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Waveform analysis of compound muscle action potential (CMAP) is important in the

detailed analysis of conduction velocities of each axon as seen in temporal dispersion.

This understanding is limited because conduction velocity distribution cannot be easily

available from a CMAP waveform. Given the recent advent of artificial intelligence, this

study aimed to assess whether conduction velocity (CV) distribution can be inferred

from CMAP by the use of deep learning algorithms. Simulated CMAP waveforms were

constructed from a single motor unit potential and randomly created CV histograms

(n = 12,000). After training the data with various recurrent neural networks (RNNs), CV

inference was tested by the network. Among simple RNNs, long short-term memory

(LSTM) and gated recurrent unit, the best accuracy and loss profiles, were shown

by two-layer bidirectional LSTM, with training and validation accuracies of 0.954 and

0.975, respectively. Training with the use of a recurrent neural network can accurately

infer conduction velocity distribution in a wide variety of simulated demyelinating

neuropathies. Using deep learning techniques, CV distribution can be assessed in a

non-invasive manner.

Keywords: demyelination, conduction, deep learning, recurrent neural networks, nerve conduction studies

INTRODUCTION

A diagnosis of demyelinating neuropathy is significantly dependent on neurophysiological test
results, as noted in the diagnostic criteria for chronic inflammatory demyelinating polyneuropathy,
and Guillain–Barré syndrome (1, 2). Findings of nerve conduction studies, including conduction
slowing, partial conduction block (CB), and abnormal temporal dispersion (TD), can suggest
the presence of demyelinating neuropathy. Of those, TD is obtained by summating the peaks of
opposite polarity generated by fast- and slow-conducting axons in a normal condition as well as
peripheral neuropathy, (3) while its magnitude is pathologically augmented by greater degrees of
conduction slowing caused by demyelination. Thus, the morphological evaluation of compound
muscle action potential (CMAP) is critical for understanding underlying demyelination in terms of
its degree, and variability in patients with demyelinating neuropathies.

A number of physiological studies have investigated conduction velocity (CV) distribution
of individual axons. Methods used to directly measure CVs from individual axons include the
near nerve technique, selective nerve fiber stimulation using special tungsten microelectrodes,
F-wave-based testing, and collision-based testing (4). However, these techniques can be invasive
and time-consuming, with a limited number of samples obtained, and are not widely utilized
in clinical settings. Thus, methods based on the analysis of compound muscle or sensory
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action potential have been proposed. It is well known that
compound motor action potential and sensory nerve action
potential (SNAP) can be calculated from single fiber action
potential by simply performing a summation of each component.
It is considered that CV distribution can be measured if the
inverse problem could be solved, namely, calculation of single
fiber action potential from CMAP or SNAP. However, in many
cases, the solution is not straightforward, as each single fiber
action potential is not separable from others, and TD changes
the morphology of CMAP and SNAP. A number of mathematical
solutions have been proposed, such as for comparing two
compound action potentials recorded from the same site with
stimulation at different sites (4).

The recent advent of artificial intelligence has been utilized
in various medical science areas. The results obtained in nerve
conduction studies are regarded as time-series data, which are a
series of data points ordered by time. In EEG and sleep studies,
such time-series data have been utilized for a technique termed
recurrent neural network, and its variations (5, 6). We speculated
that by the use of artificial intelligence, especially deep learning,
the above-mentioned “inverse problem” could be solved by deep
neural networks, i.e., calculation of single fiber action potential
from the compound action potential to obtain CV distribution of
each axon.

The aim of the present study was to apply time-series
analysis with deep learning to infer CV distribution from CMAP
waveforms. To achieve this goal, we used a simulation study
to obtain correlation data between CMAP waveforms, and CV
distributions by providing large numbers of such paired data to
be trained by deep neural networks.

METHODS

Preparation of CMAP Waveforms
Preparation of Single Motor Unit Potential
A representative single motor unit potential (sMUP) was
obtained from a published waveform recording obtained by
stimulating the median nerve, and recorded from the abductor
pollicis brevis (APB) of a healthy subject (7). Although the
recording method was not specified in the manuscript, it was
assumed to be incremental based on the description shown in
the panel. The waveform was digitized by manual plotting using
the freely obtainable software package Plot Digitizer (http://
plotdigitizer.sourceforge.net/). A digitized sMUPwaveform from
0 to 15ms was then applied with a one-way cubic spline for
data smoothing and curve-fitting (SRS1 Cubic Spline for Excel;
SRS1 Software, LLC, Newton, MA, USA). After obtaining CMAP
amplitudes at every 0.01ms from the cubic spline, the amplitudes
were set to 0mV between 0–3.5 and 12.1–15ms in order to
not include stimulation artifacts and background noise for the
summation of sMUP to organize CMAP. Data points obtained
every 0.1ms (0–15ms, total of 150 time points) were then used

