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Generalising from conventional 
pipelines using deep learning 
in high‑throughput screening 
workflows
Beatriz Garcia Santa Cruz1,2*, Jan Slter2, Gemma Gomez‑Giro3, Claudia Saraiva3, 
Sonia Sabate‑Soler3, Jennifer Modamio3, Kyriaki Barmpa3, Jens Christian Schwamborn3, 
Frank Hertel1,2, Javier Jarazo3,4,6 & Andreas Husch2,5,6*

The study of complex diseases relies on large amounts of data to build models toward precision 
medicine. Such data acquisition is feasible in the context of high-throughput screening, in which 
the quality of the results relies on the accuracy of the image analysis. Although state-of-the-art 
solutions for image segmentation employ deep learning approaches, the high cost of manually 
generating ground truth labels for model training hampers the day-to-day application in experimental 
laboratories. Alternatively, traditional computer vision-based solutions do not need expensive 
labels for their implementation. Our work combines both approaches by training a deep learning 
network using weak training labels automatically generated with conventional computer vision 
methods. Our network surpasses the conventional segmentation quality by generalising beyond 
noisy labels, providing a 25% increase of mean intersection over union, and simultaneously reducing 
the development and inference times. Our solution was embedded into an easy-to-use graphical 
user interface that allows researchers to assess the predictions and correct potential inaccuracies 
with minimal human input. To demonstrate the feasibility of training a deep learning solution on a 
large dataset of noisy labels automatically generated by a conventional pipeline, we compared our 
solution against the common approach of training a model from a small manually curated dataset 
by several experts. Our work suggests that humans perform better in context interpretation, such as 
error assessment, while computers outperform in pixel-by-pixel fine segmentation. Such pipelines are 
illustrated with a case study on image segmentation for autophagy events. This work aims for better 
translation of new technologies to real-world settings in microscopy-image analysis.

High-throughput High-content screening is a powerful tool in systems biology, thanks to its capacity to quanti-
tatively measure the dynamical behaviour of biological processes using fluorescence microscopy1. For this task, 
image analysis is a crucial step that requires handling hundreds of images generated every day. Therefore its auto-
matic processing has become a paramount objective. In the literature, most Deep Learning (DL)-oriented aca-
demic papers tackling image analysis frequently employ highly curated benchmarking datasets. Such works focus 
solely on increasing the accuracy of the algorithms. Although this goal has been crucial for the fast development 
of the methods during the last years, working with real-world datasets brings new challenges. These challenges 
include label quality, such as noisy label data, or incorrect segmentation2; additionally, manually curated labels 
are not only time-consuming but also a complex task in biomedical datasets3. Finally, the developed solutions 
are generally difficult to use. All these issues hamper the real use of DL-based solutions in everyday laboratories.
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Computer Vision (CV) techniques for digital image processing have undergone a remarkable evolution since 
their first developments in the 60s4. One of the most relevant advances includes the employment of Artificial 
Intelligence (AI) methods, which became especially important after the first big success of a Convolutional 
Neural Network (CNN) with ImageNet in 20125. The main difference between traditional CV and AI-based 
solutions is the paradigm behind it. On the one side, traditional CV is descriptive, requiring a definition of a 
comprehensive mathematical model to describe the phenomenon that we wish to model. In image analysis, this 
entails employing different filters and parameters, i.e. a hand-crafted feature definition approach. On the other 
side, predictive analysis builds upon the automatic discovery of the rules that underlie the studied phenomena, 
such as optimising operations to minimise the error between the actual and the predicted outcome6.

HTS has been traditionally addressed using pipelines based on conventional image processing (from here 
on referred to as CIP) techniques such as thresholding, morphological operators, contour based7 or graph-cut8 
algorithms. However, as mentioned before such approaches require expertise, time and handcraft to develop 
ad-hoc pipelines that need to be adjusted to each case, hindering generalisation. Alternatively, as in many other 
fields in the last years, the use of Machine learning (ML) techniques has become very popular for image analysis. 
In particular, deep learning-based solutions9, such as CNN now dominate the field due to the superiority of their 
results10. Considering that CNN-based solutions outperform traditional algorithms thanks to the increasing 
computer power and dataset availability6, it may seem that traditional CV techniques are obsolete. Nevertheless, 
the latter approaches do not require complex and costly labels for its development compared to CNN-based 
solutions. Moreover, most CNN approaches are based on images manually analysed by humans (including event 
segmentation or even semantic segmentation), which is not only very time consuming but due to the nature of 
the biological data, good quality segmentation at the pixel level is hard to obtain11,12. This renders CIP algorithms 
still relevant, since images are automatically generated (e.g. using an HTS system), can be processed with tech-
niques that require simple thresholding and basic corrections yielding an acceptable quality of segmentation13.

Even though Supervised ML requires large amounts of data, several approaches such as transfer learning 
techniques14 or data augmentation techniques, ranging from geometric transformations or colour space aug-
mentations to generative adversarial networks15 can overcome this limitation. These techniques can be paired 
with other strategies such as the automatic generation of labels, which may lead to noisy labels, also known 
as CIP based DL (CDL) approaches. Training with noisy labels is a common problem in the supervised ML 
community due to the high cost of properly curated datasets. This is especially relevant when the labelling task 
requires domain-specific knowledge such as biological or medical data2.

Although a common scenario, working with noisy label data presents several difficulties during both the 
training and the evaluation of models. Previous works have shown that CNN can generalise even when there 
are noisy data in the training datasets, overcoming such inaccuracies16. Furthermore, the choice of the cost 
function is an essential step during the solution design. This choice depends on the problem and dataset char-
acteristics. For instance, in class imbalance scenarios, the employment of class sensitive cost functions such as 
dice-coefficient is recommended17. Additionally, dice-coefficient is considered a robust cost function in scenarios 
with noisy datasets18.

