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Simple Summary: Long bone metastases are frequently a pivotal point in the oncological history
of patients. Weakening of the bone results in pathologic fractures that not only compromise patient
function but also their survival. Therefore, the main issue for tumor boards remains timely assessment
of the risk of fracture, as this is a key consideration in providing preventive surgery while also
avoiding overtreatment. As the Mirels scoring system takes into account both the radiological
and the clinical criteria, it has been used worldwide since the 1990s. However, due to increasing
concern regarding the lack of accuracy, new thresholds have been defined for the identification of
impending fractures that require prophylactic surgery, on the basis of axial cortical involvement
and biomechanical models involving quantitative computed tomography. The aim of this review is
to establish a state-of-the-art of the risk assessment of long bone metastases fractures, from simple
radiologic scores to more complex multidimensional bone models, in order to define new decision-
making tools.

Abstract: Long bone pathological fractures very much reflect bone metastases morbidity in many
types of cancer. Bearing in mind that they not only compromise patient function but also survival,
identifying impending fractures before the actual event is one of the main concerns for tumor boards.
Indeed, timely prophylactic surgery has been demonstrated to increase patient quality of life as well
as survival. However, early surgery for long bone metastases remains controversial as the current
fracture risk assessment tools lack accuracy. This review first focuses on the gold standard Mirels
rating system. It then explores other unique imaging thresholds such as axial or circumferential
cortical involvement and the merits of nuclear imaging tools. To overcome the lack of specificity,
other fracture prediction strategies have focused on biomechanical models based on quantitative
computed tomography (CT): computed tomography rigidity analysis (CT-RA) and finite element
analysis (CT-FEA). Despite their higher specificities in impending fracture assessment, their limited
availability, along with a need for standardization, have limited their use in everyday practice.
Currently, the prediction of long bone pathologic fractures is a multifactorial process. In this regard,
machine learning could potentially be of value by taking into account clinical survival prediction as
well as clinical and improved CT-RA/FEA data.

Keywords: long bone metastases; pathologic fracture; impending fracture; skeletal-related events;
predictive scoring system; metastatic bone disease

1. Introduction

Bone metastases are frequently a pivotal point in the oncological history of patients,
as they lead to a variety of complications [1–3]. Collectively known as “skeletal-related
events” (SREs): pain, hypercalcemia, medullar compression, and fractures are used to
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reflect bone metastases morbidity. Worldwide, more than 1.5 million people experience
bone metastases, especially from breast, prostate, and lung cancer. Of these, 50% develop
an SRE within the first two years following their diagnosis [3,4]. Pathologic fractures of
the long bones are one of the most severe complications of such SREs. First, this type of
SRE impairs patient autonomy and quality of life. Carter et al. reported a time trade-off
equal to 0.89 for pathologic fractures in breast cancer [5]. Furthermore, SRE fractures lead
to a higher mortality rate [6–14]. In the study by Saad et al., unadjusted model outcomes
showed that pathologic fractures were significantly associated with decreased survival in
breast cancer, multiple myeloma, and prostate cancer [9]. With advances in cancer therapy
and improved prognosis, SRE management is becoming a critical topic.

Although bone metastases are generally detected during oncological follow-up, patho-
logic fractures are sometimes the first event leading to the diagnosis of a tumor. In addition,
compared to preventive stabilization, surgical management of pathologic fractures results
in an additional cost of USD 21,000 per patient, along with an average length of stay that is
twice as long as usual [15,16]. Bone surgery, along with spinal cord decompression, has
been reported to be the most expensive SRE treatment [5]. Moreover, prophylactic surgery
procedures, such as curative resection and prosthetic reconstruction of impending femoral
fractures, lead to better survival rates than osteosynthesis of actual pathologic fractures
for some patients [17,18]. Along with arthroplasty, intramedullary nailing and plating
with bone cement injections are part of the preventive surgical procedure in long bone
metastasis management [19]. In light of this, timely identification of patients with a high
risk of fracture is paramount [20–23].