Abbreviations: AI, artificial intelligence; APB, abductor pollicis brevis; CB,

conduction block; GRU, gated recurrent unit; LSTM, long short-term memory;

MUNE, motor unit number estimate; NCS, nerve conduction study; RNN,

recurrent neural network; TD, temporal dispersion.

for the preparation of CV distribution in order to reduce the
amount of data.

Preparation for CV Distribution
The simulation was performed using the median nerve, with
two stimulation sites at the wrist and elbow. The distance from
the recording (APB) to the stimulation site at the wrist was
arbitrarily set to 70mm, and the distance between the two
sites from the wrist to the elbow was 200mm. For calculation
purposes, conduction between the wrist and APB was considered
to be normal, whereas various degrees of demyelination were
present between the wrist and elbow. In both the distal and
forearm segments, nerve conduction velocities were determined
as, respectively uniform without focal conduction slowing in the
short segment. In the case of CB, the CMAP amplitude was set to
zero at all time points.

The distribution of CV as a histogram was obtained from
a study performed by Elzenheimer et al. (8) who compiled
clinical data from two studies that presented recordings from
healthy subjects (9, 10) showing the relative frequencies for each
2 m/s velocity range. We digitized their published histogram to
extract the number of axons at each interval from 38 to 64 m/s.
The number of axons was set at 200 using a multiple motor
unit number estimate technique previously reported (11). The
results were used as a prototypical histogram of a normal nerve
(Table 1).

Preparation of Modeled Demyelination
In order to construct CMAPwaveforms as seen in demyelination,
two manipulations of the normal histogram created above were
performed (Table 2). First, six patterns of CV slowing that
applied to all the conducting axons were defined. Pattern 1 (“all
range”) sets the CV of each axon at the same or slower than
the original CV, with the slowest being 11 m/s. For example, the
axon with the original CV of 53 m/s was randomly assigned a
CV value of 53, 51, 49, . . . , 15, 13, or 11 m/s using a program
written in Python. As for pattern 2 (“severe range”), each axon

TABLE 1 | Distribution of conduction velocities in a normal model (8).

Conduction velocity (m/s) Number of axons (total 200)

63 1

61 2

59 2

57 6

55 18

53 30

51 42

49 39

47 27

45 17

43 9

41 4

39 2

37 1
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TABLE 2 | Patterns of demyelinating models.

Type Method

No conduction block

[CB (–)]

#1 (without CB1) CV in entire range (unchanged or slower than the

original CV)

#2 (without CB2) CV slowing to severe range (11–19 m/s)

#3 (without CB3) CV slowing to moderate range (21–35 m/s)

#4 (without CB4) CV slowing to mild range (up to 8 m/s slower than

the original CV)

#5 (without CB5) CV slowing to moderate range 2 (up to 20 m/s

slower than the original CV)

#6 (without CB6) CV slowing in two distributions (up to 8 m/s or up to

11–19 m/s slower compared to the original CV)

With conduction block

[CB (+)]

40% chance of conduction block in each axon

#1 (with CB1) CV in entire range (unchanged or slower than the

original CV)

#2 (with CB2) CV slowing to severe range (11–19 m/s)

#3 (with CB3) CV slowing to moderate range (21–35 m/s)

#4 (with CB4) CV slowing to mild range (up to 8 m/s slower than

the original CV)

#5 (with CB5) CV slowing to moderate range 2 (up to 20 m/s

slower than the original CV)

#6 (with CB6) CV slowing in two distributions (up to 8 m/s or up to

11–19 m/s slower compared to the original CV)

CV, conduction velocity.

was randomly assigned 19, 17, 15, 13, or 11 m/s, while each in
pattern 3 (“moderate range”) was randomly assigned 35, 33, 31,
. . . , 25, 23, or 21 m/s. Each axon in pattern 4 (“mild range”) was
assigned a value up to 8 m/s slower than the original CV value.
For example, an axon at 53 m/s CV was assigned either 53, 51, 49,
47, or 45 m/s. For pattern 5 (“moderate range 2”), the axons were
assigned a value up to 20 m/s slower. For example, an axon at 53
m/s CV was assigned 53, 51, 49, . . . ., 37, 35, or 33 m/s. Axons in
pattern 6 (“two distributions”) were assigned a value either up to
8 m/s slower or 11–19 m/s for severe slowing. For example, an
axon at 53 m/s CV was assigned 53, 51, 49, 47, 45, 19, 17, 15, 13,
or 11 m/s. The sets of CV slowing in these patterns did not have
a CB; thus, they were listed as CB (–).