In recent years, different strategies to approach the annotation problem have been developed. Here we high-
light active learning, continuous learning, curriculum learning and knowledge distillation. Active learning refers 
to the concept of reducing the annotation effort needed to train a model while still maintaining good performance 
by actively selecting the most informative or representative samples. Multiple approaches have been proposed 
to find the most representative examples, such as selecting the most influential items19.Active learning strate-
gies have been successfully applied on different problems including multiple instance labelling for classification 
tasks20, regression tasks21 and in DL solutions22. Other approaches include continuous learning. This paradigm 
refers to the model’s ability to continually learn from stream data, as a way to update the model during the pro-
duction phases keeping its relevance and performance. Continuous learning is especially relevant in scenarios 
where data is constantly changing23. In the biomedical image analysis context, this approach has been proposed 
in ML-assisted diagnostic tools for hospitals where the algorithm performance degrades over time. The root 
cause in many cases is the expected changes in local data, such as data acquisition pipelines and population shifts, 
reducing the risk of bias and errors over time.24. In the same line we can find the concept of curriculum learning. 
Humans and other animals are able to learn complex ideas more efficiently when gradually learned from more 
basic to the more complex ones25. Recent works in this area have been successfully implemented in skin lesion 
segmentation26 and histopathology image classification27. Finally, Knowledge distillation refers to the concept of 
transferring the information learned from one model (generally larger) to another (usually smaller) also known 
as ’Student teacher’28. Although this concept was initially developed focusing on optimising the resources used 
from a smaller network, several works suggest that this can also be employed to improve the generalisation and 
robustness in the context of noisy label data28–30.

The Machine Learning (ML) community aims to develop automatic ML with the ultimate goal of bringing 
humans-out-of-the-loop, such as autonomous vehicles. However, domain expertise can be seen as an external 
agent on the interactive ML, including human-in-the-loop, allowing humans to obtain a synergistic combination 
of methodologies31. This could help to avoid the uncertainty and incompleteness, including noisy data, seen in 
biomedical datasets.

In this paper, we propose a human-in-the-loop pipeline including both traditional and AI-based computer 
vision methods. This approach was inspired by the capacity of deep neural networks to overcome noisy labels, 
as extensively explained in32. For this purpose, we designed an alternative solution to CIP involving DL meth-
ods. We tackle two common scenarios which differ on the nature of the training data and its quantity. The first 
approach employs a large training set of automatically generated labels, CIP based DL, from here on referred to 
as CDL. In contrast, the second approach relies on a small manually curated dataset, Manually curated based 
DL, thereby referred to as MDL. We illustrate the use of these pipelines in a case study for the segmentation of 
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HTS microscopy images. This dataset includes imaging samples of the autophagy pathway using the Rosella 
pH-sensitive biosensor using human iPS cells.

Case study.  Autophagy is an evolutionary conserved catabolic process that mediates the degradation of 
dysfunctional or useless organelles in eukaryotic cells. Autophagy has as well an essential role in maintaining 
homeostasis in stress conditions33. Accurate frameworks to measure autophagy are still an open research ques-
tion. However, “autophagy flux”, in which the different autophagy phases can be measured, has been established 
as one of the best approaches to study autophagy in pathological conditions. Our dataset uses the Rosella pH-
sensitive biosensor34 that allows for the identification of the different autophagy phases13. The gold standard in 
segmentation is the manual creation of label masks by experts. Notwithstanding, such an approach requires a 
large amount of work from highly trained researchers. An existing solution to the segmentation problem of 
autophagy events is based on CIP techniques specifically optimised for fluorescent microscopy analysis of cells 
with the Rosella biosensor to report autophagy events as suggested in13. In this study, we demonstrate how to 
effectively leverage this approach developing two alternative pipelines (CDL and MDL) to improve the final 
segmentation quality.

Methods
This section is structured into three main parts. First, a general overview, dataset generation and CNN archi-
tecture are described. The next section focuses on the CDL (CIP based DL) approach development, including 
the evaluation of the expected generation capacity of CNN for overcoming errors. The last part covers the MDL 
(Manual curated based DL) approach implementation and holistic evaluation of the three strategies: CIP, CDL 
and MDL.

Pipeline setup.  The different pipelines are represented in Fig. 1a. The top part of the panel corresponds to 
the CDL method while the bottom part to the MDL. The CDL approach is divided in three steps: (1) Labels are 
automatically generated using CIP techniques; (2) These masks are employed to conduct a supervised train using 
a CNN. As mentioned before, a good generalisation that overcomes the systematic incorrectness of the weakly 
labelled data is expected. (3) Evaluation of the generalisation can be done by using alternatives metrics explained 
in the evaluation section. This trained network is introduced in an easy-to-use Graphical User Interface (GUI) 
allowing the user to predict new images using a considerable less amount of time and computational resources 

Figure 1.   (a) General workflow of the proposed pipeline, part 1: (In blue, CIP-based DL: CDL). [1.1] First a 
weakly labelled dataset is created using conventional imaging processing (CIP). [1.2] After that, a U-net like 
architecture is trained and [1.3] the accuracy of the evaluated. Including an integration of the trained network 
in an intuitive tool for biologists that allows easy correction. Proposed pipeline, part 2: (In green, for Manually 
based DL: MDL). [2.1] Manual corrected masks are easily generated using the GUI, which is employed to train 
a U-net from scratch [2.2]. (b) The biological process of autophagy and its detection with Rosella biosensor. 
The four main phases are: The initial state - Phagophore, intermediate states - Autophagosome and early 
autolysosome, and final state - Autolysosome. The fusion with the lysosome during the autophagy process yields 
a pH decrease which induces a change of colour in the fluorescent microscopy image.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11465  | https://doi.org/10.1038/s41598-022-15623-7

www.nature.com/scientificreports/

than CIP analysis, and being more precise thanks to its generalisation over the errors. Using the GUI tool, the 
experts can also correct the potential inaccuracies of the images. The reduced time needed to correct the current 
prediction in comparison with the semantic segmentation from scratch is also a considerable benefit. The two-
steps MDL pipeline is organized in two steps: (1) using the previously developed GUI, masks are predicted and 
manually corrected, (2) Using this small manually corrected dataset a CNN is trained (1a bottom part). Finally, 
the tree methods, CIP, CDL and MDL were evaluated.

