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Summary 

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, and its subsequent 

variants has underscored the importance of understanding the host-viral molecular interactions 

to devise effective therapeutic strategies. A significant aspect of these interactions is the role 

of alternative splicing in modulating host responses and viral replication mechanisms. Our 

study sought to delineate the patterns of alternative splicing of RNAs from immune cells across 

different SARS-CoV-2 variants and vaccination statuses, utilizing a robust dataset of 190 

RNA-seq samples from our previous studies, encompassing an average of 212 million reads 

per sample. We identified a dynamic alteration in alternative splicing and genes related to RNA 

splicing were highly deactivated in COVID-19 patients and showed variant- and vaccination-

specific expression profiles. Overall, Omicron-infected patients exhibited a gene expression 

profile akin to healthy controls, unlike the Alpha or Beta variants. However, significantly, we 

found identified a subset of infected individuals, most pronounced in vaccinated patients 

infected with Omicron variant, that exhibited a specific dynamic in their alternative splicing 

patterns that was not widely shared amongst the other groups. Our findings underscore the 

complex interplay between SARS-CoV-2 variants, vaccination-induced immune responses, 

and alternative splicing, emphasizing the necessity for further investigations into these 

molecular cross-talks to foster deeper understanding and guide strategic therapeutic 

development. 
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Introduction 

The emergence of the coronavirus SARS-CoV-2, the causative agent of COVID-19, 

has precipitated a global public health crisis1-3. The SARS-CoV-2 infection manifests a broad 

spectrum of symptoms ranging from mild respiratory discomfort to severe acute respiratory 

syndrome, with potential long-term sequela4,5. The quest to unravel the molecular mechanisms 

of SARS-CoV-2 infection and propagation has burgeoned into genomic, transcriptomic, and 

proteomic dimensions6-8. 

Alternative splicing is a cellular process that increases the number of mRNA isoforms 

and can augments the proteomic diversity and function as well as compromising protein 

expression through loss of open reading frames and switching from coding to non-coding 

transcripts 9-11. It has been implicated in various diseases including viral infections, where it is 

poised to play a crucial role in modulating host immune responses and viral replication 

mechanisms12-15. This is also true of SARS-CoV-2 infection11,15-18. Specific alternative spliced 

transcripts present with SARS-CoV-2 infection can lead to reduced antiviral immunity. 

Examples of alternatively spliced genes that have been previously identified include 

CD74 and LRRFIP115, and OAS118. A specific SARS-CoV-2 protein, NSP16, has been shown 

to bind to the U1 and U2 splicing RNAs16. In short, alternative splicing appears to be pivotal 

molecular biology realm contributing to the pathophysiology of SARS-CoV-2 infection. But, 

despite the research directed towards understanding feature of SARS-CoV-2 variants, 

alteration of immune response induced by infection and vaccination, and genome-wide 

transcriptome alterations19-24, there remains a conspicuous research gap persists concerning the 

alternative splicing profiles and the splicing machinery that can be affected by variants and 

vaccination statuses. 

Here, we analyzed 190 RNA-seq data sets from five COVID-19 cohorts across four 

variants infected patients (Alpha, Beta, Gamma, and Omicron) and healthy controls to identify 

their transcriptome profiles including alternative splicing and gene expression. We also 

investigated variant- and vaccination-specific transcriptional regulations. This examination 

allowed us to not only explore the intricate transcriptional landscape underpinning the infection 

dynamics of different SARS-CoV-2 variants but also the potential modulatory impact of 

vaccination on host transcriptome.  
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Results 

Landscape of splicing across COVID-19 patients infected with four SARS-CoV-2 variants 

reveals an aberrant global alternative splicing pattern. 