Next, data sets of CV distributions with CB were created. Six
patterns of CV distribution similar to those noted above were
separately created; then, some of the axons were assigned to an
amplitude of zero throughout the duration to simulate CB. Each
axon had a 40% chance of CB. These sets were listed as CB (+).

The master waveform of sMUP, created as noted in the
section above, was then used to create CMAP waveform data
by horizontally shifting the original waveform. For example, the
original CV of 53 m/s in the fiber and the demyelinating CV of
45 m/s in the forearm were calculated to have distal latency based
on the distance of 70mm from the wrist to APB, while latency at
the elbow was calculated based on 200mm from wrist to elbow.
After calculating and shifting each sMUP with the respective CV
value, the sMUPs were superimposed to create the final CMAP
data. According to the calculations, histograms and CMAP data
were created for each group (1,000 each; total of 12,000). For use

in training and testing by the deep neural network, the data were
randomly split into training (80% of total, 9,600 sets) and test
(20% of total, 2,400 sets) data. The obtained data were composed
of 251 points (“waveform data”) of amplitudes (mV) of the final
CMAP (0–25.0ms), and the number of axons for the respective
CV (“correct label”) (total number 28; 0, 11, 13, . . . , 61, and 63
m/s). Figure 1 shows the representative waveforms of CMAPs
and velocity histograms.

Training and Testing by Deep Neural Network
Training and testing using a deep neural network were performed
with TensorFlow 2.4. Data prepared as described above were
fed into deep neural networks. The sequential Keras model
was used, with the following parameters: epoch, 1,000; dropout
rate, 0.5; number of hidden layers, 1,000; batch size, 2,048; loss,
mean squared error; optimizer, adam; metrics, accuracy; early
stopping, monitor “loss”; patience, 2. The following recurrent
networks were also employed using the standard Keras functions:
simple recurrent neural network (simple RNN), long short-
term memory (LSTM), gated recurrent unit (GRU), bidirectional
LSTM, and bidirectional GRU. Additionally, the number of layers
was changed (one, two, or three) for LSTM, bidirectional LSTM,
GRU, and bidirectional GRU. For prediction, the number of the
axons at each CV was rounded off and compared with the correct
label. A summary of the overall process is presented in Figure 2.

RESULTS

Representative curves for loss and accuracy are shown in
Figure 3, both of which showed a steady decrement or increment
without developing overfitting. The training results summarized
by each network are presented in Table 3. Overall, the LSTM
network showed a higher accuracy and fewer losses than simple
RNN, while GRU had a slightly lower accuracy, and more losses
than LSTM. Furthermore, bidirectional LSTM showed a higher
accuracy and fewer losses as compared to unidirectional LSTM.
Regarding the number of recurrent layers, two layers showed
the highest accuracy and the fewest losses. In summary, the best
results were obtained with two-layer bidirectional LSTM, which
showed a training accuracy of 0.954.

Next, in order to identify accuracy and loss by the various
simulation sets, those in the respective subsets were calculated
(Table 4). Overall, subsets with no CB tended to show a higher
accuracy and fewer losses than those with a CB. There were
variations regarding accuracy and loss found in each dataset,
with subtype pattern 4 (mild range conduction slowing with or
without CB) showing the lowest accuracy and greatest number
of losses.

Finally, the network with the best accuracy/loss profile (i.e.,
two-layer bidirectional LSTM) was used to infer test data.
As shown in Figure 4, those velocity histograms satisfactorily
predicted true values regardless of the absence or presence of a
CB or CV range.

DISCUSSION

In this study, deep learning of simulated CMAP waveforms
was performed to infer CV distribution. The use of a two-layer
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FIGURE 1 | Representative compound muscle action potential waveforms and conduction velocity histograms for each group. (A): normal; (B): w/o CB1; (C): w/o

CB2; (D): w/o CB3; (E): w/o CB4; (F): w/o CB5; (G): w/o CB6; (H): w CB1; (I): w CB2; (J): w CB3; (K): w CB4; (L): w CB5; (M): w CB6 (see Table 2 for

group definitions).

bidirectional LSTM network showed the best results for accuracy
and loss. As a result, the simulated CV distributions were
satisfactorily inferred by the deep learning network.