hiPSC generation and imaging acquisition.  Generation of the hiPSCs lines, imaging obtainment was 
performed as previously described13. The human iPSCs line used in this study is A13777 obtained from Gibco. 
Briefly, the hiPSCs gene-edited with the Rosella construct into the AAVS1 safe harbour were cultured in Essen-
tial-8 media (Thermo Fisher cat no. A1517001) in CellCarrier Ultra plates (Perkin Elmer, 6055300). Confocal 
images were obtained with an Opera QEHS spinning disk microscope (Perkin Elmer) under a 60x water immer-
sion objective ( NA· = ·1.2 ). DsRed and pHluorin images were acquired simultaneously using two cameras and 
binning 2.

CIP pipeline.  In this paper, we refer as CIP to a previously developed image analysis workflow described 
in detail in13. It is “conventional” in that it employs the traditional techniques in computer vision to conduct 
semantic segmentation. Hence, it is not a model trained using machine learning but a processing pipeline manu-
ally engineered by a human expert. Examples of techniques used as building blocks to create such pipelines 
are: image deconvolution35, thresholding36 Gaussian filtering37, Top-hat filtering38, watershed transformation39, 
difference of Gaussians40, Butterworth filter41 or high pass filter42. The CIP pipeline was implemented in MAT-
LAB and was specifically designed and fine-tuned for the case study of Autophagy. As a result, the segmented 
vesicles were classified into 1 of 4 categories (phagophores, autophagosomes, early autolysosomes, and late autol-
ysosomes) based on the obtained masks and the pixel intensity. The autophagy process with the aforementioned 
steps and its aspect on the microscopical images is depicted in Fig. 1b. In this paper, we focus on the two main 
categories (Phagophares and Late autolysosomes).

Network design.  Our solution employs a multi-class semantic segmentation network43 based on the U-net, 
which is one of the most common architectures in the state of art for semantic segmentation to process biomedi-
cal images44,45. The U-net network architecture is a symmetric encoder-decoder architecture with skip connec-
tions. In the encoder part, the image features are extracted through a combination of convolution and pooling 
operations. Then, the decoder part builds the segmentation output. By using skip connections the input image 
resolution is preserved for the output label masks, ensuring detail conservation. The employed network contains 
a total of 3 max-pooling and 3 skips connections. To facilitate the learning on the strong class imbalance sce-
nario, a specific class-sensitive loss function was selected46. The generalised dice coefficient47 was included as a 
cost function for the final pixel classification layer. The employment of the U-net architecture is consistent with 
recent results in medical imaging, where classical U-Net architectures were found to have excellent generalisa-
tion performance across different segmentation tasks48. A graphical representation of the employed network is 
depicted in Supplementary Material 1.A.

Part A: Measuring the DL generalisation robustness with noisy label data for semantic seg‑
mentation.  The first part of the paper presents the development of the CIP-based DL approach: CDL. We 
start from a previously existing pipeline based on CIP that have some inaccuracies and train a DL model, expect-
ing benefits for the generalisation capacities of DL. To measure this, we designed three different strategies to 
quantified the generalisation capacity described in the evaluation section.

Data pre‑procesing.  Since the exploratory data analysis showed a strong class imbalance between the back-
ground and the classes of interest (frequency was 0.95/0.023/ < 0.001/0.001/0.024 for background, phago-
phore, autophagosome, early autolysosome and autolysosome, respectively), in this paper, we focus on the three 
most frequent classes, phagophore, autolysosome and background. The discarded classes, the autophagosome 
and early autolysosome stages, have a extremely low-frequency13 and thus very limited available training data 
for these instances. The dataset used for training was formed by 4000 HTS images of 680 × 512 × 2. The two 
microscopy channels were encoded as the red and the green channel in RGB data. Normalisation49 and data 
augmentation techniques (random reflection and rotation)50 were employed to increase the dataset diversity, 
reducing the risk of over fitting during the model training.

Training.  The network was trained in MATLAB, including MATLAB Deep Learning, Computer Vision and 
Parallel Computing toolbox. We decided to use MATLAB instead of DL community more widespread frame-
works as we aimed from the beginning to provide a tool that works on real data and that can be utilised to help 
biologists in their daily routine by integrating the CNN based segmentation in graphical MATLAB tools used for 
image analysis. The dataset was split 0.85/0.1/0.05 for training, validation and test respectively. Stochastic gradi-
ent descendent with momentum of 0.951 was used as optimiser with L2 regularisation52 of 0.001 and an initial 
learn rate of 0.002 with a learn rate drop factor of 0.8 every 3 epochs. The mini-batch size was reduced to 4 due 
to the large input image size and limited GPU memory. The network was trained for 15 epochs from scratch.

User‑friendly GUI.  Next, the CNN was integrated into a user-friendly tool using the MATLAB Image Label 
App53. This integration allows easy handling for the potential users, biological researchers that often do not 
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have experience with programming. By integrating the CNN as a segmentation algorithm into the image label 
app the tool does not only allow for an easy prediction of the mask using the CNN solution but also an intuitive 
way to correct the errors of the mask using manual segmentation tools. The image label app is usually a known 
environment for potential users providing the typical tools for manual refinement (like brush tools, lasso tools). 
An example of the GUI is shown in Supplementary Material 1.B.

