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Abstract: The diagnostic and prognostic potential of the vast quantity of publicly-available 

microarray data has driven the development of methods for integrating the data from 

different microarray platforms. Cross-platform integration, when appropriately implemented, 

has been shown to improve reproducibility and robustness of gene signature biomarkers. 

Microarray platform integration can be conceptually divided into approaches that perform 

early stage integration (cross-platform normalization) versus late stage data integration 

(meta-analysis). A growing number of statistical methods and associated software for 

platform integration are available to the user, however an understanding of their comparative 

performance and potential pitfalls is critical for best implementation. In this review we 

provide evidence-based, practical guidance to researchers performing cross-platform 

integration, particularly with an objective to discover biomarkers.  
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1. Introduction 

The discovery of highly-reliable biomarkers from high-dimensional microarray data is an important 

goal in molecular medicine, with wide-ranging clinical applications. Potential roles for biomarkers 

include early detection of disease in healthy individuals, disease classification, prognosis, prediction of 

response to therapy, and as surrogate outcomes in clinical trials [1]. The ideal biomarker is inexpensive, 

robust, easily interpretable, well-validated, and clinically useful (e.g., improving prognosis or choice of 

therapy) compared to current standards of practice, meaning that the result is “actionable, leading to 

patient benefit” [1]. Publicly-available microarray data has vast potential to serve as a source of 

biomarker discovery as there is an enormous quantity of existing gene expression data [2,3]. At the 

present time, the Gene Expression Omnibus, a repository of array- and sequence-based expression data, 

currently contains 1,413,278 samples performed on 14,346 platforms [4]. The most widely known of 

these platforms include the Affymetrix GeneChips (in situ synthesized oligonucleotide microarray) and 

the Illumina high-density bead arrays [5]. While other types of microarrays exist, such as protein and 

microRNA [6,7], this review will focus on integration of gene expression data from multiple cDNA 

microarray platforms as it relates to the discovery of gene signatures that may serve as biomarkers for 

clinical applications. The integration of multiple data types (e.g., transcriptomic and proteomic data) has 

been proposed [8], however this is also beyond the scope of our paper. 

While microarrays measure the expression of thousands of genes simultaneously, it is expected that 

only a small subset of the genes will be associated with the clinical or biological outcome of interest. 

This subset of genes, often termed a “gene signature” or “prognostic signature”, has a collective 

expression pattern that is unique to the outcome of interest and thus has potential to function as  

a biomarker [9]. The gene signature is typically composed of far fewer number genes (often less than 

100 genes) than that on a microarray chip (often more than 20,000 genes) making it feasible for further 

study using approaches such as quantitative RT-PCR. Point of Care (POC) devices that rely on 

transcriptional signatures are progressively gaining momentum as diagnostic tools for routine use in 

the clinical setting, resulting from their practical and affordable application making this approach 

highly accessible as cheaper diagnostic kits [10,11]. 

Biomarkers for the monitoring of disease activity of POC are currently lacking. A number of 

published gene signatures validated using independent samples have been shown to serve as significant 

predictors of clinical outcome [12–15]. However, the development of prognostic signatures that are 

robust and stable (e.g., the same biomarkers are identified in both discovery and validation sets) [16] 

has proven challenging [17–19]. In Section 3, we will discuss recent examples of promising 

transcriptomic biomarkers for disease diagnosis and prognosis that have been identified using  

meta-analysis approaches. 

Published prognostic gene signatures derived from internal validation often show little overlap with 

genes identified by other study groups [15]. Potential causes of small reproducibility include 

differences in sample collection methods, processing protocols, and microarray platforms, patient 

heterogeneity, and small sample sizes [12]. Due to the difficulty of acquiring samples, particularly 

from human tissue and the associated costs, microarray experiments from single-institution patient 

cohorts are often composed of small sample sizes. Predictive models trained on the gene signatures 

identified from these smaller-sized individual studies are less robust [15,20]. Michiels et al. [21]  
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re-analyzed data from nine studies predicting cancer prognosis and found an unstable misclassification 

rate for the gene signature (defined as the 50 genes for which expression was most highly correlated 

with outcome) using training sets derived using a re-sampling approach, with performance increasing 

as the size of the training set increases.  