Application of Recurrent Neural Networks
to CMAPs
CMAPs are composed of time-series signals that change their
amplitude over time, and various methods have been used to
process and analyze time-series signals. The earlier proposed

time-series analysis systems were largely based on handcrafted
techniques, which were followed by systems based on feature
extraction and machine learning. That trend showed a further
advancement with the recognition of deep neural networks as
powerful tools to consider various type of signals, including
images and time-series signals.

Neural signals are a good example of time-series signals
and have been analyzed using the methods noted above
(12). On the other hand, CMAPs have not been studied
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FIGURE 2 | Overall flow of the study. sMUP, single motor unit potential; CMAP,

compound muscle action potential.

with the use of deep learning-based methodologies,
presumably because of their straightforward signal
characteristics and relative lack of morphological complexity.
However, once a CMAP is taken as the summation of a
few 100 composite waves of single MUPs, the situation
dramatically changes and a CMAP becomes a complex target
to analyze.

An RNN is a type of artificial neural network that uses
sequential or time-series data. These networks are designed to
recognize sequential characteristics in data and use patterns
for prediction and thus are used in signals and languages.
To improve RNN so as to avoid the vanishing gradient
and exploding gradient problems, LSTM became utilized for
longer data sequences. Thereafter, GRU was introduced as an
alternative of LSTM to reduce the number of calculations.
Bidirectional LSTM and bidirectional GRU are sequence
processing models that consist of two LSTMs or GRUs, one
that receives input in a forward direction and the other in
a reverse direction. Another advancement has been provided
by use of multiple layers of recurrent networks. Such complex
neural network structures were used to analyze CMAPs
in the present study, and they showed the superiority of
bidirectional networks as compared to their unidirectional
counterparts with both LSTM and GRU. On the other
hand, the use of multiple layers gave mixed results, as two
layers showed better results than a single layer, while a
three-layer network had a decreased accuracy. That decrease

FIGURE 3 | Losses and accuracy of training for the representative network (bidirectional long short-term memory, two layers, 1,000 epochs) using a whole dataset.
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TABLE 3 | Network comparison (1,000 epochs).

Number of

layers

Training

loss

Training

accuracy

Validation

loss

Validation

accuracy

Simple recurrent

neural network

1 23.043 0.929 8.387 0.930

Long short-term

memory (LSTM;

unidirectional)

1 16.572 0.933 3.225 0.965

2 3.419 0.937 1.519 0.976

3 5.002 0.922 2.137 0.959

Bidirectional

LSTM

1 9.603 0.930 2.201 0.963

2 1.831 0.954 0.752 0.975

3 3.115 0.943 1.130 0.974

Gated recurrent

unit (GRU;

unidirectional)

1 15.722 0.925 3.026 0.958

2 3.077 0.938 1.430 0.967

3 5.482 0.919 2.120 0.962

Bidirectional

GRU

1 9.087 0.933 1.829 0.966

2 1.988 0.955 0.783 0.975

3 3.349 0.939 1.33 0.972

with a complex neural network structure would be due
to overfitting.

Non-Invasive Assessment of CV
Distribution
Rhee et al. (13) studied the effects of phase cancellation
on the amplitudes of CMAPs with computer simulation in
an animal study, and showed the significance of the fastest
conducting fibers for determining the amplitude and area of
a CMAP. Later, Van Asseldonk et al. (14) proposed novel
diagnostic criteria for CB and TD in the forearm segment
of the median nerve using simulations with the surface-
recorded MUAPs. Recently, those early results presented by
Rhee et al. were challenged by Elzenheimer et al. (8), as
they noted that the CMAPs were obtained in that study by
weighted summation of only a single-representative sMUP from
an animal study that showed an apparently different sMUP
morphology from that seen in humans. Other studies have
conducted measurements of slower-conducting fibers with a
collision technique and the use of single fiber electromyography
(15, 16), though those techniques are time consuming, and not
readily available for daily clinical practice. To the best of our
knowledge, no previous report has presented findings obtained
by non-invasive inference of CV distribution using a deep
learning method.

Limitations
This study has some limitations, including the simulation-based
design with a single sMUP used to represent the remaining
sMUPs. Keenan et al. (17) examined the influence of motor

TABLE 4 | Results with each dataset [bidirectional long short-term memory

(LSTM) with two LSTM layers, 1,000 epochs].