Nevertheless, the indication for surgery depends on the patient’s overall prognosis,
the localization of the lesion [24], and the inherent radiotherapy and chemotherapy delays.
In addition, out of 1195 non-spinal skeletal metastases surgically treated in specialized
sarcoma centers in Scandinavia, there was a 12.9% rate of complications such as lung
embolism, liver failure, aspiration pneumonia, deep vein thrombosis, and fat embolism [18].
It is, therefore, recommended that long bone lesions that do not jeopardize the mechanical
properties of the bone are treated conservatively. Accordingly, the main concern of tumor
boards hence remains timely assessment of the risk of fracture, so as to provide preventive
surgery while also avoiding overtreatment.

When surgery is not recommended, there are other treatment options. For example,
external radiotherapy has been shown to be a valuable tool in MBD management, with
one main objective: analgesic control [25], with effectiveness demonstrated not only for
nociceptive pain but also for neuropathic bone pain [26]. According to the systematic review
by Falkmer et al., there is strong evidence that radiotherapy of skeletal metastases provides
overall pain relief in more than 80% of patients, lasting more than six months [27]. Moreover,
bone recalcification can be expected after radiotherapy for multiple myeloma [28].

The data regarding pathologic fractures following radiotherapy are controversial: Sze
et al. reported a 3.0% pathological fracture rate after single-fraction radiotherapy, and
a 1.6% rate after multi-fraction therapy (p < 0.05) [29], whereas Chow et al. reported a
3.2% pathological fracture rate after single-fraction vs. a 2.8% rate after multi-fraction
radiotherapy [30]. Nonetheless, it should be pointed out that radiotherapy in skeletal
metastases is palliative in most cases, with relatively low-dose radiation. Indeed, in
conventional external beam radiotherapy, various fraction regimens have been described,
ranging from single-fraction (maximum 8 Gy) to short (maximum 22.5 Gy) or long-course
multi-fraction radiotherapy (maximum 30 Gy) [31]. Consequently, considerations for late-
onset fragility fractures after therapeutic dose radiation [32], which are much higher, cannot
be applied in palliative radiotherapy MBD management. Similarly, non-union issues, as
well as fractures due to embrittlement of the bone tissue, have only been described for
high-dose radiation of up to 50 Gy, as used in soft tissue sarcoma treatment [33].

Furthermore, systemic treatments could also decrease the SRE rate. Of these, bisphos-
phonates such as zoledronic acid have been approved for the treatment of bone metastases,
provided there is careful renal monitoring. By impairing osteoclast-mediated bone resorp-



Cancers 2021, 13, 3662 3 of 18

tion, these entities affect osteoclast differentiation and their resorptive activity, thereby
inducing apoptosis [34]. Denosumab, which is an antibody that inhibits RANK ligand is
another new agent that affects osteoclast activity, thereby reducing the risk of SRE [35].

In this last decade, a combination of nuclear imaging medicine with radiopharmaceu-
tical research has resulted in a new concept development called theranostics, enlarging the
therapeutic arsenal for MBD. Relying on substitution of β+ by β- or α-particle emitters,
the PET tracer is switched for a therapeutic radionuclide, exploiting the same specific
molecular target for imaging and therapy [36]. In particular, prostate-specific membrane
antigen (PSMA) has become an attractive target for radionuclide-chelating ligands [37]. As
PSMA is over-expressed in prostatic cancer cells, the 68Ga PSMA-ligand was developed for
positron emission tomography imaging. Combined with computed tomography (CT), 68Ga
PSMA-11 PET/CT outperformed CT alone to detect bone metastases, with a sensitivity
of 99% and specificity of 88%, while a CT scan showed a sensitivity and specificity of
87% and 61%, respectively [38]. It then can be used as a predictive biomarker to confirm
target expression for endoradiotherapy, which can be achieved with 177Lu PSMA-617
β− emitters [39]. Similarly, since bisphosphonates demonstrated a high hydroxyapatite
affinity along with the capacity to impair osteoclastic activity, it became a good candidate
for theranostics. In this way, 68Ga-/177Lu-DOTA-ZOL seemed to be an effective palliative
MBD treatment [40].