 To investigate the impacts of SARS-CoV-2 variants on alternative splicing of cellular 

RNAs, we analyzed 190 RNA-seq data from buffy coats of COVID-19 patients infected with 

four different variants (Alpha, Beta, Gamma, and Omicron), as well as healthy controls (HC) 

(Table S1). We specifically focused on data from patients within one week of infection to 

investigate transcriptional changes at an early stage. In total, approximately 40.3 billion reads 

were mapped to the human genome, achieving an average alignment rate of 95.6%. Using the 

rMATs25, we identified 444,167 alternative splicing events and estimated their exon inclusion 

levels. Principal component analysis (PCA) showed intermingled profiles of most samples 

except for Omicron-infected patients (Fig. 1A). A total of 3,381 differential alternative splicing 

events (DASEs) spanning five distinct alternative splicing categories were identified in 

COVID-19 patients compared to HC (Fig. 1B). We observed 2,245 DASEs in Alpha-infected 

patients, while dozens of DASEs were found in Beta- and Gamma-infected patients. 

Interestingly, 11,996 DASEs were specifically identified in Omicron-infected patients. This 

finding suggested that the alternative splicing is globally modified in COVID-19 patients. 

The 1,928 genes from 3,381 DASEs were significantly enriched in GO terms of 

general cellular functions including regulation of small GTPase mediated signal transduction 

(GO:0051056; FDR = 1.4 ✕ 10-4), intra cellular protein transport (GO:0006886; FDR = 3.3 ✕ 

10-4) and transcription (GO:0045893; FDR = 4.1 ✕ 10-4) (Fig. 1C). Moreover, they are mainly 

involved in virus infection pathways including Epstein-Barr virus (hsa05169; FDR = 2.0 ✕ 10-

5) and human T-cell leukemia virus 1 (hsa05166; FDR = 2.0 ✕ 10-5). Indeed, these findings 

suggest that the genes exhibiting altered alternative splicing patterns during SARS-CoV-2 

infection play a pivotal role in diverse cellular functions. Moreover, their pronounced 

involvement in virus infection pathways underscores their significance in shaping the observed 

alternative splicing patterns. 

We compared the predominant alternative splicing events in our results, which 

comprise approximately 96% of the DASEs, specifically skipped exon (SE) and mutually 

exclusive exons (MXE) DASEs, with genes associated with susceptibility to viral infections, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.24.568603doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.24.568603
http://creativecommons.org/licenses/by-nc-nd/4.0/


including SARS-CoV-2 and other viral infections. 13 genes (SE) and 85 genes (MXE) that 

exhibited associations with viral susceptibility were identified (Fig. 1D). Those genes included 

16 SEs and 204 MXEs, showing dynamic splicing alterations observed in COVID-19 patients 

(Fig. 1E). Among DASEs, we found alternative exon usages of genes related to Janus kinase 

(JAK) signaling pathway and Toll-like receptor 4 (TLR4) (Fig. 1F). Specifically, exon 2 and 3 

of TLR4 displayed higher inclusion levels in COVID-19 patients. Notably, these inclusion 

patterns have been previously reported in splice variants induced by lipopolysaccharide (LPS) 

treatment26,27. The JAK signaling pathway plays a crucial role in virus infections, including 

those involving SARS-CoV-228. In our results, JAK3 exhibited six novel MXE events spanning 

ten exons, indicating a wide range of alternative variants being generated. This underscores the 

complexity of alternative splicing of TLR4 and JAK3 and its potential significance in the 

context of viral infections. 

In prior research, it was reported that transcription rate significantly influences splicing 

fidelity in yeast29. To investigate the relationship between expression level of genes and their 

splicing rates in the context of SARS-CoV-2 infection, we compared the transcript level 

difference and the absolute mean inclusion level difference between HC and COVID-19 

patients. However, contrary to our expectations, interrelation between alternative splicing rates 

and gene expression levels was not observed (Fig. 1G). This outcome suggests that the 

interplay between gene expression alterations and alternative splicing rates in SARS-CoV-2 

infection may differ from what has been observed in yeast, emphasizing the complexity and 

biological diversity of the alternative splicing process in this context. 

