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Extracellular matrices (ECMs) have emerged as promising off-the-shelf products to

induce bone regeneration, with the capacity not only to activate osteoprogenitors,

but also to influence the immune response. ECMs generated starting from living

cells such as mesenchymal stromal cells (MSCs) have the potential to combine

advantages of native tissue-derived ECMs (e.g., physiological presentation of multiple

regulatory factors) with those of synthetic ECMs (e.g., customization and reproducibility

of composition). MSC-derived ECMs could be tailored by enrichment not only in

osteogenic cytokines, but also in immunomodulatory factors, to skew the innate immune

response toward regenerative processes. After reviewing the different immunoregulatory

properties of ECM components, here we propose different approaches to engineer

ECMs enriched in factors capable to regulate macrophage polarization, recruit host

immune and mesenchymal cells, and stimulate the synthesis of other immunoinstructive

cytokines. Finally, we offer a perspective on the possible evolution of the paradigm

based on biological and chemico-physical design considerations, and the use of gene

editing approaches.

Keywords: tissue engineering, extracelullar matrix, immunomodulation, bone repair, innate immune system,

mesenchymal stromal cell, regenerative medicine

INTRODUCTION

Bone disorders have a worldwide prevalence since they can be derived from multiple causes,
including orthopedic trauma, cancer or congenital diseases. Since it emerged in the early 90s,
bone tissue engineering has aimed to develop innovative biological materials to improve bone
repair and regeneration (1, 2). Among different biomaterials, extracellular matrices (ECMs)
have been proposed as one of the best candidates to fabricate grafts for bone regeneration
(3). Native tissue-derived ECMs represent a physiological solution providing not only structural
support, but also multiple biomolecules capable to modulate the behavior of both resident
and recruited cells in the context of bone healing (4–6). However, they exhibit limited
reproducibility in their composition, can lead to pathogen transmission and lack the possibility
of customization. Furthermore, native ECMs are rich in immunogenic molecules that can
trigger an uncontrolled response and affect graft integration (7). Synthetic ECMs, typically in
the form of hydrogels, have been developed as tunable alternatives, with promising results
also in the context of bone repair (8). However, they still rely on the presentation of a
limited set of signals, in ways which do not entirely recapitulate physiological processes.
ECMs could be also generated from living cells, e.g., mesenchymal stromal cells (MSCs),
using typical tissue engineering paradigms, and afterwards decellularized (9, 10). The resulting
ECMs would in principle combine the advantages of a physiological system with the possibility
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of standardization (e.g., through the use of immortalized cell
lines) and tunability (e.g., by genetic modification of the cells
used) (11). Decellularization of the MSC-generated ECMs can
also be designed to improve the immunogenic properties of the
resulting material (12, 13).

Despite many advances, the need for quality improvement
of engineered ECM (either synthetic or MSC-generated) for
bone healing is still quite large (3). Along this line, ECMs
might be enriched in morphogens or angiogenic factors to
enhance bone regeneration. Importantly, multiple evidences
have revealed that a proportionated and coordinated immune
system response is essential to critically promote bone healing.
Indeed, many studies in the past years have revealed a broad
crosstalk between the skeletal and immune systems through
many shared cytokines, molecular pathways and transcription
factors. All these findings have contributed to define the so-
called osteoimmunology field, in which engineering ECMs to
modulate immune signals has become one of the spearhead
(14). In this context, current strategies do not aim to
suppress the immune response, but rather engineer ECM-
derived materials to present osteoimmunomodulatory factors
and instruct the inescapable immune response in favor of bone
regeneration (15).

In this review, we describe firstly key aspects of the interplay
between innate immunity and bone healing. Then, we highlight
how some ECM components are able to modulate the innate
immune response. Finally, we summarize different strategies
proposed for ECMs enriched with innate immunoinstructive
factors to improve bone regeneration.

INNATE IMMUNE SYSTEM IN BONE
REPAIR

All bone substitute materials, as any other foreign structure,
trigger a host immune reaction after implantation, which
recapitulates the first steps of the classical immune response after
bone injury (16, 17). In addition, implantation surgery is not
more than a controlled injury. Therefore, understanding
the immune cascade following bone injury is key to
generate immunoinstructive scaffolds capable to enhance
bone regeneration.