Manual correction.  Generation of manual labels from scratch is a hard and expensive task. Instead, the images 
were firstly predicted with our trained network and then manually corrected using the tools available in the GUI. 
The manually corrected dataset of 306 quarters was done by four biologists with experience in cell microscopy.

Evaluation.  Evaluation of the segmentation task on noisy label conditions can be challenging because of the 
lack of an accurate gold standard. The present evaluation aim is twofold. On the one hand, attempts to quan-
tify the generalisation capacity of deep neural networks for microscopy using automatically generated weakly 
labels. On the other hand, to assess the effectiveness of the proposed framework, accounting for its application 
to analogous situations. The capacity of generalisation is evaluated using three complementary but independent 
strategies: (1) a qualitative analysis using blind expert ranking. (2) a quantitative analysis using Bounding Boxes 
(BB) as a surrogate metric.(3) a qualitative analysis using the overlapping segmentation using dice-coefficient 
employing manually corrected samples. Finally, our proposed solution was analysed from a time and computa-
tional resources perspective in the performance comparison section.

Evaluation: qualitative analysis by expert rating.  Double-blind randomised tests were conducted by four 
experts in cell biology with experience in this type of image. The expert quantification was performed in RGB 
microscopy images with adjacent plots of two label masks of that image as well as an overlay of the image with 
the masks. The masks were either produced by CIP or CDL and the experts were blinded about the randomised 
order of the segmentation. They scored each labelling from 1 to (worst quality) to 10 (best quality). A total of 40 
images/80 segmentation were split into two subsets of 20 images each. Each subset was presented to two experts, 
thus each expert rated 40 segmentation masks from 20 images; An example of the test employed is depicted in 
Supplementary Material 1.C. To assess the significant difference, the Kolmogorov-Smirnov test54 was employed.

Evaluation: quantitative analysis: accuracy detection as a surrogate metric.  Detection and segmentation are 
considered different tasks in traditional computer vision literature, however, segmentation implies detection55. 
Hence, detection of the events can be employed to quantitatively assess segmentation accuracy as a surrogate 
metric. Among the benefits of this approach, the creation of a manual detection ground truth for analysis is 
much less time-consuming and more tolerant of the potential errors during the creation of the dataset. A sample 
of 100 HTS microscopy images was reviewed by two separate groups of experts and labelled by surrounding 
each event with a BB, hence a total of four experts. Then, the BBs were automatically extracted from both the 
CIP mask and the CDL mask. Next, the expert manually labelled BBs were compared against CIP and CDL 
respectively. Intersection-over-union of the BBs was employed to measure the same detection, only considering 
intersections equal or bigger than 0.1 of overlapping in order to remove the effect of random overlapping. To 
quantify which method performs better, two type of analysis were performed. First, the number of BBs that do 
not overlap, in other words the analysis of the two type of errors; Second, the number of elements that overlap. 
For the first one, the ratio of events detected by the methods (CIP or CDL) but not for the humans (false positive 
- Type I of error) and the events detected by the humans but not by the evaluated method (false negative - type 
two of error). This was analysed considering the ratio of events for each of the samples labelled by each expert. 
Lower values in the ratio of events for the method that performs better detection are expected. For the second 
one, the mean and standard deviation of the total number of events detected was employed.

The overlap was analysed using two different ranges, lower overlap (from 0.1 to 0.49) and higher overlap 
(from 0.5 to 1).

Evaluation: quantitative analysis—dice coefficient comparison.  While the human rating of the segmentation 
and the detection analysis are good approximations of segmentation’s quality assessment, the best comparison is 
segmentation labels as gold standards. Nevertheless, as mentioned before its generation is time-consuming. The 
manually corrected dataset was employed as the gold standard to compare, the CIP and the CDL generated mask 
using the Sørensen-Dice coefficient.56.The following metrics are employed to compare the semantic segmenta-
tion, including accuracy (Eq. 1), precision (Eq. 2), recall (Eq. 3), specificity (Eq. 4), intersection over union (IoU) 
(Eq. 5) and the boundary F1 score (BFS)57(Eq. 6), formulas in table 1. Since IoU is employed, Dice coefficient 
was not included since its correlation with the Sørensen-Dice coefficient will not provide additional information 
to compare the approaches58. Additionally, the metrics are aggregated in three different ways: ’Global’ being the 
ratio of correctly classified pixels, regardless of class, to the total number of pixels; ’Mean’, as the average score 
of all classes in all images; and ’Weighted’ by the number of pixels in each class. Considering that our dataset 
has a strong class imbalance, the ’Mean’ aggregation and the disaggregated (i.e. per class) convey the fairest 
comparison.

Part B: Semantic segmentation performance evaluation of CIP, CDL, and MDL approaches.  The 
second part of this work focused on the development of the MDL strategy, a DL-based solution trained with the 
manually corrected dataset as previously described. Next, using the test set the accuracy of the previously devel-
oped network, CDL and the CIP method were compared with the MDL approach to assess its accuracy.
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DL approach and training.  The two-step workflow is represented as MDL in Fig. 1a bottom part. Firstly, the 
manually corrected masks are easily generated using the GUI. Then (2) this dataset is employed to train a U-net 
from scratch similarly to the network training in the CDL approach. The DL network was trained from scratch 
using the manually curated data set during 15 epochs. The dataset was divided using 90% (80% for training and 
10% for validation) and kept the 10% for the posterior testing. A stochastic gradient descendent with 0.9 with 
momentum was employed. As optimiser with L2 regularisation of 0.001 and an initial learning rate of 0.001 with 
a learn rate drop factor of 0.8 every 3 epochs. As before, the mini-batch size was reduced to 4 due to the large 
input image size and limited GPU memory.