Dysregulated alternative splicing related genes in COVID-19 patients 

In our quest to identify genes that might influence alternative splicing changes in 

COVID-19, we examined global gene expression differences between HC and COVID-19 

patients. PCA results revealed pronounced gene expression differences primarily in Alpha and 

Beta-infected patients, while relatively minor differences observed in Omicron-infected 

patients compared to HC (Fig. 2A, Fig. S1). We identified 7,529 genes that were differentially 

expressed (DEGs) in COVID-19 patients. Subsequent ShinyGO analysis associated these 

DEGs with Coronavirus and Herpes simplex virus infections (Fig. 2B). Interestingly, DEGs 

were notably enriched in spliceosome-related genes, suggesting dysregulation of spliceosome-

related gene expression in COVID-19 patients. Independent DAVID analysis also indicated 

significant enrichment of 92 DEGs in RNA splicing (GO:0008380), with the majority, 81.5% 
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(75 out of 92 DEGs), being significantly down-regulated in COVID-19 patients (Fig. 2C). 

Furthermore, we observed significantly reduced expression of hub genes such as HNRNPA1, 

SNRPA1, SNRPD2, SFPQ, SNRPF, and TARDBP, which interact intensively with other 

proteins in the protein-protein interaction network (Fig. 2D, E). These findings collectively 

suggest that alternative splicing machinery is compromised in COVID-19 patients and is 

closely associated with abnormal global alternative splicing patterns. 

Different regulation of alternative splicing in T and B cell receptor signaling pathways in 

vaccinated and unvaccinated group of Omicron infected patients. 

 We also observed distinct alternative splicing profiles among patients infected with the 

Omicron variant (Fig. 1A). Through unsupervised clustering, we delineated two distinct groups 

within the entire patient cohort. Group 1 consisted of 163 samples (comprising HC, Alpha, 

Beta, and some Omicron cases), while group 2 comprised the remaining 27 Omicron-infected 

patients. Notably, we found that group 1 was enriched with unvaccinated individuals, while 

group 2 predominantly consisted of vaccinated patients (Fig. 3A). The difference in vaccination 

status between these groups was statistically significant (Fig. 3B).  

We examined the alternative splicing events that changed between these two Omicron-

infected patient groups and a total of 19,732 DASEs with the majority being of the MXE type 

were identified. With a more stringent criterion (an inclusion level difference > 0.25), we 

identified 2,964 significant DASEs between Omicron group 1 and Omicron group 2 (Fig. 3C). 

These DASEs were associated with 1,789 genes primarily related to general functions such as 

chromatin organization (GO:0006325; FDR = 5.4 ✕ 10-11), DNA damage response 

(GO:0006974; FDR = 1.2 ✕ 10-8), splicing (GO:0000398; FDR = 3.5 ✕ 10-7), transcription 

(GO:0045944; FDR = 2.1 ✕ 10-6), and were closely linked not only to virus infection 

(hsa05166; FDR = 6.2 ✕ 10-4) but also to the T (hsa04660; FDR = 6.2 ✕ 10-4) and B cell 

receptor signaling pathways (hsa04662; FDR = 2.5 ✕ 10-3) (Fig. 3D).  

Furthermore, we identified 16 common genes that are downstream of the T and B cell 

receptor signaling pathways. These genes, acting as intermediary genes, regulate immune 

processes including immune response, proliferation, and differentiation. Interestingly, most of 

these genes were regulated through splicing without exhibiting expression differences between 

the groups. Among them, KRAS was identified to have a higher inclusion of exon 4 in Omicron 
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group 2. The isoform with exon 4 inclusion is reported as KRAS4A directly regulate glycolysis 

and apoptosis promotion and is predominantly expressed in endodermal organs30-32. Another 

gene, NFATC2, showed an increased inclusion of exon 10 in Omicron group 2. The isoform 

with this inclusion has been reported to be ubiquitously expressed across various tissues33, 

however, the decrease in exon 7 inclusion observed in Omicron group 2 represents a novel 

isoform which has not been reported previously. This implies that, depending on vaccination 

status, Omicron infection leads to differential regulation of alternative splicing in genes 

associated with both general cellular functions and immune cell signaling genes, reflecting 

broader changes in cellular function and immune response. 

Differential regulation of RNA splicing machinery genes across SARS-CoV-2 variants. 