First described in 1989, the Mirels score assesses four prognostic items in the decision-
making criteria for surgery [41]. It is presently the most widely used tool for this purpose,
guiding surgical preventive management of pathologic fractures. Nevertheless, numerous
studies have pointed out its lack of specificity, which often leads to overtreatment [22,42–46].
As a result, assessment based on a 30-mm axial cortical involvement (ACI) threshold has
recently been described [46], with these new guidelines outperforming the Mirels score.
Nonetheless, many authors report difficulty with predicting the occurrence of fractures in a
context of metastatic bone extension. On the basis of mechanical models for fracture risk as-
sessment, two approaches have been suggested. These are based on computed tomography
and computational tools to model bone rigidity (computed tomography rigidity analysis,
CT-RA) and bone strength (computed tomography finite element analysis, CT-FEA) [47].
The aim of this review was to describe the state-of-the-art in the risk assessment of long
bone metastasis fractures, from the Mirels score and ACI to the recent CT-RA and CT-FEA
mechanical models, as well as the progress that can be achieved with machine learning.

2. Fracture Risk Assessment in Long Bone Metastases: Standard Radiography and
Nuclear Imaging Tools

Since the seventies, numerous authors have sought to identify impending fractures
in association with long bone metastases [46]. Most of the studies to date, however, have
lacked supportive statistical evidence. In the first report by Beals and Snell in 1964, 58% of
the 19 femoral pathologic fractures in a breast cancer context were predictable. A 2.5-cm
diameter lesion, either lytic or painful, was reported in each case. Seven years later, in their
second report that took into account these results, half of the 10 impending fractures in
34 affected femurs were fixed [48]. In 1981, Fidler analyzed 100 pathologic fractures in long
bones and concluded that they were likely to occur when more than 50% of the cortex was
destroyed [49].

2.1. The Mirels Scoring System
2.1.1. A Clinical–Radiological Composite Prognostic Score

In 1989, Mirels described a composite prognostic score based on four clinical and
radiographic criteria: the lesion size (in relation to the bone diameter), its radiological
appearance, its anatomical site, and its related pain. Each item is subdivided into three
categories, rated from 1 to 3, resulting in a total score of between 4 and 12 [41] (Table 1).
According to ROC curve analysis, maximum sensitivity and specificity are reached with
scores equal to or higher than 9/12, related to a 33% risk of fracture, along with 0%
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false positives. Prophylactic surgery can thus reliably be proposed when diagnosing an
impending fracture when there is the Mirels score is greater than 8. This predictive tool
with a 9/12 cut-off score is hence considered the gold standard decision-making criterion
for prophylactic surgery in cases of impending fractures of long bone metastases [41]. The
fracture risk is deemed low in a given location with scores ≤ 7, moderate with a score = 8,
and high with scores ≥ 9 (which indicates surgery).

Table 1. The Mirels scoring system. Adapted from [41].

Score Site of Lesion Size of Lesion Nature of Lesion Pain

1 Upper limb <1/3 of cortex Blastic Mild
2 Lower limb 1/3–2/3 of cortex Mixed Moderate
3 Trochanteric region >2/3 of cortex Lytic Functional

2.1.2. Limitations of the Mirels Scoring System

However, Mirels scores of 7 or 8/12 are related to 4% and 15% fracture risks, respec-
tively, which can lead to undertreatment, although the false-positive rate increases (from
6% for a Mirels score = 8/12, up to 22% for a Mirels score = 7/12). A recent study comparing
the Mirels score associated with prophylactic treatment of bone metastases along with
actual fractures showed that the Mirels score tended to underestimate the risk fracture in
upper limb metastases [50].