Integration of multiple microarray data sets has been advocated to improve gene signature  

selection [22]. Increasing sample sizes increases the statistical power to obtain a more precise estimate 

of integration of (differential) gene expression and to assess the heterogeneity of the overall estimate, 

as well as to reduce the effects of individual study-specific biases [23–26]. Meta-analysis is most 

commonly applied for the purpose of detecting differentially-expressed (DE) genes [27] which may 

serve as a candidate gene signature or be used as features in classification models or classifiers to 

further refine a clinically useful gene signature [28]. Supervised classification techniques (also known 

as prediction analysis or supervised machine learning) are the most commonly used methods in 

microarray analysis that lead to identification of clinically-useful biomarkers (i.e., gene signatures 

providing improved discrimination between two or more patient groups) [27]. Classification methods 

for gene signature selection are beyond the scope of this article and have been reviewed elsewhere [29]. 

2. Integrative Transcriptomic Data Analysis 

Two fundamental approaches to combine the information of multiple independent microarray 

studies from different platforms (termed “integrative analysis” [23]) are meta-analysis and cross-platform 

normalization (also termed “merging”). A conceptual framework by Hamid et al. [22] classifies 

microarray meta-analysis as “late stage” data integration as it combines the final statistic results from 

different studies, whereas cross-platform normalization integrates data at the “early stage”. Application 

of these approaches necessitates that all of the included studies are testing the same hypothesis and/or 

performed under comparable conditions or treatments [2,30,31]. While the degree of similarity that is 

required between “suitably similar” datasets still remains to be determined, cross-platform integration 

for the purpose of biomarker discovery is most appropriate using relatively homogenous datasets 

selected to answer well-defined questions [32]. Early or late stage integration of data can be used 

regardless of the biological question (e.g., differential expression analysis or class prediction).  

The overall principle of these two approaches is summarized in Figure 1. 
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Figure 1. Outline of two microarray integration methods: (a) meta-analysis (“late 

integration”). Individual case-cohort microarray studies are pre-processed and each study is 

used to identify ranked gene lists which are then combined in the final step; (b) Cross-platform 

merging and normalization (“early integration”). After pre-processing of individual studies, 

a single unified case-cohort dataset is generated (“clustered” into cases and cohorts, 

indicating removal of batch to batch variation) and in this example, used to identify  

a ranked gene list. 

2.1. Pre-Processing and Quality Control Prior to Integrative Analysis 

Ramasamy et al. [24] identified key issues and steps for performing a meta-analysis including 

identifying suitable microarrays, pre-processing and preparing individual datasets, selection of  

meta-analysis method, and interpretation of results. A systematic review of microarray meta-analysis 

studies in the literature has found that the criteria to include or exclude microarray studies is mostly 

subjective and ad hoc and remains an open question in the field [27]. Two critical pre-processing steps 

we will highlight here are (i) removing arrays with poor quality and (ii) determining the relationships 

between probes and genes. Identifying microarrays of poor quality is essential prior to integrative 

analysis because inclusion of poor quality studies may reduce statistical power and adversely affect the 

outcome of meta-analysis [27,33]. There are a number of quality assessment packages available for 

Bioconductor, including Simpleaffy [34] and affyPLM [35] for Affymetrix. The MetaQC package 

provides six quality control measurements to identify problematic studies across multiple platforms for 

further assessment of causes of lower quality to determine their exclusion from meta-analysis [36,37]. 
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Another important pre-processing step is ascertaining which probes represent a given gene within 

and across the different microarray platforms. The relationship between probes and genes may be 

determined by mapping probes to the gene using sequence-matched datasets or using gene-level 

identifiers such as Entrez Gene ID available in the annotations packages in R/Bioconductor [38] to 

unify the microarray datasets. Sources of high-quality probe re-annotation include alternative chip 

definition files (CDFs) for Affymetrix [39] and ReMOAT (Re-annotation and Mapping for 

Oligonucleotide Array Technologies) and its associated annotation packages in R/Bioconductor for 

Illumina [40]. Only genes that are present across the different platforms being integrated will remain 

for further analysis, while those absent in one or more platforms will be “lost”, reflecting the tradeoff 

between increasing sample size and power versus decreasing the number of genes analyzed [32].  

Co-inertia analysis, a multivariate analysis method that describes the common trends or co-relationships 

between datasets of two conditions, has been applied to determine the loss of information incurred by 

reducing the number of genes to the subset common to different platforms [41]. Imputation of gene 

expression present in some datasets, but not others, to allow these genes to be part of predictive models 

has been proposed [42]. 