To identify genes within the RNA splicing machinery that impact the abnormal 

regulation of alternative splicing in COVID-19 patients, we collected 304 genes related to RNA 

splicing genes with an FPKM exceeding 5 in at least one sample and conducted a PCA based 

on their expression values (Fig. 4A). As a result, clear distinctions were made between HC and 

each patient group, while Alpha and Beta displayed similar trends. Moreover, a tendency of 

division based on vaccination status was observed within Omicron patients. This suggests that 

RNA splicing genes are regulated differently among patients infected with respective variants. 

Upon identifying the top 25 genes contributing significantly to the principal components 

distinguishing each group, it was observed that 11 genes contributing to HC were expressed at 

lower levels across all patient groups (Fig. 4B). Additionally, five genes highly contributing to 

the Alpha and Beta groups exhibited group-specific elevated expression. Furthermore, nine 

genes in Omicron patients showed distinctively higher expression, with a notably high 

expression observed particularly in Omicron group 2. Through this, we deduce that the 

regulation of RNA splicing machinery genes may be associated with the variant-specific host 

responses to SARS-CoV-2 infection. The differential expression and regulatory patterns of 

these splicing machinery genes might play pivotal roles in the abnormal alternative splicing 

regulation observed in COVID-19 patients.  
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Discussion 

In this study, we probed the alternative splicing (AS) landscape in patients infected 

with various SARS-CoV-2 variants, aiming to illuminate potential underlying mechanisms 

contributing to the variance in disease manifestations and progression. Our exploratory analysis 

revealed a significant number of differential alternative splicing events (DASEs), notably in 

individuals infected with the Omicron variant. This observation necessitates an in-depth 

investigation into its broader impact on the host's cellular and molecular responses. Particularly, 

the observed down-regulation of mRNA splicing machinery genes in COVID-19 patients and 

their variant-specific modulation signify the critical role of alternative splicing mechanisms in 

the disease's progression. 

Recent studies have shown that infection by numerous viruses affect to AS landscape 

of host-cells34-42. The modulatory activities of viral products on cellular AS, as reflected 

through the inhibition of host-cell splicing factor kinases43-45 and interference with splicing 

factors46,47 and spliceosome48-51, manifest a complex battle between the virus attempting to 

subvert host defenses and the cell striving to counteract these invasions. This complex interplay 

prolongs the host-pathogen arms race, with AS serving as a key battleground where success 

can profoundly affect the infection's clinical course. The restoration of regular AS patterns may 

be used to stop viral spread and lessen the severity of the disease if these modulations are 

understood at a granular level, opening new treatment possibilities. 

The re-analysis of 190 RNA-seq datasets, encompassing an average depth of 212 

million reads, yielded a rich repository of deep sequencing data. This data depth accords a 

robust framework to navigate through the complex transcriptional landscape, enabling the 

detection of genes with low expression levels, and unraveling rare alternative splicing events. 

Building upon recent studies13,15,16,49,52 that highlighted the potential targeting of the mRNA 

splicing machinery by viruses and reported a dysregulation of alternative splicing in COVID-

19 patients, our transcriptomic analysis including healthy controls and patients reinforced the 

global dynamic alterations of alternative splicing in COVID-19 patients. A notable extent of 

these changes was observed in those infected with the Omicron variant.  
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Previous studies have underscored the up-regulation of TLR4 in severe COVID-19 

patients, implicating it in augmented ACE2 expression and ensuing hyperinflammation53,54. 

Among the alternative splicing forms of TLR4, the inclusion of exon 2 or exon 3 has been 

reported to be elevated in LPS treated cells, mirroring our observation of increased inclusion 

of these exons in COVID-19 patients26,27. Extending the molecular narrative, transcriptome 

analyses on hospitalized patients infected with Alpha21 or Beta20 variants revealed a 

pronounced activation of interferon pathway genes with a spotlight on the JAK/STAT pathway. 

Concordantly, our analysis unearthed novel DASEs in JAK/STAT genes, hinting at a potential 

aberrant regulation of the JAK/STAT pathway in COVID-19 patients55,56. However, the 

functional ramifications of these DASEs remain to be elucidated. 