Immediately after any bone injury, vascular disruption
generates a hematoma and triggers a quick and potent
inflammatory reaction. Multiple blood and interstitial fluid
proteins [e.g., Factor XII and tissue factor (TF)] adsorb the
injury site and activate the blood coagulation cascade as well
as the complement system (18). In this context, activated
platelets play a critical role producing prothrombinases, which
activate thrombin serin protease and allow the amplification
of the coagulation process (19). All these proteins lead to a
transient fibrin clot formation that constitutes the matrix for
the recruitment of the first immune cells. In contrast with later
stages, the onset of the acute inflammatory response is mostly
governed by the innate immune system, whose main players are
polymorphonuclear leukocytes (PMNs, neutrophils), monocytes
and tissue-resident macrophages (20).

Circulating PMNs are quickly recruited by this
chemoattractant protein matrix to the injury site. While
they might contribute to fibrin clot formation (21), their main
roles involve the release of proteolytic enzymes to promote
tissue remodeling, and inflammatory cytokines (such as IL1β,
TNFα, IL8, MCP1, or MIP1β) to recruit other myeloid cells and
MSCs (15). Recruited monocytes release more cytokines and
differentiate into macrophages. Both monocytes derived- and
tissue resident macrophages have been revealed essential for
successful bone formation (22). The relevance of this cell type
resides in its capacity to exhibit different functional phenotypes in
response to environmental cues (23). Initially, the inflammatory
storm upon bone injury polarizes macrophages toward an
activated M1 phenotype. M1 macrophages release more
inflammatory cytokines to contribute to cell recruitment and
dead cell clearing. At later stages, macrophages are alternatively
polarized toward an anti-inflammatory M2 phenotype. These
cells secrete tissue repair factors (IL10, IL1ra, TGFβ1, or VEGFα)
to resolve the inflammation, recruit MSCs, promote angiogenesis
and induce endochondral bone formation (24). Recruited
MSCs undergo chondrogenic differentiation adjacent to the
fracture site to form bone by endochondral ossification, while
direct intramembranous ossification takes place under the
periosteum (25). Interestingly, they also play a crucial paracrine
role releasing immunosuppressive cytokines to resolve site
inflammation. Human MSCs suppress innate immune cells
migration, proliferation and differentiation through multiple
pathways including Notch and PGE-2 signaling (26). Therefore,
the coordinated crosstalk between MSCs/osteoprogenitor
cells and macrophages is critically required for successful
bone healing.

Following these principles, several studies have attempted
to improve bone regeneration modulating either macrophage
number or their polarization toward M1 or M2 phenotypes
(27). On the one hand, it has been reported that the
expression of some pro-inflammatory signals right after injury
significantly improves bone healing. As examples, TNFα
promotes postnatal intramembranous bone repair through the
induction of osteoprogenitor cell recruitment or osteogenic
cell activation (28), while IL1β administration could favor
endochondral bone formation after injury (29, 30). Similarly,
IL-6 family signaling was shown to stimulate bone formation
during the inflammatory process (31). On the other hand,
different studies have proposed that an anti-inflammatory M2
environment is more suitable for human MSC activity (32)
and delivers osteoinductive signals (33). In this regard, IL4
administration could decrease bone degradation after joint
replacement (34).

Accumulating evidences suggest that an appropriate
transition from the inflammatory M1 to the anti-inflammatory
M2 phenotype favors bone regeneration by endochondral
ossification (24, 35). However, macrophage activation and
polarization are very complex in vivo, since the exposition
to multiple signaling leads to activation of macrophages with
mixed functions. This is especially prominent in pathological
conditions, where abnormal signaling might prime macrophages
toward a profibrotic phenotype (36). Indeed, macrophage
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activation nomenclature has been recently revised to unify
criteria for the diverse experimental scenarios (37).

In the context of ECM engineering, some researchers have
used myeloid cells to improve ECM-derived grafts integration
after implantation and/or promote bone healing after trauma
or bone degeneration. Although the supplementation of ECM-
derived grafts with peripheral blood monocytes did not seem
to increase bone regeneration by itself (38), peripheral blood-
derived macrophages were reported to be essential in the
degradation and remodeling of ECM-based materials (39). Other
studies have developed strategies to generate immunoinstructive
ECMs by modulating macrophage polarization during bone
healing and promote bone formation (40). However, the success
of these approaches is often subjected to several variables like
patient health, trauma size or ECM composition.

ECM COMPOSITION AND INNATE
IMMUNITY

Many endogenous ECM components exhibit important
immunomodulatory features that can decisively influence
the innate immune response in vivo (41, 42). For example,
the collagenous network is, together with the proteoglycans,
the main component of bone tissue ECM that defines its
mechano-physical features. However, collagen fibers exhibit
motifs that can interact with some immune cell receptors. In
particular, macrophages can specifically adhere to denatured
forms of collagen type I fibers through their scavenger receptors
(43). Furthermore, collagen fibers have been reported to affect
metalloproteinase 9 (MMP9) secretion on the macrophage-like
U937 cell line (44).