Evaluation.  In this work, we do not only aim to develop an efficient solution in terms of accuracy, resources 
economy, and usability but also to compare strategies commonly employed when planning to include AI into the 
automatic image analysis workflow. In this section, we compared the accuracy of the three methods, CIP, CDL, 
and MDL. To do so, a subset of the manually curated dataset (10%) was employed. Each approach (CIP, CDL and 
DL) was quantitatively compared using dice coefficient.

Performance comparison.  Although accuracy is essential, time and resource efficiency are also funda-
mental for a holistic evaluation of the different approaches. Time was evaluated considering three stages: The 
time for dataset preparation, time for solution’s development, and inference’s time. Resources estimation include 
human and computational resources. For the first one, we consider resources invested on the critical evaluation, 
BBs generation, manual correction, and manual curation (from scratch). For the second one, the time needed 
to program the CIP pipeline and the two DL approaches. Finally, the time need and resources needed such as 
special GPU resources or conventional resources for the inference.

Results
This section is structured into two main parts: (1) the generalisation capabilities of a DL network trained on noisy 
label data generated by a CIP pipeline were evaluated using three independent metrics. (2) the comparison of the 
three methods: traditional CV methods (CIP), the previously introduced DL trained on noisy labels generated 
using an existing CIP pipeline (CDL) and DL trained on a small manual curated dataset (MDL).

Part A: Measuring the DL generalisation robustness with noisy label data for semantic seg‑
mentation.  In the CDL approach, a previously existing pipeline described in Arias et al.13 was employed as 
starting point to train the CDL network. This CIP pipeline consisted of a series of heuristically determined filters 
and operations applied to the images such as flatfield corrections, image deconvolution, difference of Gaussians 
and thresholding. While this pipeline yields acceptable results, several inaccuracies were found in the resulting 
segmentation labels when applying them to the data. Such inaccuracies can be classified into three main cat-
egories, sorted from the most severe to the most subtle: Missing detection of the event, misclassification of the 
event and incomplete segmentation. The different types of errors are represented in Fig. 2a. Visual comparison 
between the labels generated with CIP (used as a noisy label) and the trained CNN (CDL) is depicted in Fig. 2b. 
In this Figure, we can visually observe that CDL segmentation is out-performing CIP segmentation masks. 
Afterwards, three different strategies were employed to objectively measure the CNN generalization capacity 
over the errors presented in the training masks.

Qualitative analysis: expert rating.  The qualitative/semi-quantitative analysis by expert yielded a mean qual-
ity rating of 4.3 for CIP and 8.3 for CDL (1–10, where ten is best). It should be noted that the average rating 
per expert was significantly varying, giving a notion of different ”critical attitude” of the different experts. The 
detailed results are shown in Fig. 3A. The Kolmogorov-Smirnov test determined that the score associated per 
segmentation method within the same experts was significantly different in all the experts, with a p-value rang-
ing from 1e−8 to 1e−11. There were no significant differences between datasets 1 and 2.

Quantitative analysis: detection accuracy as a surrogate metric.  The quantitative analysis of detection overlap as 
a surrogate metric is presented in Fig. 3B, represent the ratio of BBs that do not overlap. Each point represents 
the total number of events detected by BBs in the 50 images that were labelled by the experts in cell biology. 
On the left, detected by the method (CDL or CIP) but not by humans (false positive). For the BBs that detected 
autolysosome, the mean ratio of events is 0.44 (0.06 std.) for CIP and 0.29 (0.04 std.) for CIP, hence 1.5 times 
worse. However, such differences do not exist in the case of Phagophore, 0.12 (0.07 std.) for CDL and 0.13 

Table 1.   Employed Metrics.

Accuracy = TP/(TP + TN) (Eq. 1)

Precision = TP/(TP + FP) (Eq. 2)

Recall = TP/(TP + FN) (Eq. 3)

Specificity = TN/(TN + FP) (Eq. 4)

IoU = TP/(TP + FP + FN) (Eq. 5)

BFS = 2 ∗ Precision ∗ Recall/(Recall + Precision) (Eq. 6)
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(0.065 std.) for CIP. On the right, detected by humans but not by the method (false negative). In the detection 
of Autolysosome, the ratio of CDL is 0.12 (0.03 std.) that rises to 0.294 (0.03 std.) in CIP, hence CIP has 2.33 
times worse. Finally, for Phagophore detection, the ratio of CDL is 0.36 (0.14 std.) and 0.539 (0.11 std.) for CIP, 
making the CIP method 1.4 times worse. In Fig. 3C, the total number of events that overlap with human-made 
BB is presented. The overlap percentage is divided into two ranges: 0.1 to 0.49 (lower), and 0.5 to 1 (higher). For 
both classes and overlapping ranges, the number of detected events is higher in the CDL segmentation than in 
the CIP one. The number of detected Phagophore events is in general higher than in the Autolysosome event, as 
expected due to its higher frequency for Autolysosome events13. This tendency remains when the data is normal-
ised using the total number of events. It yielded 64.48% of detection overlap between CIP and manual detection, 
in particular, 62.96% in Autolysosome detection and 66.79% in Phagophore. The detection overlap of autophagy 
events between CDL prediction and the manually curated dataset was 77.19%. This corresponds to 78.84% for 