Wang et al. reported an increased exclusion form of exon 7 in CD74 and LRRFIP1 in 

the lung tissues of severe COVID-19 patients, alongside a significant down-regulation of six 

spliceosome component proteins15. Our findings corroborated the increased exclusion of CD74 

exon 7 in patients, although we couldn't confirm this for LRRFIP1 (Fig. S2). Moreover, our 

findings point towards a general depression of splicing machinery genes, suggesting a complex 

interplay far beyond the direct interactions between viral proteins and spliceosome component 

proteins, potentially disrupting cellular functions and innate immunity12,35-37. We also found 

that the variant- and vaccination-specific gene expression profiles of genes which are member 

of RNA splicing machinery, suggesting that global and variant specific regulation of AS is 

highly associated with transcriptional alterations of RNA binding proteins17,57,58. This further 

suggests that the observed splicing gene depression might underlie the abnormal alternative 

splicing seen in COVID-19 patients. 

Numerous genes, including those linked to innate immune activation and strong 

cytokine activity, have seen an increase in transcription in individuals with severe COVID-19 

patients59-61. This hyper-activation of transcription might encourage the production of cellular 

AS transcripts that were not intended29. Our study reveals striking alterations in gene 

expression and AS profiles of numerous immune and cytokine-related genes in COVID-19 

patients. Although we observed that AS rates are not correlated with transcription rates, 

functional studies are needed to know whether AS isoforms increased in patients are functional 

or transcriptional noise. 

Omicron infections generally manifest more moderate symptoms compared to other 

variants62, and vaccinated patients exhibit a significantly blunted interferon response when 
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compared to unvaccinated Omicron infected outpatients and unvaccinated Alpha infected 

hospitalized patients63. On the gene expression front, Omicron showed a gene expression 

profile like healthy controls compared to Alpha or Beta (Fig. S1), yet alternative splicing 

exhibited a dynamic alteration, especially pronounced in the vaccinated group. Additionally, 

although reported in the context of dengue virus vaccination64, changes in alternative splicing 

following vaccination have been documented, suggesting a potential modulation in AS post 

COVID-19 vaccination. Our observations of T and B cell receptor signaling pathway genes AS 

changes according to vaccination status hint at the possibility of altered immune cell 

populations or functionalities.  

We reported 25 members of RNA splicing machinery that represent and are 

specifically expressed in each patient groups. Noteworthy among these is the heterogeneous 

nuclear ribonucleoprotein A1 (HNRNPA1), known to interact with the 3’-UTR of viruses, 

orchestrating transcription and replication processes65-67. Across all variant groups, HNRNPA1 

exhibited a common downregulation trend. Intriguingly, recent elucidations have spotlighted 

HNRNPA1 as a hub protein with substantial functional linkages to the human SARS-CoV-2 

genome68. Furthermore, recent explorations employing various network pharmacology 

methods have accentuated a close nexus between COVID-19 and serine/arginine-rich splicing 

factor protein kinase-1 (SRPK1), a gene elucidated to be intimately involved with SARS-CoV-

2 replication through the phosphorylation of the N protein69,70. Interestingly, our analysis 

unveiled a pronounced expression of SPRK1 predominantly within the Alpha and Beta infected 

groups, shedding light on the possible variant-specific molecular dialogues orchestrated by the 

virus. Furthermore, we delved into the expression patterns of zinc finger CCCH-type 

containing 13 (ZC3H13), which has been reported to be closely associated with N6-

methyladenosine (m6A), a prevalent epigenetic modification that regulates splicing efficiency71 

and found in the viral RNA genomes of various viruses72. The function of m6A in these viral 

genomes has underscored the intricacies of host-virus interactions at the epigenetic level. 