Furthermore, the score’s overall predictive value has been a matter of debate in the
literature [51], since univariate analysis of each of its items has revealed a weak association
with fracture risk [21,52,53]. In the series of Keen et al. with 516 metastatic breast lesions
of the proximal femur, although the patients experienced moderate to severe bone pain,
only 11% of them sustained fractures. Radiotherapy relieved the bone pain but did not
preclude sustaining fractures, thus indicating that pain alone is not a reliable indicator
of impending fractures [54]. Furthermore, the score exhibited low total inter- and intra-
observer concordances (kappa = 0.294 and kappa = 0.323, respectively), with pain criteria
associated with the highest inter-observer discordance [22,42,45]. In light of this, Howard
et al. suggested adding a simple clinical criterion in conjunction with the Mirels score to
predict pathological fracture. Using a threshold level of 85% of the single-leg stance weight-
bearing capacity on the affected limb, they obtained a 0.97 sensitivity vs. 0.91 compared to
Mirels scoring, a 0.65 specificity vs. 0.69, with a positive predictive value (PPV) of 0.78 vs.
0.79, and a negative predictive value (NPV) of 0.94 vs. 0.86 [55]. However, this criterion
is limited to lower limb metastases assessment, as it depends on patient weight-bearing.
Finally, the score’s lack of specificity, combined with a low PPV, may statistically induce
overtreatments [42,46]. In the recent study by Van der Wal et al., a PPV of 14% indicated
that six out of seven patients would undergo an unnecessary surgical procedure [56].

2.2. Axial Cortical Involvement (ACI) and Circumferential Cortical Involvement (CCI)

In 2003, on the basis of data from the Dutch Bone Metastasis Study Group, Van der
Linden et al. suggested using a single objective radiographic criterion to assess fracture
risk. They found that a cortical invasion of more than 30 mm in the axial plane (axial
cortical involvement (ACI), ACI > 30 mm), detected on a frontal and lateral X-ray or CT
scan, was more specific of the risk of fracture than the Mirels score [57]. Comparative
data on the metrics of these two scores are presented in Table 2 [57]. A more recent
prospective multicenter study has shown that the sensitivity, specificity, PPV, and NPV
of axial cortical involvement for predicting femoral fractures were 86%, 50%, 20%, and
96%, respectively [56]. This fracture risk classification system has supplanted the Mirels
score in the Netherlands and is now recommended for the management of long bone
metastatic lesions [46]. Although it could be an improvement for establishing surgical
indications, reducing excess surgery rates from 76% to 36%, it does present potential
pitfalls. Its acceptable sensitivity (86%) associated with a specificity of only 50% and a
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PPV of 20% could lead to unnecessary prophylactic surgeries. Assuming that analysis of
the dimensions of metastatic lesions could be insufficient on standard X-rays, Tatar et al.
proposed use of three-dimensional CT scans in order to obtain a more precise assessment
of cortical involvement. In their multivariate analysis, a circumferential involvement ≥30%
was the only predictive parameter for pathological fracture [58].

Table 2. Comparative intrinsic validity and diagnostic values of the Mirels score and axial cortical
involvement (ACI), as described by the Dutch Bone Metastasis Study Group [46], and Circumferential
Cortical Involvement (CCI) [58]. PPV: positive predictive value; NPV: negative predictive value.

Fracture Risk Assessment Sensitivity Specificity PPV NPV

Mirels score > 9 [46] 100% 13% 14% 94%

ACI > 30 mm [46] 86% 58% 23% 97%

CCI > 30% [58] 100% 89% 71% 100%

2.3. Mirels Scoring System Applied to Scintigraphy

Since 1989, improvements in technological engineering have led to considerable
progress in nuclear medical imaging. Hybrid imaging technics combine anatomic data,
from computed tomography (CT) or magnetic resonance imaging (MRI), with cross sec-
tional details of functional information from radiotracers tumoral avidity [59]. As a result,
prognostic assessments become more accurate, for early diagnosis as well as treatment
follow-up of skeletal metastases [60].