If multiple probes match a single gene, selecting the probe with the highest interquartile range 

(IQR) has been recommended [43]. Genes with low mean expression across most studies are typically 

filtered out prior to meta-analysis. Turnbull et al. [32] applied relatively strict filter thresholds for their 

microarray integration analysis based on a prior study that found genes with low or intermediate 

expression have poorer inter-platform reproducibility than highly-expressed genes [17,44]. 

Furthermore, incorporation of a quality measure based on detection p-values estimated from 

Affymetrix arrays into the study-specific test statistics within a meta-analysis of two Affymetrix array 

studies using an effect sized model produced more biologically meaningful results than an unweighted 

model [25,45]. 

2.2. Meta-Analysis 

In the meta-analysis approach, each experiment is first analyzed separately and the results of each 

study are then combined. Meta-analysis methods that combine primary statistics (e.g., p-values or 

effect sizes) require the use of raw gene expression data whereas secondary statistics rely only on 

ranked lists of genes. Popular methods for meta-analysis mainly combine one of three types of 

statistics: p-value [46], effect size [47], and ranked gene lists (“rank aggregation”) [27,33,48].  

Ranked lists of genes produced for each study (e.g., ranked by order of p-value for DE of each gene) 

have been aggregated into a single gene ranking (“consensus”) using a number of methods including 

the rank product method [48]. 

A number of methods have been developed to test the statistical significance of results  

based on combining p-values from each study including Fisher’s method, Stouffer’s method,  

minP, and maxP. Fisher’s method sums log-transformed p-values, whereas Stouffer’s method sums  

inverse-normal-transformed p-values, to combine statistical significance across studies. The minP 

method takes the minimum p-value from combined studies, whereas the maxP method takes the 

maximum of the combined p-values. Rhodes et al. [49] published one of the first papers to combine  
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p-values from individual studies of DE gene expression using Fisher’s method which found improved 

statistical significance using the combed analysis compared to individual studies. 

Combined effect size to generate an estimate of the overall effect size and its confidence interval is 

frequently used in meta-analysis of clinical research data. Choi et al. [47] described one of the first 

methods to combine effect sizes using a random-effects modeling approach for combining datasets 

from individual studies of two groups to form an overall estimate of the weighted effect size.  

The effect size was measured by the standardized mean difference obtained by dividing the difference 

in the average gene expression between the treatment and control groups by a pooled estimate of 

standard deviation. The effect size was used to measure the magnitude of treatment effect in each study 

and a random effects model was used to incorporate inter-study variability. 

Meta-analysis methods have been categorized based on the hypothesis settings that gene biomarkers 

are differentially expressed “in all studies” (HSA), “in the majority of studies” (HSr), or in “one or more 

studies” (HSB) [33,50]. In Fisher’s, Stouffer’s, and minP method, an extremely small p-value in one study 

likely meets criteria for statistical significance; thus, it detects DE in “in one or more studies” (HSB), 

whereas the maxP or rank product method tends to detect gene biomarkers DE in “all studies” (HSA). 

The choice of the statistical meta-analysis method is selected based on the biological purpose of  

the analysis. A gene serving as a biomarker from a meta-analysis is expected to show concordant 

biological effects across all or most experiments for a given condition derived from relatively 

homogenous sources (e.g., up-regulation of a gene predicting risk of lung cancer detection from lung 

epithelium biopsied from a cohort of smokers versus healthy non-smokers) [51]. While detecting 

biomarkers DE in all studies seems an ideal goal, it can be too stringent when the number of samples is 

large, increasing the heterogeneity of experimental, platform, or biological samples [50]. Meta-analysis 

methods detecting DE in the majority of samples (HSr) are generally recommended as they provide 

robustness and detection of relevant signals across the majority of samples [33]. Song and Tseng [52] 

proposed a robust order statistic, rth ordered p-value (rOP), which tests the alternative hypothesis that 

there are significant p-values in at least a given percentage of studies. This method detects biomarkers 

DE in the majority of studies (e.g., >70% of studies) based on a user-specific threshold of studies. 