Interestingly, a study reported that a lower expression of ZC3H13 in COVID-19 compared to 

a higher expression in non-COVID-19 infections73. Our analysis unveiled that ZC3H13 was 

specifically overexpressed in the Omicron-infected group, particularly within the vaccinated 

cohort, suggesting a possible interplay between epigenetic modifications and the host’s 

response to different SARS-CoV-2 variants post-vaccination. Through this exploration, we 

have laid down a significant marker, directing future research endeavors towards a deeper 

understanding of the host-virus interactions.  
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In sum, our investigation unfurls a landscape elucidating the interplay among variant-, 

vaccination-specific transcriptional changes including gene expression and alternative splicing 

regulation in the context of SARS-CoV-2 infections. As we delved into the complex realm of 

alternative splicing, our analysis uncovered alterations that could significantly impact host 

immune responses, hinting at a critical layer of host-virus interaction that warrants further 

exploration. Through this comprehensive analysis, we aim to provide a robust framework for 

understanding how the interplay of viral genetic diversity, host transcriptomic modulation, and 

vaccination status contribute to the COVID-19 disease spectrum, thereby fostering a more 

informed foundation for future research and clinical interventions in COVID-19. 
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Figure legends 

Figure 1. SARS-CoV-2 infection leads to aberrant global alternative splicing. (A) Principal 

component analysis of exon inclusion level from 190 samples. (B) Number of differential 

alternative splicing events (DASEs) of five alternative splicing types. The DASEs were defined 

as following criteria: absolute PSI differences value > 0.1 and corrected p-value < 0.05. (C) 

Results of the top 5 terms of GO biological process and KEGG pathways enriched with the 

1,928 genes from 3,381 DASEs (HC vs. All patients). (D) Venn diagrams displaying the gene 

overlap between DASEs in the SE and MXE categories, respectively, and the set of SARS-

CoV-2 susceptible genes. (E) Heatmap of differentially alternative spliced SARS-CoV-2 

susceptible genes between HC and COVID-19 patients. Z-score indicate relative exon 

inclusion levels. Hierarchical clustering of DASEs was performed with Euclidean distance 

matrix of relative exon inclusion levels. (F) Significant differential spliced events of TLR4 

(chr9:117,704,403-117,724,735) and JAK3 (chr19:17,824,782-17,847,982) showing two 

skipped exon (SE) events and six mutually exclusive exon (MXE) events, respectively. Exon 

inclusion levels represent the usage of spliced exons in the case of SE events, while in the 

context of MXE events, they indicate the ratio of the second mutually exclusive exon within 

each event. The expression level refers to the overall gene expression level. The error bar 

indicates standard deviation of the mean. (G) Correlation analysis of expression differences 

between the inclusion level differences of total genes revealed no significant correlation. 

Figure 2. Dysregulated alternative splicing related genes in COVID-19 patients. (A) 

Principal component analysis of gene expression levels from 190 samples. (B) Results of the 

top 10 pathways enriched with the 7,529 DEGs. (C) Heatmap of 92 DEGs involved in RNA 

splicing (GO:0008380). Z-score indicate relative gene expression levels. Hierarchical 

clustering of DEGs was performed with Euclidean distance matrix of relative gene expression 

levels. (D) Protein-protein network of significant DEGs related to RNA splicing. The color of 

each gene indicates statistically significant and fold change to HC. (E) Gene expression levels 

of six hub genes which are depressed in COVID-19 patients. The error bar indicates standard 

deviation of the mean. 

Figure 3. Among Omicron-infected patients, different regulation of alternative splicing 

in T and B cell receptor signaling related genes was observed between vaccinated and 

unvaccinated groups. (A) PCA of exon inclusion levels from 190 samples, as presented in 

Figure 1A. The samples are marked differentially based on the vaccination status of Omicron-
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infected patients. Group 1 and 2 represent clusters established through k-means clustering, as 

described in Figure SX. (B) Individual Omicron-infected patients' vaccination status ratio 

within group 1 and group 2. A chi-squared test was conducted to confirm a significant 

difference in vaccination status proportions between the two groups. (C) Volcano plot showing 

the DASEs between Omicron groups. The x- and y-axis indicate inclusion level difference 

(𝚫PSI) and negative log10 transformed p-value. The q-value indicated corrected p-value. (D) 

Results of the top 5 terms of GO biological process and KEGG pathways enriched with the 