Figure 2.   Qualitative analysis of the generalisation capability of CDL vs CIP. (a) On the left, a sample raw 
image from the dataset of fluorescent microscopy images (microscopy channels one and two are displayed 
as red and green channels of the RGB image). On the right, the corresponding (weak) mask is produced 
with the conventional image processing (CIP) pipeline. The different types of errors are shown in the legend. 
(b) Examples comparing CIP and CNN based segmentation (CDL) on previously unseen data. Top row: 
part of original HTS image, middle row: CIP Segmentation, bottom row: CDL segmentation. Errors of the 
segmentation are highlighted by black arrows. Note the improvements the CNN learned over the CIP which was 
used to generate training data.
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Figure 3.   Measuring Deep learning (DL) generalisation robustness with noisy label data for semantic 
segmentation. Result of the three complementary methods assessing the Convolutional Neural Network 
(CNN) capacity of overcoming segmentation errors. Comparison of CNN deep learning (CDL) prediction 
and Conventional image processing (CIP, Method for label generation). (A) Results of the qualitative analysis: 
Expert rating. Violin plots represent the distribution of the score given to each method in the double-blinded 
test.The CDL method scored significantly higher in all the expert. (B,C) Results of the quantitative analysis: 
Detection as a surrogate metric. (B) Scatter plots representing the misclassification ratio of a method (CIP or 
CDL) compared to human annotations. Each point represents the result of a given expert for a given class and 
method. Therefore, there are 4 points, one for each expert, per class and method. The highest the error ratio, 
the worse the method performance. (C) Results of the quantitative analysis: Detection as a surrogate metric. 
Plots represent the average number of Bounding Box intersections between the manual reference generated by 
the four experts and the evaluated method. Error bars represent standard deviation. Overlapping levels split as 
follows: On the left, lower overlap (between 0.1 and 0.49) and on the right, higher overlap (0.5 to 1). For both 
classes (Phagophore and Autolysosome) and both overlapping ranges, the number of detected events is higher in 
the CDL segmentation than in the CIP one. (D,E) Results of the quantitative analysis: Detection as a surrogate 
metric CIP results are presented in light orange, CDL results in dark blue. (D) Aggregated metrics. (E) Metrics 
broken-down per class. The CDL method showed a better performance in line with the results obtained with the 
previous methods.
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Autolysosome and 75.55% for Phagophore. As a result, the CDL method increased by 12.71% in total; 15.88% 
for Autolysosome and 8.76% for Phagophore with respect to the data used for its training.

Quantitative analysis: Overlapping quantification using manual correction.  Finally, both methods were com-
pared at pixel level using the Sørensen-Dice coefficient56 employing 306 manual corrected masks as previously 
described.The table D in Fig. 3 presents the general metrics results of both methods. The CDL method scored 
higher than CIP for all the metrics, the smaller differences were observed with the least recommended aggrega-
tions (the Global Accuracy and the Weighted IoU, with an increase of 1.7% and 3.05% respectively), while when 
using metrics that properly handle class imbalance scenarios the differences raised to 12% (12%, 12.2% and 
12.19% for Mean Accuracy, Mean IoU and Mean BFS respectively. This can be explained by the fact that each 
metric is analysed per class, and some metrics are less class sensitive leading to a reduced variation (Fig. 3E the 
bottom-table). Background scores are in general very high ranging from 0.989 in the CDL Mean Accuracy to 
0.893 in the Mean BFScore for CIP. Hence, as expected the score variation based on the metric employed for this 
class are smaller 0.3% in the Accuracy, 1.6% in the IoU and 4.9% in the BFS. The biggest differences are found in 
the studied events, Phagophore and Autolysosome. For the Phagorore, the increment is 21.4%, 13.8% and 12.8%, 
and 14.2% 21.1% and 26.9% of the Autolysosome for the Mean Accuracy, Mean IoU and Mean BFS respectively.

Part B: Semantic segmentation performance evaluation of CIP, CDL and MDL.  Once the gener-
alisation capability of CNNs was proved in the CDL approach, the three proposed methods, the traditional CV 
approach (CIP), the CDL approach and a MDL trained with a small but highly curated dataset by four different 
experts were evaluated. The segmentation performance of the three proposed methods was assessed using 10% 
of the manually curated masks (31 in total) using the Sørensen-Dice coefficient56 (Fig. 4). In panel A, the general 
metrics of the different methods are presented: CIP method scored the lowest followed by MDL and CDL, being 
the difference of the last two almost equivalent. Taking CIP as a reference, a similar pattern that in the previous 
pixel-by-pixel comparison is found: the metrics that are affected by high-class imbalance (the Global accuracy 
and the Weighted IoU) present the smaller improvements (2.38% for DL and 3.33% for CDL; 4.21% for DL 
5.82% for CDL for Global accuracy and the Weighted IoU respectively). In contrast, higher variations are found 
in the mean accuracy: 18.81% for MDL and 21.23% for CDL. Similarly, 18.18% for DL and 24.75% for CDL in 
the mean IoU. And in the same line, 15.09% for MDL and 16.86% for CDL in the mean BFScore. As mention 
before, the more recommended metrics in a strong class imbalance scenario such as the employed dataset, 
BFScore is the more recommended metric.

The aforementioned variations in the score of the first group of metrics (Global accuracy and the Weighted 
IoU) and the second group (mean Accuracy, IoU and BFScore) can be explained with the broken-down met-
rics per-class presented in Fig. 4B. Briefly, the segmentation produced with the MDL method respect to CIP 
presents lower variations in Background (a maximum variation of 5.48% in metric Mean BFS), and increased 
variations with the studied events: for the Phagophore event (maximum variation of 30.77 % in Accuracy) and 
Autolysosome (maximum variation. of 25.66% in Accuracy). Similarly, the CDL approach provides better general 
performance: With maximum variation of 6.47% for Background in Mean BFS metric, that increases to 36.6% 
in IoU metric for the Phagophore class and 34.5% for the IoU metric in the Autolysosome event.

Finally, in Fig. 4C, the confusion matrix of each approach is depicted. Each row of the matrix represents the 
instances in a predicted class while each column represents the instances in an actual class. An improvement for 
both Phagophore and Autolysosome classes can be observed. In particular, when CIP fails to classify these two 
classes, they are mostly wrongly classified as background. CIP true positives for these two classes range 0.55 to 
0.6, respectively. Conversely, MDL and CDL decreased this type of error, providing 0.85 and 0.95 true positives 
for the same classes, respectively. We speculate that the bigger size of Autolysosome events explains the higher 
accuracy for this class.