2.2.1. Comparison of Meta-Analysis Methods 

Several comparative studies systematically comparing meta-analysis methods for microarray data 

have been previously published [33,53,54]. Chang et al. [33] benchmarked the performance of six p-value 

combination methods (Fisher, Stouffer, adaptively weighted Fisher, minP, maxP, and rOP), two 

combined effect size methods (fixed effects and random effects) and four combined ranks methods 

(RankProd, RankSum, product of ranks, and sum of ranks). The 12 meta-analysis methods were 

categorized into three hypothesis settings (candidate markers DE in “all” [HSA], “most” [HSr], or “one 

or more” [HSB] studies) based on their strengths for detecting DE genes. They then applied four 

statistical criteria to the assessment of each meta-analysis method: (1) detection capability (the number 

of DE genes detected); (2) biological association (degree of association between DE list with 

predefined genes from pathways related to the disease), stability (randomly splitting the data and 

comparing results of the two-meta-analyses) and robustness (effect of including an outlying irrelevant 

study to the meta-analysis). 
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Among the methods based on HSA setting, the maxP performed the worst based on their four 

criteria and the investigators recommend that it be avoided. Rank product method had improved 

performance but weaker detection capability. The two methods that tended to detect DE in the majority 

of samples were the Random Effect Model (REM) and the rth order p-value (rOP). rOP outperformed 

REM based on stronger biological association and detection capabilities, but this was achieved at the 

expense of diminished stability and robustness. 

It is important to note that differentially-expressed genes determined by combing p-values or ranks 

obtained by two-sided hypothesis testing may result in genes with discordant DE across two-class 

outcomes which can be difficult to interpret [27]. Wang et al. [37] have proposed one-sided correction 

of p-values to guarantee identification of DE genes with concordant DE direction. 

2.2.2. Association of Meta-Analysis Method to Outcome Variable 

The objective and type of outcome types (e.g., two-class, multi-class, survival) [24] will govern the 

choice of both the test statistic (t-statistic, F-statistic, log-rank statistic) and the meta-analysis method 

(combing p-values, effect sizes, or ranks). Methods combing effect sizes (standardized mean 

differences or odds ratios) are appropriate for combining two-class outcomes. Meta-analysis of 

expression studies with continuous outcomes (e.g., using regression or correlation coefficients) and 

survival outcomes (based on log-rank statistics) have typically been performed using combined  

p-values [50,55] and can be performed using the MetaDE package [37]. To capture concordant expression 

patterns for multi-class outcomes, Lu et al. [52] have applied multi-class correlation (min-MCC) 

because the F-statistic has been found to frequently fail to capture concordant patterns of gene expression. 

2.3. Cross-Platform Normalization 

Cross-platform normalization (also termed “data merging” [23]) considers all data from experiments 

across different microarray platforms as a single data set from the same experiment. Direct integration 

of data sets performed on different microarray platforms may introduce undesirable batch effects due 

to systematic multiplicative biases [23,32,56]. The level of difficulty present to combine multiple 

datasets has been termed “dataset complexity” [53]. For example, integrating different Affymetrix 

platforms is less complex to analyze by meta-analysis or cross platform normalization than datasets 

performed across very different platforms. Studies using low complexity datasets, mainly from the 

Affymetrix platform, have directly merged the studies to construct a gene signature [41,57–59]. 

Cross-platform transformation and normalization methods have been developed with an aim to 

remove the artifactual differences between data from different microarray platforms while preserving 

the underlying biological differences between conditions. This step is essential, as non-biological 

differences (“batch effects”) in the gene signature discovery data can obscure real biological 

differences found between clinical groups. 

Early attempts at cross-platform merging applied straightforward transformation methods of 

location and scale (mean and variance) to process the gene expression data from different studies. 

Batch mean centering [56] is a simple transformative method that standardizes the expression of each 

gene to have the same center (mean expression). Probe sets can be further transformed to have the 

same variance or distributions on different platforms [60,61]. While these methods are relatively easy and 
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intuitive, the batch mean centering method has been shown to have only marginal improvement 

compared to uncorrected data for cross-platform integration of Illumina and Affymetrix data [32]. 

Probability of expression (POE), a model-based transformation that is estimated based on a method 

that adopts an underlying mixture distribution that transforms each data value into range [−1,1] has 

been used for cross-platform merging based on a unified scale as an alternative to using gene-specific 

summaries [62,63]. While this transformation has been applied for identifying meta-signatures, it has 

been found to be difficult to compare to other normalization methods [26]. 