1,789 genes from 2964 DASEs (Omi.group1 vs. Omi.group2). (E) A subset of shared pathways 

based on 16 common DASEs identified in the T cell receptor signaling pathway (hsa04660) 

and the B cell receptor signaling pathway (hsa04662). The coloration of each gene box signifies 

the expression difference between the two groups, with solid lines indicating a direct effect and 

dashed lines representing an indirect effect. (F) Significant differential spliced events of KRAS 

(chr12:25,205,246-25,250,929) and NFATC2 (chr20:51,386,963-51,542,719) showing two 

MXE events, respectively. Inclusion levels represent the usage of spliced exons. The error bar 

indicates standard deviation of the mean. 

Figure 4. The differentially regulated splicing machinery genes among variants. (A) 

Principal component analysis of 304 genes related to RNA splicing across 190 samples. Each 

sample are marked HC and COVID-19 patients (left panel) and Omicron patients with 

vaccination status (right panel). (B) Biplot results to identify representative genes with high 

contributions in each group. (The original biplot results are shown in Fig. S3) Blue arrows 

represent genes representing the Omicron patient group, red indicates genes representing the 

Alpha and Beta infection patient groups, and black represents genes representing the HC group. 

Each gene marked with an arrow on the Biplot is displayed as a heatmap, with values indicating 

log2 fold change of gene expression levels against HC. Hierarchical clustering was performed 

with Euclidean distance matrix of fold changes. 
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STAR★Methods 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

RNA-seq data (57 Healthy controls) Lee et al.74 GSE162562 

RNA-seq data (14 Healthy controls) Lee et al.75 GSE190747 

RNA-seq data (8 Healthy controls and 9 Beta infected 
patients) 

Knabl et al.20 GSE189039 

RNA-seq data (45 Alpha infected patients and 3 Gamma 
infected patients) 

Lee et al.21 GSE190680 

RNA-seq data (8 Healthy controls and 46 Omicron infected 
patients) 

Lee et al.63 GSE201530 

Software and algorithms 

SRA toolkit (v.3.0.0) Leinonen et al.76 https://github.com/ncbi
/sra-tools 

HISAT2 (v.2.2.1) Kim et al.77 http://daehwankimlab.
github.io/hisat2 

rMATs (v.3.2.5) Shen et al.25 https://rnaseq-
mats.sourceforge.io 

Cufflinks (v.2.2.1) Roberts et al.78 https://github.com/cole
-trapnell-lab/cufflinks 

DAVID (v.6.8) Dennis et al.79 https://david.ncifcrf.go
v 

ShinyGO (v.0.77) Ge et al.80 http://bioinformatics.s
dstate.edu/go 

STRING (v.12.0) Szklarczyk et al.81 https://string-db.org 

R (v 4.3.1)  https://www.r-
project.org  

NA 
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Resource availability 

Lead contact 

Further information and requests for resources should be directed to the lead contact, Hye 

Kyung Lee (hyekyung.lee@nih.gov). 

Materials availability 

This study did not generate new unique reagents. 

 

Method details 

Data collection 

We obtained whole blood RNA-seq data from COVID-19 patients infected with four 

different variants (Alpha, Beta, Gamma, and Omicron), as well as from a group of healthy 

controls, using data from five Gene Expression Omnibus (GEO) datasets (see Table S1 for 

details)20-22,63,74,75. The healthy control group comprised 87 samples, while the COVID-19 

patient group consisted of 103 samples. To focus on early-stage infection, we exclusively 

collected data from patients who had been infected for less than one week. All raw sequences 

were downloaded and converted to FASTQ by SRA toolkit (v.3.0.0)76.  

Alternative splicing and transcriptome analyses 

The raw reads were initially subjected to preprocessing, involving the removal of poor-

quality 3' ends, utilizing the trimFastq.py script, which is an integral component of rMATs 

(v.3.2.5)25. Subsequently, the resulting cleaned reads were then mapped to the human genome 

using HISAT2 (v.2.2.1)77 with default parameter settings. Furthermore, an HISAT2 genome 

index was constructed as part of the preparation for this mapping step. To identify alternative 

splicing events, we ran rMATs with default parameters and human gene annotations. We 

utilized a widely recognized exon-based ratio metric known as the percent spliced in index 

(PSI) ratio to quantify alternative splicing events. The PSI ratio is calculated as follows: 

𝑃𝑆𝐼 =
𝐼/𝐿!