Hyaluronic acid is one of the most important
glycosaminoglycan of native ECMs and it has been proposed
to play a dual immunomodulatory role based on its molecular
weight. Whereas, intact high molecular weight hyaluronic
acid has a prominent anti-inflammatory effect inducing IL10
production by macrophages, damaged low molecular weight
hyaluronic acid promotes a pro-inflammatory phenotype
stimulating TNFα expression (45). Interestingly, this immune
cells-hyaluronic acid crosstalk seems to be bidirectional, since
monocyte activation can modulate its binding to hyaluronic
acid too. More specifically, TNFα promotes monocytes-
hyaluronic acid interactions through CD44 receptor, while IL4
administration is sufficient to abrogate this effect (46). Heparan
sulfate, another important glycosaminoglycan that binds to
ECM proteins to form proteoglycans, can also interact with
the immune system to regulate cell adhesion, the availability of
immune cytokines and leukocyte migration (47).

Importantly, not only components of native ECM have been
reported to modulate the innate immunity. Fibrin is a molecule
often used to build synthetic ECMs, which has been also shown
to modulate macrophages behavior. This protein derives from
fibrinogen after thrombin proteolytic activity and it is involved
in the hemostatic clot formation after injury (48). Several studies
have reported that fibrin could facilitate or block macrophages
migration depending on its abundance in the matrix (49), and

inhibit their pro-inflammatory properties (50). In contrast, fibrin
degradation products induce leukocyte recruitment (51) and
promote pro-inflammatory (IL1β, IL6) cytokines secretion by
monocytes in vitro (52).

ECMs can also contain cryptic domains very similar to
immune cytokines that are only exposed after proteolytic
activity by metalloproteinases. In non-physiological conditions,
the aberrant expression of these domains by exacerbated
tissue remodeling can influence immune cell activation
and survival (53, 54). Moreover, the decellularization step
followed to generate non-immunogenic off-the-shelf grafts
could also condition the immunomodulatory properties of
ECM components. Pioneering work from Badylak using the
bladder system showed that decellularized grafts preferentially
induce an anti-inflammatory macrophage polarization,
while cellular components trigger a pro-inflammatory
polarization (55, 56).

Furthermore, different types of ECMs seem to induce
a different innate immune response in vivo. For example,
decellularized bone-derived ECM has a higher capacity to induce
monocytes recruitment than cardiac ECMs, which might reflect
the differential molecular composition of these matrices (57).

In summary, ECMs exhibit intrinsic immunomodulatory
features which are mostly determined by their molecular
composition. Therefore, a precise knowledge of the components
of ECMs is essential to further develop their immunomodulatory
properties with extrinsic factors.

EXOGENOUS DELIVERY OF SPECIFIC
IMMUNOREGULATORS IN ENGINEERED
ECMs TO MODULATE THE INNATE
IMMUNE RESPONSE

In order to modulate the innate immune response upon
implantation, pro-inflammatory or anti-inflammatory
cytokines can be directly delivered into the grafts. To
antagonize the pro-inflammatory effect of IL1β, inhibitors
of IL1R1/MyD88 signaling were covalently cross-linked into
fibrin matrix to improve MSC-based bone regeneration in
mice (58).

Immune cytokines could be also delivered sequentially in
order to facilitate the transition between the inflammatory
and anti-inflammatory phases during bone healing. For
instance, Spiller et al. physically adsorbed IFNγ onto the
scaffolds and attached IL4 using biotin-streptavidin binding
to drive the sequential polarization of macrophages from M1
to M2 phenotype. These scaffolds also exhibited increased
vascularization upon in vivo implantation, which proved their
functionality (59). Along the same line, another study confirmed
that IL4 released from a nanometer-thickness coating is critical
promoting the M1-to-M2 transition during bone tissue repair
and improving implant integration (60). Recently, Schlundt
et al. further demonstrated the importance of M2 macrophages
to induce endochondral ossification in the context of bone
healing. Indeed, they added IL4 and IL13 to the collagen scaffolds
prior to insertion in an osteotomy model. In this way, they
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stimulated M2 macrophage polarization and improved bone
regeneration (24).