Over the past decade, a number of more complex cross-platform normalization methods have been 

published and their performance has been compared in several studies [2,32]. Four cross-platform 

normalization methods found to be generally effective in a comparative review by Rudy and Palafer [2] are 

the Empirical Bayes (EB) method, known as Combat [64]; the Cross-Platform Normalization (XPN) 

method [26], Distance Weighted Discrimination (DWD) [65], and the Gene Quantiles (GQ) method 

developed as part of the WebArrayDB service [66]. Of these four programs, the authors favour DWD 

and XPN, while the comparative analysis of cross-platform normalization methods on clinical datasets 

by Turnbull et al. [32] favoured Combat and XPN. We will discuss the results of these comparative 

analyses in more detail in the following Section 2.3.1. 

The Distance Weighted Discrimination method, like Support Vector Machines (SVM), is a  

margin-based classification method that was developed to improve performance over the latter method. 

Essentially, SVM finds a hyperplane that separates the two classes (i.e., each systematic bias) to 

maximize the minimum distance of all the data on the hyperplane (the margin). However SVM has 

data pile-up problems along the margin which have been improved by modifying the margin to 

maximize the sum of the inverse distance in DWD [67]. DWD adjusts the microarray data by 

projecting the different batches onto the hyperplane, finding the batch mean and then subtracting out 

the plane multiplied by this mean. 

Combat, an empirical Bayes method, estimates parameters that represent the batch effects by 

pooling information across genes in each batch to shrink the batch effect parameter toward the overall 

mean of the batch effect estimates across genes [64]. The data are then transformed to remove the 

effects of the different batch effect parameters across platforms. Combat is performed using either  

a parametric prior method or a non-parametric method based on the prior distributions of the estimated 

parameters [68]. 

Unlike the gene-wise linear approaches of DWD and Combat, the cross-platform normalization 

(XPN) method developed by Shablin et al. [26] seeks to borrow information across genes and samples 

via linked row and column clusters in a two-step procedure. First, K-means clustering is used to find 

blocks of similar genes and samples across the platforms. This approach is robust to the number of row 

(K) and column (L) clusters. Then, within each block the data is normalized between platforms within 

this block. The normalized values obtained over multiple clustering performed over repeated runs is 

then averaged to better capture the data structure. 
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2.3.1. Comparison of Cross-Normalization Methods 

A comparative analysis of cross-platform normalization methods by Rudy and Valafar [2] found the 

DWD classification method to provide effective batch adjustment for microarray data [67] and to be 

the most robust to variation in treatment group sizes between the platforms with the least loss of 

treatment information (lower underdetection), while XPN showed the greatest inter-platform 

concordance [2]. Turnbull et al. [32] also found that XPN had the highest inter-platform concordance. 

However, they found that DWD removed not only the platform specific systematic bias, but also 

relevant biological variability between samples (reduced inter-sample variance), while Combat and 

XPN preserved this biological signal (slightly increased inter-sample variance) while appropriately 

correcting the platform specific bias (reduced inter-platform variance). The drawback of DWD to 

“over-normalize” by removing all systematic expression differences between two datasets, including 

the relevant biological variability has been cautioned by other authors, prompting development of 

newer methods [60]. Although Combat and XPN have been found to perform well in previous 

analyses, the user must be cautious when applying this method to datasets that are unbalanced  

(e.g., different subtypes within each of the batches) as these methods will not be able to distinguish 

batch effects from biologically-relevant signals [42]. 

One limitation of some existing cross-platform normalizing methods is that they can only be applied 

to two batches at a time. While cross-platform normalization steps can be chained together, the effect 

of these multiple normalization steps or which chaining method is still unclear [60]. 

2.3.2. Software and Websites Implementing Microarray Meta-Analysis and  

Cross-Platform Merging/Normalization 

Software, including packages in R/Bioconductor and websites allowing users to implement 

microarray meta-analysis and cross-platform merging and normalization methods are listed in Table 1. 