𝑆/𝐿" +	𝐼/𝐿!
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where S and I represents the number of reads mapped to the junction supporting the skipping 

and inclusion form, respectively. L signifies the effective length, which is used for 

normalization.  

To identify differential alternative splicing events (DASEs), we conducted a 

comparison of exon inclusion levels between healthy control and COVID-19 patients for each 

alternative splicing event. DASEs were defined using the following criteria: |PSI differences| 

> 0.1 and corrected P-value < 0.05. For the statistical analysis, we employed the Wilcoxon 

rank-sum test, and obtained corrected p-value by Bonferroni correction. 

 To quantify gene expression levels, we employed Cufflinks (v.2.2.1)78 to assemble 

genome-aligned reads into transcripts. The relative abundances of these transcripts were 

estimated based on the read count support for each transcript. Unless otherwise stated, we 

utilized fragments per kilobase per million reads mapped (FPKM) as the unit of gene 

expression levels. Differentially expressed genes (DEGs) were defined as genes with a 

significant expression difference between groups, characterized by a corrected p-value lower 

than 0.05 in group-to-group comparisons. The human reference genome sequence and 

annotation files were acquired from the UCSC genome browser (https://genome.ucsc.edu) 

under version hg38. Additionally, we excluded uncharacterized and alternative chromosomes 

and their associated genes from our analysis. 

Gene set enrichment and over-representation analysis 

We performed over-representation analysis for pathway enrichment of DASEs and 

DEGs using DAVID (v.6.8)79 (https://david.ncifcrf.gov) and ShinyGO (v.0.77)80 

(http://bioinformatics.sdstate.edu/go). In this analysis, we selected significant categories and 

pathways with a false discovery rate (FDR) less than 0.05 for further investigation. The gene 

set of gene ontology (GO) terms and pathways were obtained Gene Ontology resources 

(https://geneontology.org) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

database (https://www.genome.jp/kegg/pathway).  

SARS-CoV-2 susceptible genes 

SARS-CoV-2 susceptible genes were collected form PanelApp82, a resource that 

provides curated information about genes and their associations with specific diseases and 
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conditions, specifically utilizing the panel of COVID-19 research (v.1.136) 

(https://panelapp.genomicsengland.co.uk/panels/111).  

Protein-protein interaction (PPI) network analysis 

We construct a PPI network from DEGs of COVID-19 patients, specifically enriched 

in RNA splicing term (GO:0008380) by STRING database (v.12.0)81 (https://string-db.org). 

We employed stringent parameters, requiring interactions with the highest confidence 

(minimum required interaction score > 0.9) and hiding disconnected nodes in the network. 

 

Quantification and statistical analysis 

Data analysis 

Principal component analysis (PCA) was performed using the exon inclusion levels of 

all alternative splicing events by prcomp function from R stat package with the first two 

principal components. To cluster the samples based on alternative splicing profiles, we 

conducted k-means clustering, which is one of the unsupervised clustering methods. To 

determine the optimal number of clusters (k), we performed multiple analyses by setting k from 

2 to 5. Through this iterative process, we examined the saturation points of the total within sum 

of squares (SS) values and identified that the optimal value for k is 2. To assess the degree of 

gene contributions to principal components, we utilized biplots from the R stat package. The p 

values from comparing distributions were obtained by Wilcoxon rank-sum test. All p values 

were adjusted by Bonferroni correction.  
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Data and code availability 

• Differentially alternative spliced events (DASEs) data from this study is available on our 

GitHub repository: https://github.com/tjdrnjsqpf/COVID19_AS. 

• This paper does not report original code. 

• Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request. 
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Supplementary information 

Document S1. Figures S1-S3 

Table S1. RNA-seq data statistics 
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