Whole-body computed tomography, technetium-99m bone scintigraphy, and positron
emission tomography–computed tomography (PET-CT) have become essential tools for
assessing not only metastatic extensions of primary tumors but also the risk of bone
metastasis fracture.

2.3.1. 99mTc MDP SPECT-CT

In light of these technological developments, in 2018, Riaz et al. used technetium
99m-methyl diphosphonate (99mTC-MDP) single-photon emission computed tomography–
computed tomography (SPECT-CT) scintigraphy as a substitute for radiography when
evaluating Mirels scores [61]. Thirty-two cases were compared, using, on the one hand, a
standard assessment based on Mirels scores and, on the other hand, SPECT-CT-modified
Mirels scores. The changes mainly concerned the lesion’s size, with a distinction based on
the axial size of the cortical invasion, as described by Van Der Linden et al. The results
show a significant difference between the two scores (p < 0.01): 28% of the lesions were
classified as being at high risk of fracture on the basis of the SPECT-CT-modified Mirels
scores vs. 37.5% with Mirels scores based on X-rays. This pilot report combining hybrid
bone imaging (X-rays along with SPECT-CT) has yielded promising results. The metabolic
activity of the lesions was assessed, as high metabolic activity was considered to be high
risk, whereas non-avid lesions were considered to be blastic lesions according to the Mirels
scoring system. This novel hybrid score is an interesting add-on, and it may contribute
to more precise prediction of the fracture risk in long bone skeletal metastases. Thus, it
warrants being characterized in a larger prospective study.

2.3.2. 18F-FDG PET-CT

Along these same lines, Ulaner et al. investigated whether 18F-fluorodeoxyglucose
(18F-FDG) PET-CT quantitative measures of FDG avidity could be suitable for assessment
of the femoral pathological fracture risk in patients with metastatic breast cancer. A total
lesion glycolysis of 81 allowed identification of patients with a high risk of fracture. The
sensitivity was reasonably good at 85%, the specificity was relatively high at 80%, the
PPV was good at 67%, and the NPV was 91% [62]. Yet, 18F-FDG PET-CT is limited by its
metabolic spectrum analysis, as it is not suitable for all types of cancers, and it also raises
the question of accessibility of this decision-making tool in everyday practice.
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3. Biomechanical Models Based on Quantitative Computed Tomography

In light of the limitations of current imaging analysis practices, the need for a more
accurate tool for predicting long bone fractures has shifted the focus towards biomechani-
cal models.

In particular, quantitative computed tomography (QCT) has been centered on dimen-
sions and mechanical analyses of metastatic osteolysis, using the finite element method
(CT-FEA: computed tomography–finite element analysis) for modeling the stresses ap-
plied to the bone involved, or stiffness analysis (CT-RA: computed tomography–rigidity
analysis).

3.1. Computed Tomography–Rigidity Analysis (CT-RA)
3.1.1. Modeling Bone Rigidity

The aim of CT-RA is to assess structural bone rigidity in all two-dimensional cross-
sections of the bone, thereby helping to predict failure loads. In order to do this, X-ray
attenuation (Hounsfield units) are converted to equivalent bone mineral ash density using
a hydroxyapatite phantom included with each scan [63]. The relative position of each pixel
to the centroid of the bone is recorded. Combining the spatial geometry information of
each voxel element, as well as the bone density based on the grayscale level of the bone,
CT-RA uses engineering composite beam theory to assess bone rigidity. In previous ex
vivo studies, it was shown that the load-bearing capacity of the simulated lytic lesion was
proportional to the rigidity at the “weakest” cross-section [64] and that CT-RA correlated
well with yield loads of failure [65]. To calculate the actual bone strength, researchers
compared the obtained rigidity data to the homologous cross-sections in the contralateral
bone: a reduction in axial, bending, or torsional rigidities of more than 35% was taken to
be an indication of a high risk for fractures [63,66,67].