Different experiments from multiple different arrays can be directly merged from the CEL files 

simultaneously using several packages implemented in R [69] including inSilico Merging [70], the 

CONOR [2], and virtualArray [71]. The inSilico Merging package implements XPN, DWD, and 

Combat, and the package CONOR additionally implements the GQ method. The virtualArray package 

allows cross-platform normalization using empirical Bayes methods (default) or the user may select 

one quantile discretization, normal discretization normalization, gene quantile normalization, median 

rank scores, quantile normalization, or mean centering [71]. This batch effect removal step can be 

supervised allowing the user to specify samples into groups based on platform as well as other 

attributes (e.g., cell type). Before the combined expression data undergoes cross-platform 

normalization, the data must be transformed to a common scale (e.g., log2) and resolution (e.g., 12, 14, 

16, or 20 bit) [71]. As with meta-analysis, low expression and low variance genes are typically filtered out. 
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Table 1. List of software and websites for performing microarray meta-analysis. 

Microarray Meta-Analysis (Command Line Packages) 

Software Name Language Features 

metaDE 

(metaOmics) 
R Implements 12 major meta-analysis methods [37] 

MAMA R Implements combined effect size, combined p-values, combined ranks 

metaMA R Implements combined moderated effect size, combined p-values 

metaGEM R Implements combined effect size, combined p-values, vote counting [24] 

metahdep R Effect size estimates particularly when hierarchical dependence is present 

GeneMeta R Implements combined effect size [47] 

OrderedList R Combine ranks with or without expression data 

RankProd R Implements Product of Ranks method 

RankAggreg R Aggregation of ordered lists based on the ranks using several different algorithms 

Automated web applications for microarray meta-analysis/normalization 

Software Name Features and URL 

INMEX 
Meta-analysis. Support for 45 microarray platforms for human, mouse rat. Combines 

p-values, effect sizes, rank order, others http://www.inmex.ca/INMEX/ 

Network Analyst 

Meta-analysis. Combines p-values, effect sizes, rank order. Significantly altered 

genes are then presented within the context of protein-protein interaction networks. 

http://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml 

A-MADMAN 
Affymetrix platform normalization using quantile distribution transformation 

http://compgen.bio.unipd.it/bioinfo/amadman/ 

MAAMD 
Affymetrix meta-analysis http://www.biokepler.org/use_cases/maamd-workflow-

standardize-meta-analyses-affymetrix-microarray-data 

Microarray cross-platform merging/normalization (command line packages) 

Software Name Language Features 

mergeMaid R Implements Probability of Expression transformation (POE) [62] 

metaArray R Implements POE [62] 

CONOR R 
Implements XPN, Empirical Bayes (EB), Quantile normalization (QN), Quantile 

discretization (QD), others [2] 

VirtualArray R Implements EB, QN, QD, others [71] 

inSilico Merging R Implements XPN, EB, DWD, others [23] 

Automated 

Microarray Data 

Analysis v2.13 

R Implements. Allows analysis of Illumina, Affymetrix and Agilent. 

XPN R Implements Cross Platform Normalization [26] 

DWD 
JAVA, R 

MATLAB 
Implements Distance Weighted Discrimination method [65] 

Combat R Implements Empirical Bayes methods [64] 

PLIDA MATLAB Normalizes an arbitrary number of platforms [60] 

metAnalyzeAll R Elastic net classifier [42]   
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2.4. Comparison of Meta-Analysis vs. Cross-Platform Normalization 

Directly-merged microarray data (or applying cross-platform normalization) has been argued to 

have better performance than meta-analysis for the identification of robust biomarkers on the premise 

that “deriving separate statistics and then averaging is often less powerful than directly computing 

statistics from aggregated data” [57]. In a comparative study, Taminau et al. [23] found significantly 

more differentially-expressed genes using cross-platform normalization than meta-analysis. An additional 

advantage of cross-platform normalization is that it allows prediction models applied to a subset of 

studies to be applied across additional studies from other platforms [27]. While cross-platform 

normalization has been applied in multiple studies [72–74], it has less frequently been used in the 

literature compared to meta-analysis [2]. A recent comprehensive systematic literature review of 

studies applying microarray integration methods found that only 27% of the studies directly merged 

microarray data and this subset of studies were mostly performed on the same platform [27]. 

One major limitation of existing cross-platform normalization is that they require that every 

treatment group or sample type be represented on each platform to allow differentiation of treatment 

effects from platform effects. Furthermore, cross-platform normalization methods do not guarantee 

elimination of laboratory or batch effects across experiments and Rung and Brazma [3] have argued 

that microarray meta-analysis provides better control of between-laboratory heterogeneity, which can 

be estimated using Cochrane’s Q statistic and be correspondingly adjusted. 