Performance comparison.  Time comparison is reported for the dataset preparation stage, algorithm 
development and inference time. The time for the dataset preparation depends on the method. While in the 
case of the CIP solution, no data set preparation is needed, the CDL dataset (based on CIP), can range from 
no-preparation if the CIP solution is already available, to the full CIP development time (around 3 months). The 
MDL is one of the most common approaches when developing a DL solution, but also the most time-consuming 
and costly since it is conducted by experts in the biomedical field. Solution development for each method has 
several factors that influence the time needed. For the CIP solution, the developer’s expertise, task difficulty and 
final accuracy play a major role. For CDL, during training with noisy data, the training evaluation must be con-
sidered as an important factor that can increment the time and difficulty of the training. And for MDL, regular 
time that takes for DL optimisations. Regarding inference’s time, traditional CV, such as CIP, generalisation has 
short inference times but long pipelines such as the one employed in this study can last longer. The CIP solution 
lasted approximately 40 minutes on a conventional computer. Solutions based on DL, such as CDL and MDL, 
have an inference’s time of few seconds.

The human resources required in the different tasks ranged from seconds to several minutes per quarter 
image: The segmentation evaluation by experts took from 30 seconds to 1 minute; the generation of the Bounding 
Boxes around the study events from 3 to 6 minutes; manual correction per quarter images take 5 to 10 minutes; 
and manual curation (from Scratch) takes 20 to 40 minutes for segmentation per quarter image. Comparison of 
the computational resources is as follow: For computational resources, its should be considered the availability 
of special computer resources. such as GPUs for the training of the DL-based solutions. While inference of DL-
based solutions can be done on a normal computer they can be speed up using GPUs. In a similar manner, GPUs 
can be also employed to speed up CIP solutions to save time if there are tasks that can be parallelized. Translating 
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optimal settings into terms of prediction times, the traditional CV (CIP) takes 15 to 20 minutes per prediction, 
while DL-based systems show a significant reduction in time (CDL and MDL are 2 to 5 seconds per image).

Discussion
High-throughput screening (HTS) is a cutting-edge technology that integrates robotics, microscopy and image 
analysis currently employed to study complex systems. One of the crucial steps to produce a high-quality analyti-
cal procedure relies on the development of an accurate, automatic and user-friendly system to analyse high-con-
tent images59. The analysis of complex high-throughput high-content microscopy images has been automatically 

Figure 4.   Comparison of Segmentation accuracy of CIP vs CDL vs MDL. (A) Box plot of the general metrics 
scores of the three different approaches. Mean aggregation is recommended over Global and Weighted for our 
strong-class imbalanced dataset. (B) Accuracy, Intersection over Union and Mean BFS of the three methods for 
each class: Background, Phagophore and Autolysosome. The large class imbalance between background and the 
other classes explains the small differences in performance for the background class. In these regards, Mean BFS 
is a more representative metric for imbalanced scenarios. (C) Confusion matrix for each approach. Each row of 
the matrix represents the instances in a predicted class while each column represents the instances in an actual 
class. In general, CIP scores the lowest, followed by CDL and MDL score the highest.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11465  | https://doi.org/10.1038/s41598-022-15623-7

www.nature.com/scientificreports/

analysed using digital image processing, highlighting the use of DL in the last years due to its superiority in 
results. However, during DL development and application to real datasets, several problems arise, such as the 
high cost of biomedical datasets3, noisy label data, incorrect segmentation2, and the lack of an easy to use platform 
for implementing in experimental laboratories. Hence, in this work, we explored different solutions for each 
challenge suiting different scenarios and packed them into an easy-to-use tool.

We have first shown that CDL can overcome some of the inaccuracies of noisy labelled mask datasets pro-
duced with conventional image processing techniques in complex images such as fluorescent microscopy images 
(Fig. 3A–E). Such capacity was measured using three different techniques, having each technique its advantages 
and disadvantages. The expert rating offers a qualitative/semi-quantitative way of evaluating the results, as 
illustrated in Fig. 3A. This evaluation approach is the fastest and easiest strategy for objectively measuring the 
difference between the methods, making use of the more intuitive human ability to spot errors and variations. 
All four experts confirmed in the double-blind test that there was a significant improvement in the generalisation 
done by the CDL compared to the CIP.

In the second approach, we make use of the fact that detection accuracy is a surrogate measure of the segmen-
tation. BB generation is way faster than pixel-by-pixel segmentation, allowing for evaluating more images than 
by manual segmentation comparison.Additionally, once BBs masks are generated for a particular set of images, 
this can be used to compare a limitless number of methods or network states. Using this method, two important 
aspects where evaluated, in first place the number of BBs detected by the two methods at comparison (CIP vs 
CDL) but not by humans (gold standard) and vice versa, detected by the method but not by humans. This results 
shown superiority of the CDL method respect to CIP respect to false positive and false negative using the BBs 
are a subrogated metric, as depited in Fig. 3B. In second place, the degree of overlapping of the BBs, that shown 
a more moderated capacity for both degrees of covering (lower and higher) and for both events (Phagophore 
and Autolysosome), Fig. 3C.

Lastly, we evaluated the segmentation quality pixel-by-pixel label using the Sørensen-Dice coefficient 
(Fig. 3D,E). This method is the most common and accurate approach. However, in the context of noisy label 
data, the generation of good references is a limitation due to its cost and time required. Time and effort decrease 
considerably by producing high-quality image segmentation using deep learning techniques to assist the pro-
duction of the datasets. This is in line with the improvement in the different metrics of the CNN generalisation. 
As expected the increase in the accuracy, was higher in the less frequent and hence more complicated classes, 
Phagophore and Autolysosome, which improved in a similar way. While evaluating this, it is important to 
remember that the most recommended metrics in a class imbalance scenario, such as the employed datasets, 
are one that present the highest variation. Our results present a great improvement from CIP with respect to the 
two methods that employ DL, while the generation of the employed dataset for training in CDL and MDL differ, 
the final results present similar scores in the metrics.

