
neighbourhood graph; in the central panel the analysis of the estimated model in relation to weighted edge-wise shared partner
statistic; in the bottom panel the analysis of the estimated model in relation to the minimum geodetic distance of the HOXB
neighbourhood graph.
doi: 10.1371/journal.pone.0075146.g007
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of the GEO Omnibus experiment GDS3160 related to colon
cancer [42].

NuChart can be also very useful for the description of the
DNA organization while looking at full chromosomal regions or
cytobands. The idea of correlating different states, for example
physiological and pathological conditions, is in hand by

employing the Hi-C technology. The option of creating a map
for a specific cytoband is very innovative and allows the
discernment of different cell states at cytological level,
potentially providing to researcher novel powerful biomarkers.
In Figure 5, as an example, the neighbourhood graph of the
Homeobox B cluster (HOXB) of genes (cytoband 17q21.32) is

Figure 8.  Simulation details (left) and related statistics (right) of the stochastic analysis about the two components
estimator for the graph describing the HOXB cluster of genes according to the Lieberman-Aiden et al.  Hi-C experiment: in
the top panel the topological distribution (edges) component; in the bottom panel the degree distribution (degree) component.
doi: 10.1371/journal.pone.0075146.g008

Table 3. Details of the stochastic simulations performed to analyse the impact of the CTCF binding site, isochores, cryptic
RSSs, and DNase hypersensitive sites on the edge distribution.

Formula Iterations Estimate Std. Error p-value
edges + nodecov("dnase") 100  0.86291 0.07961 <1e-04
edges + nodecov("ctcf") 100  0.52386 0.04158 <1e-04
edges + nodecov("rss") 100  0.39780 0.03176 <1e-04
edges + nodecov("iso") 100 -0.84035 0.09269 <1e-04

As the summary table shows, after 100 iterations the statistics achieved a high degree of confidence (P-value < 0.0001). In particular, data demonstrate that DNase
hypersensitive sites and CTCF binding sites have a positive influence on the presence of edges (nodecov.dnase = 0.86291 ± 0.07961 and nodecov.ctcf = 0.52386 ±
0.04158); at the same way cryptic RSSs are positively correlated with edges (nodecov.rss = 0.39780 ± 0.03176) although with less impact; on the other hand, isochores are
negatively correlated with the edge distribution (nodecov.iso = -0.84035 ± 0.09269).
doi: 10.1371/journal.pone.0075146.t003
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shown according to Lieberman-Aiden et al. [11] Hi-C data
(SRA:SRR027963).

The possibility of describing graphs through statistics and,
even more, the capability of correlating them through the
adjacency matrix representation is a powerful tool to highlight
similarities and differences in different Hi-C runs, in different
cell conditions or in different cell types. In Figure 6, an example
of different graphs for the gene OCT4 achieved according to
four different runs of the Dixon et al. [12] experiments is shown.
Respectively, the graphs in the top part are from two different
runs performed on human embryonic stem cells (hESC;
SRA:SRR400261 and SRA:SRR400262), while the graphs in
the bottom part are from human foetal lung fibroblasts (IMR90;
SRA:SRR400264 and SRA:SRR400265). It is very interesting
to see how the gene neighbourhood changes in these four
datasets because, as data in Table 2 confirms, there is a
considerable similarities between runs, but a substantial
uncorrelation between data of the two cell lines.

By employing ERGMs, NuChart allows the option of
statistically analyse the structure of the neighbourhood graph,
implementing a stochastic model of the network and using
MCMC to create an estimator trough a likelihood function.
These models can be used to compute simple statistics about
the significance of some graph characteristics, such as the
topology of the edges (edges), the vertex tendency to be
reciprocal (mutual), the distribution of the vertex degree in the
graph (degree), or the measure of vertex clustering attitude
(triangle). On the other hand, by choosing more complex
modelling functions and exploiting the mapped multi-omics
features, the user can test the probabilities that edges are
function of a specific genomic feature (nodecov) or the
significance of having edges in relation to a particular vertex
property (absdiff). In Figure 7 the analysis of an estimator
model concerning the HOXB cluster of genes according to the
Lieberman-Aiden et al. Hi-C [11] experiment, which takes into
account both the topological structure of the graph (edges) and
the degree distribution (degree), is presented (please see
Statistical Analysis S1 for the statistical analysis about the
reliability of the results achieved through the MCMC
simulations). In the diagnostic plots, the thick black line
describes the analysed characteristics of the original graph, in
particular the degree distribution (top), the edge-wise shared
partner statistic (central) and the minimum geodetic distance
(bottom), while the boxplot shows the statistics about the same
features as stochastically simulated using the estimator. The
model generated in this example is able to capture the
peculiarities of the original graph, which is an important
evidence that the model will be robust in describing more
complex features of the model.

In order to confirm the quality of the model estimator for the
neighbourhood graph, it is possible to investigate the stochastic
simulation that produced goodness-of-fit diagnostics presented
above. In Figure 8 the details of the simulation (left) and the
statistical analysis (right) concerning the two components of the
estimator, the topological distribution (edges) and the degree
distribution (degree), computed for the HOXB clusters of genes
according to the Lieberman-Aiden et al. Hi-C [11] experiment
presented above are shown.

Thanks to ERGMs, it is possible to understand if a particular
genomic feature has a significant effect on the presence of an
edge. For example, we mapped data concerning CTCF binding
sites, isochores, cryptic RSSs and DNase hypersensitive sites
on the achieved graph and then we used the proposed model
for analysing the correlation between edges and the distribution
of these genomic features. By exploring the model with a
Monte Carlo simulation, we achieved in all simulations a high
level of confidence (please see Statistical Analysis S1 for the
statistical analysis about the reliability of the results achieved
through the MCMC simulations). Noteworthy, there is a
significant positive effect of DNase hypersensitive sites and
CTCF binding sites (nodecov.dnase = 0.86291 ± 0.07961 and
nodecov.ctcf = 0.52386 ± 0.04158) on the probability of an
edge to be in the graph (see Table 3), while cryptic RSSs are
less correlated with the edge distribution (nodecov.rss =
0.39780 ± 0.03176). On the contrary, isochores are negatively
correlated with the presence of edges (nodecov.iso = -0.84035
± 0.09269).

Conclusions

NuChart is designed to study Hi-C data in a systems biology
oriented view, with the aim of correlating the spatial distribution
of genes with the mechanism of their coregulation. NuChart
combines a graph based representation of Hi-C contacts
(relying on a flexible normalization of mapped fragments), the
analysis of expression of colocalized genes, the possibility of
annotating the neighbourhood graph with multi-omics features,
and the statistical analysis of the results, providing a complete
tool that can be very helpful to identify novel regulatory
mechanisms and can bring at the identification of novel
biomarkers.

The software is freely available from ftp://fileserver.itb.cnr.it/
nuchart with all the example datasets employed for the
experiments and a detailed manual of the package. Future
directions are in providing more embedded features to map on
the graph and in the implementation of more sophisticate
methods for graphs analysis and comparison. From the
computational point of view, we aim at improving the quality of
representations and the speed of graph computations by
employing high performance on-chip architectures for the
analysis, in order to produce more complete nuclear charts.

Supporting Information

Statistical Analysis S1.  Full description of the stochastic
simulations and the related statistical analyses performed
for the creation of the neighbourhood graph estimators
presented in the results and discussion section.
(PDF)
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