3. Promising Transcriptomic Biomarkers Identified Using Meta-Analysis Approaches 

Sweeney et al. [75] recently identified a transcriptomic signature to improve discrimination of 

patients with sepsis (infection) from those with sterile inflammation using blood samples. Their work 

analyzed publicly-available gene expression datasets from 22 independent cohorts (composed of 2903 

microarrays in total) and applied a meta-analysis strategy implementing both effect size and p-values 

of differential gene expression. The investigators identified 82 genes differentially expressed between 

sepsis and inflammation and then performed a greedy forward search to determine which combination of 

these 82 genes produced the best improvement of area under the curve (AUC) in their discovery datasets. 

This resulted in an 11-gene transcriptional signature that was applied to 15 independent validation 

cohorts and was found to improve discrimination of patients with infection from those with sterile 

inflammation compared to use of clinical data alone. This gene signature requires further validation 

using prospective cohorts, however its excellent discriminatory power in both the discovery and 

validation cohorts suggests that it is likely to become a useful clinical assay in the future. 

Santiago and Potashkin [76] implemented a transcriptomic and network-based meta-analysis in 

NetworkAnalyst (Table 1) to identify potential key hub genes in the blood of patients with Parkinson’s 

disease (PD). Their analysis identified hepatocyte nuclear factor 4 alpha (HNF4A) and polypyrimidine 

tract binding protein 1 (PTBP1), as the most significant up- and down-regulated genes in blood 

samples from PD patients. The relative abundance of HFN4A mRNA was found to correlate with 

disease severity in PD and the results were validated using samples obtained from two independent 

clinical trials. The abundance of HNF4A and PTBP1 mRNAs significantly decreased and increased, 
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respectively, in PD patients during a 3-year follow-up period suggesting that these biomarkers may be 

useful for monitoring disease-modifying therapies for PD. 

4. Confounding Adjustment 

In the previously discussed cross-platform normalization approaches (Section 2.3), the major batch 

effect (the platform) is clearly identified (“supervised”), in distinction to other confounding adjustment 

methods such as using surrogate variable analysis (SVA) which detect “latent” (unknown) variables 

such as experimental variability or patient subgroups (e.g., breast cancer subtypes). It is important to 

account for possibly confounding (e.g., age or sex) or possibly predictive variables (e.g., smoking history) 

in addition to gene expression for building a gene signature. Additional categorical and continuous 

variables can be easily included along with the gene expression data using regression methods such as 

the elastic net penalty to fit a generalized linear model (GLM) [42]. These models can also be readily 

adapted for different outcomes such as categorical, continuous, and survival times. Cho et al. [77] 

developed a software program (rbsurv) to detect survival-associated genes based on the partial 

likelihood of the Cox model that allows adjustment of for risk factors in survival modeling. 

Modelling confounding factors with variable selection in meta-analysis has recently been shown to 

improve robustness and sensitivity of DE gene detection [43] and inter-study concordance [78]. 

Chikina et al. [78] produced corrected differential expression lists using surrogate variables calculated 

using a modified version of SVA with improved inter-study agreement over uncorrected analysis.  

A two-class meta-analysis by Wang et al. [43] applied a random intercept model to account for 

confounding covariates in each single study analysis and combined p-values of the candidate biomarker list 

from each study using Fisher’s and maxP methods. Statistical approaches to allow synthesis of 

regression slopes in meta-analysis have been described [79] and applied to meta-analysis [51]. 

5. Conclusions 

Gene signature discovery for prognostic and diagnostic purposes is improved with knowledgeable 

selection and appropriate application of integration methods on microarray data performed on  

multiple platforms. While no consensus for the best implementation of cross-platform integration is 

currently available, previous benchmarking and comparative analyses have established the strengths 

and limitations of many of the existing methods. The recent evidence suggesting improved 

performance of cross-platform normalization methods over meta-analysis may lead to an increasing 

proportion of studies in the literature implementing the former method. Further refinement of existing 

methods and development of new methods for cross-platform normalization and classification to 

exploit the vast quantity of microarray data currently available are expected. As elimination of 

platform specific bias becomes well-established with these methods, future studies addressing the 

performance of prognostic signature discovery in light of the existing biological heterogeneity will 

become a central focus. 
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