An important aspect that needs to be considered when working with weak labels is to find the right balance 
between a good generalisation of the semantic segmentation and learning the incorrect parts of the weakly 
labelled dataset employed, for both training and testing. This means a perfect fit of the network to the (weak) 
training data would yield a sub-optimal result, as it would learn to reproduce all the mistakes of the weak train-
ing data instead of learning to generalised from them. These phenomena were described as trusting the teacher 
too much in the literature60. Interestingly, we observed that using less training samples was helpful towards this 
end, which is in contrast to the normal overfitting problem, where in general more training data tends to reduce 
overfitting. Further studies are needed to determine the right size of the training samples.

After the CDL approach improved the CNN capacity to overcome errors, we compared which approach 
(CIP, MDL or CDL) is better, not only in terms of accuracy but also time and resources. Using the Sørensen-
Dice coefficient for a pixel-by-pixel evaluation CIP scored the lowest, CDL the highest and MDL in between. 
It should be noticed that the evaluation dataset is 10% of the previous data set since the rest was employed to 
train the MDL solution. Such difference in the dataset size explains the variations between the Figs. 3C,D and 
4. Additionally, to make a fair comparison between the two networks (MDL and CDL) some important points 
need to be considered. Despite having the same architecture (U-net with class-sensitive loss function) and similar 
training conditions (adapted to the dataset size in each case) there were major differences in the datasets used 
for training. Such variations refer mainly to the dataset size and the consistency of the labels. In terms of data 
size, the CDL approach was trained using 4000 HTS images of 680 x 512 while the MDL approach employs 274 
images of 340 × 256. Regarding label consistency, although MDL employs a manually corrected dataset expect-
ing to contain fewer errors, the consistency of the human-curated labels is lower than the labels generated with 
the CIP algorithm. The differences in these two datasets draw a clear line between two common scenarios of 
real-world experimental laboratories. Human curated data is the gold standard for ML datasets including expert 
knowledge label generation across domains such as medicine or biology. Notwithstanding, recent works show 
that automatic analysis of images using CV can excel human perception in cellular image analysis61, CNN can 
surpass human performance on visual recognition tasks62, and can even recognise cell structures that trained 
humans cannot spot63. Additionally, high inter-reader variability is reported in biomedical image segmentation11. 
This is especially challenging when the contours are not well defined due to the ambiguity to set the limits by 
the experts12, being the lack of label consistency a major factor that reduces algorithm performance6465. Despite 
DL can out-perform human tasks, especially at the pixel level, at the current state of AI development, human 
knowledge still needs to be included in the loop31. In the CDL approach, human-in-the-loop is introduced for 
the tasks better suited for humans, such as error spotting and critical evaluation of the predictions66, leaving 
the parts where CV techniques (traditional and AI-based) the parts were computer image processing shines at. 
To sum up, the CIP approach based on traditional CV techniques is the less accurate solution, requiring as well 
more execution time to produce the output.
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It’s also important to consider the time needed to develop the CIP approach. Estimation of this is hard to 
assess since its highly dependent on the context which in our case was the initial time was 3 months. This could 
be less if there was a pipeline already in place that can be fine-tuned.

However, no training set is needed, neither are special computational resources such as dedicated Graphics 
Processing Units (GPUs). The MDL approach employs a small but manually curated dataset that offers a more 
accurate solution and faster prediction times. In this case, the generation of manual labels is very costly and often 
contains label inconsistencies. Additionally, it requires specific computational resources such as GPUs for model 
training. Finally, the CDL approach is the most balanced solution. It is as fast as the MDL approach, requires the 
same resources, but circumvents the issues concerning human-generated labels. Each laboratory setting comes 
with compromises. Such considerations should be weighed to justify choosing one approach over the other 
depending on the setting needs. All in all, the CDL approach offers the best trade-off.

Conclusion
In this work, we have developed a tool that outperforms the previous solution (CIP) in three different aspects: 
accuracy, speed and usability. We have reached better segmentation performance starting with noisy label data 
generated with CIP, which was leveraged by CNN capacities, overcoming the errors and generalising beyond 
the provided noisy labels. We discuss the pros and cons of traditional CV-based and DL-based solutions and 
combine the best of both methodologies in the CDL approach. The shortage of gold standard datasets is one of 
the main concerns when training solutions with noisy label data. In this work, we implemented three independ-
ent but complementary methods with different advantages and disadvantages. We also addressed another big 
obstacle that limits the usage of DL solutions in experimental laboratories. Such solutions often require special 
IT skills for their deployment and use. In this sense, we embedded our solution into a user-friendly GUI tool 
for MATLAB. Finally, we anticipate that these results might be generalised to other domains other than HTS 
imaging. This work aims to close the gap between new technologies and their implementation in real scenarios 
in HTS microscopy image analysis.

Future work and Limitations
This paper reports a case study of our experience developing a solution for a real laboratory, and focus on how to 
obtain the best results with limited resources, something that we believe is under represented in many research 
papers. We believe these insights can be highly valuable for people in similar scenarios. However, the conclusions 
should be taken from a case of study perspective, opening very interesting ideas that need to be validated with 
further research. Future work may include a more detailed analysis on how U-net is having such good results in 
generalisation over noisy label data. This includes detailed results about their generalisation such as statistical 
analysis on outliers, average and good results on the different approaches using synthetic data that mimic the 
current scenario.

Data and code availability
Code and data will be available thought the R3 platform of the University of Luxembourg. The GUI presented 
in this paper can be found: https://​beatr​izgsc.​github.​io/​CellS​egmen​tation/.
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