3.1.2. Assessment of Impending Fractures

In the prospective multicenter study by Damron et al., 78 patients with femoral
metastatic lesions were assigned Mirels scores, along with CT-RA assessments, and were
followed up for 12 months until actual fracture, death, or survival without fracture. High-
risk lesions according to CT-RA were associated with a 35% decrease in compression (axial),
frontal and sagittal (bending), or rotational (torsion) stiffness. As a result, in this study,
CT-RA provided higher sensitivity (100% vs. 66.7%), specificity (60.6% vs. 47.9%), PPV
(17.6% vs. 9.8%), and NPV (100% vs. 94.4%) compared with the gold standard Mirels
definition of impending fracture (≥9) [68]. In the study by Nazarian et al., 124 patients with
149 metastatic lesions were assigned to a treatment plan on the basis of the Mirels score.
After obtaining the CT-RA results, the physicians changed the treatment for 36 patients.
Seven of those who did not undergo fixation ended up suffering fractures [69]. Although all
seven of these fractures were correctly predicted by CT-RA, the physicians were influenced
by subjective criteria, considering pain and the primary source of metastasis before opting
for preventive stabilization. Of note, only five of the seven lesions were predicted as being
at high risk of fracture on the basis of the Mirels scores.

3.1.3. A Step forward—Curved-Beam CT-RA

This method was recently improved by taking into account the influence of intrinsic
bone curvature. Indeed, as conventional CT-RA is based on straight beam theory, the
resulting stress can be underestimated when the effect of curvature is not taken into
account [70]. Whereas centroids of femoral shaft and neck sections correspond closely
to straight lines, intertrochanteric regions should be approximated by curvature, in line
with Wolff’s law, i.e., mechanical loads affect bone architecture [71]. As a consequence, a
two-dimensional straight beam analysis in this site could not be of value, since mechanical
stresses and loading forces in vivo are not restricted to a single plane [72]. In terms of
three-dimensional curved beam theory, curved CT-RA appears to outperform conventional
straight beam CT-RA. In this model, the iterative curved cross-sections were found when
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tangent vectors of curve passed through the centroid of cross-sections and perpendicular
to them [70]. In the cadaver studies, curved beam CT-RA models predicted femoral
failure loads for simulated lytic defects in strong correlation with the mechanical testing
results. By contrast, straight beam CT-RA tended to overestimate failure loads in critical
cross-sections, thereby implying potentially incorrect advice regarding weight-bearing
recommendations. As long as one in five lesions occurs in the intertrochanteric site among
femoral metastases [73], an accurate tool has to be validated in vivo in order to assess risk
fracture in this particular area.

3.2. Computed Tomography–Finite Element Analysis (CT-FEA)
3.2.1. A Three-Dimensional Structural Modeling—Ex Vivo Studies

This tool predicts femoral strength by means of subject-specific, three-dimensional
structural modeling. As in CT-RA, a calibration phantom was used to approximate the
Hounsfield units extracted from QCT to calcium-equivalent densities. Extracting elastic
modulus, strength, and post-failure behavior data by quantitative computed tomography,
finite element analysis (FEA) now relies on a large number of finite elements defined by
density properties and bone geometry, thereby leading to the creation of a 3D computer
model [74]. Several loading conditions can then be simulated, taking into account the
patient’s weight along with the bone anatomy [66] (Figure 1).
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Femoral Load-Bearing Strength in CT-FEA

Since the end of the 1980s, several studies have started to focus on FEA as a tool
to predict fracture risk in metastatic lytic long bone lesions [76,77]. Initially, the elemen-
tary formulas simply accounted for the reduced cross-sectional area caused by a defect.
McBroom et al. suggested measuring strength reduction in canine femurs with diaphyseal
defects and to compare this with finite element predictions in tubular structures. They
found that non-linear models, which accounted for material plasticity, provided a high
degree of correlation with the experimental data. Given that bone fracture is in fact a non-
linear phenomenon, higher correlations between the predicted and the measured failure
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load may be found using non-linear rather than linear FE models. Yet, this particular subject
remains controversial [78–80]. At this stage, many trials have compared the load-bearing
strength of cadaver bones to the critical strain predicted by FEA that leads to pathologic
fracture. Using experimentally created lesions or cadaver bones containing metastatic
lesions, the experimental loading was applied to the femoral head, and peritrochanteric,
neck, or diaphysis lesions were evaluated. The model–experiment correlation varied from
r2 = 0.77 to r2 = 0.98 [74,75,81,82].