In addition to interleukins, synthetic peptides represent an
alternative way to modulate the immunomodulatory features
of ECMs. The peptide Arg-Gly-Asp (RGD), contained in
basement membranes components such as entactin or presented
in photopolymerizable poly(ethylene glycol) (PEG)- based
hydrogels, has been shown to enhance myeloid cells adhesion
to the ECM (61, 62), while it induces macrophage polarization
toward an anti-inflammatory profile via integrins interactions
(63). As another example, a synthetic peptide binding to
LAIR1, a receptor expressed in multiple immune cells, has
been reported to reduce pro-inflammatory cytokines release
by BM-derived macrophages. Interestingly, this effect was only
observed when the peptide was linked to the scaffold surface
(64). On the other side, TP508, a synthetic 23-aminoacid peptide
representing a receptor-binding domain of human thrombin,
promotes bone healing in a rat femoral fracture model by
inducing inflammatory mediators release and angiogenesis (65).
Adsorbed fibrinogen or scaffolds made of this material could
also elicit a favorable immune response and improve the
osteogenic capacity in a critical size bone defect in rats (66,
67). Among lipid compounds, specific prostaglandin agonists
administration could enhance bone formation after injury
avoiding systemic inflammation induction (68, 69). For example,
prostaglandin E EP4 receptor agonist was shown to synergize
with BMP2 and activate osteoprogenitor cells when delivered
in a biodegradable copolymer composed by poly-D,L-lactic
acid with random insertion of p-dioxanone and polyethylene
glycol (70).

The anti-inflammatory properties of glucocorticoids
are well-known. In particular, dexamethasone delivery in
polydimethylsiloxane-based 3D scaffolds has been used to
promote macrophage polarization toward an anti-inflammatory
(M2) phenotype and suppress inflammatory pathways during
the first week post-implantation (71). Dexamethasone delivery
using poly (lactic-co-glycolic acid) microsphere/polyvinyl
alcohol hydrogel composites has been shown to elicit an anti-
angiogenic effect which could be overcame by co-administering
VEGF (72).

Different approaches have been here discussed to deliver
immunoregulatory factors into ECM in order to instruct the
innate immune response in vivo. Nevertheless, the delivery of
exogenous factors is subjected to several drawbacks including
poor matrix penetration, diffusion, enzymatic degradation
and thus uncontrolled doses. In addition, the delivery of few
specific agents has been revealed inefficient in triggering a
complete immune response in vivo. For this reason, different
strategies have been developed to control the spatial and
temporal delivery (73–75). Among them, 3D multilayer
systems and intelligent hydrogels have been tested for the
sequential release of several factors to ECM-based scaffolds
(76, 77). Biomimetic biomaterials, like hydrogels, have been
developed to achieve a molecular-level modulation. This includes
strategies to immobilize incorporated factors by cross-linking
and approaches based on protease-dependent degradation to
release them (78). Other options to engineer immunoinstructive

ECMs directly target MSCs or immune cells to modulate
the natural production and release of immune factors
by these cells.

ECM-DRIVEN ENDOGENOUS SYNTHESIS
OF IMMUNOREGULATORS BY HOST
CELLS TO MODULATE THE INNATE
IMMUNE RESPONSE

Aiming to generate ECM grafts instructed to trigger a more
physiological immune response, many researchers have tried
to use several biological agents to stimulate host MSCs and/or
immune cells to deliver key immune cytokines and enhance
bone formation. Macrophage recruitment is critical for dead
tissue clearance and modulate the inflammatory cascade in
bone healing. Kim et al. used a sphingosine-1 phosphate
agonist in combination with platelet-rich plasma to sequentially
induce pro-inflammatory (TNFα) and anti-inflammatory (OPG,
IL10, and TGFβ1) signals in order to promote macrophages
recruitment and enhance bone healing (79). In contrast, adding
high sulfated hyaluronan to collagen I-enriched ECMs impairs
the secretion of IL1β, IL8, IL12, and TNFα, while it enhances the
production of IL10 and CD163 expression in macrophages (80).

Interestingly, inorganic compounds like magnesium-doped
calcium phosphate cement are also able to elicit a favorable innate
immune reaction modulating macrophage activity to improve
osteogenesis and angiogenesis. This compound represses TNFα
and IL6 expression while it upregulates TGFβ1 in macrophages
(81). Beyond macrophage activation, immunoregulators have
been also used to modulate MSC behavior. For example, the
combination of RGD peptide and 3D hyaluronic acid hydrogels
can influence MSC integrin expression (82).

To sum up, these studies attempt to improve bone
regeneration by targeting endogenous MSC/immune cells to
produce themselves the cues critical for an orchestrated repair
upon bone injury (83).

CONCLUSIONS AND PERSPECTIVES

In this work, we have reviewed some relevant aspects of the
interplay between the innate immune system and osteogenesis
in the context of bone healing. Then we have focused on the
interactions between ECM components and innate immune cells
to finally discuss some strategies followed to immune-instruct
ECMs. However, many other critical aspects have not been
discussed here.