Conduction

velocity (CV)

slowing type

Conduction

block

Training

loss

Training

accuracy

Validation

loss

Validation

accuracy

1 (without CB1) Absent 0.141 0.983 0.109 0.980

2 (without CB2) 0.082 0.991 0.031 1.000

3 (without CB3) 0.223 0.983 0.090 0.970

4 (without CB4) 3.786 0.956 2.752 0.945

5 (without CB5) 0.462 0.978 0.160 0.990

6 (without CB6) 0.218 0.988 0.114 0.990

1 (with CB1) Present 0.187 0.974 0.105 0.985

2 (with CB2) 0.211 0.980 0.096 1.000

3 (with CB3) 0.352 0.965 0.092 0.985

4 (with CB4) 1.789 0.976 0.823 0.985

5 (with CB5) 0.719 0.964 0.321 0.960

6 (with CB6) 0.244 0.984 0.092 0.985

(1), conduction velocity slower in all ranges (original velocity 11 m/s).

(2), CV slowing to 11–19 m/s.

(3), CV slowing to 21–35 m/s.

(4), CV up to 8 m/s slower than the original velocity.

(5), CV up to 20 m/s slower than the original velocity.

(6), CV up to 8 or 11–19 m/s slower than the original velocity.

unit properties on the size of simulated evoked surface EMG
potential and reported that ∼7% of the motor unit potentials
were responsible for 50% of the size of the evoked potential.

The CMAP in the present study was obtained by the summation
of 200 motor units with identical morphology. More precise
reproduction would be available by simulating with a group
of non-uniform sMUPs, which was also recently proposed by
another group (8). Furthermore, the CMAP did not cover a
potentially observable morphology in an actual nerve conduction
study. With the present method, we initially randomized the
CV distribution rather equally to all potential candidates, which
resulted in a similar CV distribution and CMAP morphology,
and randomization was performed with a significant weight shift
to create variable waveforms. We admit that neurophysiological
estimate has some limitations. One good example is motor
unit number estimate that is based on the paradigm that a
summated value for the total motor unit population within a
nerve is divided by a value representing the average sMUP to
yield an estimate. Similar to motor unit number estimate, the
velocity estimate in the present study has an inherent limitation
to the accuracy of the results in comparison to the ground
truth that is not easily available. On the other hand, both
methods should be useful in the longitudinal comparison of
a single subject in order to monitor the clinical improvement
or decline.

Finally, this study was limited to the forearm segment of the
median nerve, and other nerve segments should be separately
investigated. The conduction features characteristic for each
nerve segment should also be taken into consideration, such
as the effects of phase cancellation and far-field potentials
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FIGURE 4 | True and predicted values of representative data (two-layer bidirectional long short-term memory; 10,000 epochs). The vertical lines show the number of

axons at the respective conduction velocities, and horizontal lines predicted the numbers of axons. (A): without CB1; (B): without CB3; (C): without CB6; (D): with

CB3; (E): with CB6 (see Table 2 for group definitions).

(18, 19). The present results can be applicable to other
nerves and/or other nerve segments by altering the parameters,
such as the number of axons, inter-stimulating distance, and

velocity histogram. We admit that the present study was a
proof-of-concept project which was indeed successful from
the authors’ perspective. We applied the model to a recorded

Frontiers in Neurology | www.frontiersin.org 7 July 2021 | Volume 12 | Article 699339

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Nodera and Matsui LSTM for Conduction Velocity Estimation

CMAP waveform in a patient with neuropathy. However, the
inference of the CV estimate was not comparable with the
truth which cannot be made available from a live patient.
One rough estimate would be measurement with a single-fiber
EMG, but only part of axon conduction can be assessed by
the method.

Clinical Significance
The waveform analysis of CMAPs is an important process
to elucidate the underlying pathological features for care
of patients with demyelinating neuropathies, and fascicle-to-
fascicle variation of conduction velocities implies their presence.
Tuncer et al. (20) reported an animal diabetic model that
showed CV distribution abnormality earlier as compared to
the conventional measures of a nerve conduction study.
Furthermore, a detailed knowledge of the conduction of each
axon would be useful for the serial evaluation of affected
patients as that could identify interval clinical changes. We
consider that the non-invasive inference of CV distribution
and frequency of CB should be recognized as a “non-
invasive nerve biopsy” procedure, as important information can
be obtained.

Of note is the fact that training the model requires computer
resources, including graphics processing units. Inference is, on
the contrary, straightforward and available with a less powerful
computer or even a smart phone. Therefore, the technology

would be easily available with a regular EMG machine or a
smart phone.
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