As previously mentioned, the innate immunity plays an
essential role during the initial phases after bone injury,
promoting cell immunorecruitment and modulating the
inflammatory environment (M1-to-M2 paradigm). Importantly,
the adaptive immune response takes slowly part in this regulation
to instruct the bone formation phase. Multiples studies have
attempted to engineer ECM-based materials to modulate
the adaptive immune response, specially targeting T cells
(84). Indeed, many efforts are currently conducted to better
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coordinate the activity of both branches of the immune response
after engineered graft implantation.

We have discussed how different ECM components, even in
the absence of immunomodulatory factors, could modulate the
innate immune response. The works studying these interactions
reveal that ECM composition is an important factor to consider
prior to any further immunoregulatory engineering. However,
beyond its chemical properties, ECM physical features can also
decisively modulate the immune response in vivo (85). Therefore,
strategies to enrich ECMs in immunoinstructive factors should
be coupled with the engineering of endogenous physical and
chemical properties of the ECM used (86).

Different approaches have been proposed to improve the
spatiotemporal delivery of growth factors to engineer “smart”
ECMs. However, in most cases they only focus on osteogenic and
angiogenic factors. Immunomodulatory ECM-like microspheres
have been recently used to improve IL4 delivery and accelerate
bone regeneration modulating macrophage polarization (87).
Future studies should aim to a coordinated delivery of osteogenic,
angiogenic and immune factors according to the natural stages of
bone healing.

Genetic manipulation of MSCs has also emerged as an
alternative to better control the dose and temporal delivery
of osteogenic and angiogenic factors into engineered ECMs
to improve bone regeneration process (88). Genetically
modified MSCs could contribute directly to bone formation
promoting osteoprogenitor cells differentiation, but also
indirectly enhancing host cells recruitment. The most followed
approaches involve the expression of the osteoinductive bone
morphogenetic protein (BMP) family factors to stimulate

bone repair. In particular, BMP2-overexpressing cells have
been successfully used to speed up the repair of critical-size
bone defects in rodent models (89, 90). Other overexpressed
factors like Osterix aimed to induce osteogenic differentiation
(91, 92). As a master regulator of angiogenesis, VEGF has
been overexpressed in different cell types to favor tissue
vascularization (93). A VEGF-overexpressing MSC line gives rise
to ECMs with high VEGF content and superior vasculature in an
ectopic implantation model (11). In addition to its angiogenic
properties, VEGF could also modulate the immune response
(94). Similarly, sphingosine 1-phosphate has been reported to
enhance vascularization and bone formation (95), but at the
same time it also plays multiple roles in the innate immunity
(96). These works represent examples of how MSC can be
genetically engineered to generate ECMs enhancing osteogenesis
and vasculogenesis. An analogous approach could be pursued to
overexpress specific osteoimmunomodulatory factors and thus
generate immunoinstructive ECMs (Figure 1). In this context,
MSCs overexpressing IL4 and IL10 have been proposed as
promising tools to mitigate chronic inflammation diseases (such
as arthritis) and promote tissue regeneration (97, 98). However,
their capacity to generate immunoinstructive ECMs have not
been yet explored. Moreover, the development of inducible cell
lines might represent an interesting refinement to control the
temporal expression of these key genes (98). Delivering candidate
genes efficiently into the cells without viral vectors (which may
carry safety concerns) remains an open challenge (99).

In summary, important advances have been achieved in the
last years to improve the quality of immunoinstructive ECM-
derived grafts and their immunogenicity after implantation.

FIGURE 1 | Different in vitro approaches followed to deliver immunoregulators into ECM-derived scaffolds and their interactions with the innate immune system in

vivo. (A) Immunoregulators can be directly supplemented and anchored into MSC-derived ECMs. (B) Alternatively, MSCs can be genetically edited to overexpress

immunoregulators and seeded on scaffolds, where they will produce an ECM enriched in those factors. The tissues are later decellularized to generate cell-free ECMs.

In vivo, these immunoinstructive ECMs can activate innate immunity at different levels: (C) induce macrophage polarization toward an anti-inflammatory M2

phenotype, (D) recruit immune cells, and (E) induce the secretion of immune cytokines by recruited mesenchymal stromal cells and macrophages (M8).
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In the context of ECM engineering, immunoregulators can
be exogenously delivered to enrich the biomaterial in specific
cytokines and/or stimulate the endogenous synthesis of
other factors by host cells. In this perspective, genetically
modified MSCs represent a relevant alternative to control
the spatiotemporal delivery of immunoregulators in order
to engineer immunoinstructive ECMs promoting efficient
bone repair.
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