The Femoral Inner Cortex Thickness Threshold

Interestingly, using femoral neck lesions created in cadaveric samples, Cheal et al.
demonstrated that the greatest reduction in strength was predicted for the inferior-medial
lesion, followed by the anterior lesion and then the superior-lateral lesion [77]. Similarly,
Tanck et al. underlined that lesions located at the medial femoral side induce higher
stress than anterior ones, irrespective of their size [75]. Indeed, under femoral head
compression, both mechanical experiments and computer calculations revealed that the
force is transferred mainly through the medial cortical bone of the femur. This may explain
the greater loss of strength at the medial side under axial loading conditions. In light of
this, using FEA on patient data, Kabawata et al. proposed a cut-off value of 3.67 mm for the
thickness of the inner cortex as a predictor of pathological fracture, with a degree of high
accuracy: 100% sensitivity and 75.1% specificity [83]. Hence, although the Mirels scores
predicted that the anatomical site could be a matter of importance in assessing metastatic
risk fractures, this outcome provides a greater degree of accuracy in the prediction of
femoral pathologic fractures (Figure 2).
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3.2.2. Towards New Threshold Criteria: Strain Fold Ratio and Failure Load

CT-FEA was shown to outperform the Mirels score in a recent retrospective study
including patients with femoral metastatic bone disease. Taking into account the patient’s
weight, the femur anatomy, and a loading force representing stance position in their FEA
modeling, Sternheim et al. calculated the strain fold ratio [85]. This value was defined
as the ratio between the maximum principal strain in the vicinity of the tumor and the
typical median strain in the contralateral region of healthy bones. Applying a 1.48 strain
fold ratio as a predictive threshold for a pathological fracture, the FEA sensitivity was 100%
compared with 88% for a Mirels score > 8, and the FEA specificity was 67%, compared
with 38% for the Mirels score. It also revealed an area under the curve of 0.905 for SFR
compared with 0.578 for the Mirels score (p = 0.008) [86].

Moreover, considering the currently used clinical guidelines in the Netherlands, i.e.,
axial cortical involvement, FEA models appear to be better at assessing fracture risk. In a
prospective study simulating femoral failure loads in a sit-to-stand movement, normalized
for body weight (BW) with a 7.5 × BW as a predictive cut-off for pathological fracture, the
CT-FEA model had a 100% sensitivity (vs. 86% for ACI), a specificity of 74% (vs. 42%), a
PPV of 39% (vs. 19%), and an NPV of 100% (vs. 95%) [87].

Furthermore, in a cadaveric study, Oftadeh et al. compared CT-FEA, CT-RA, and
curved beam CT-RA for the quantification of failure loads and bone rigidity. The failure
loads predicted by curved beam CT-RA and CT-FEA were in agreement with the experi-
mental results. In addition, FEA yielded slightly more accurate estimates of the failure load
than either of the two CT-RA models [70]. Given that CT-FEA may model complex loading
conditions better than CT-RA, this result might be especially crucial for assessment of the
risk of fracture in trochanteric lesions, given their relationship with muscle force attachment
points. In particular, muscle loads transferred to the femur during daily living activities
have to be considered. Muscles with large attachment areas cannot be approximated by con-
centrated forces applied through the centroids of their insertion. Indeed, FEA models with
simplified load cases generated higher strain magnitudes than the physiological ones. This
is of particular importance for the iliotibial tract and the gluteus medius role, as described
by Pauwels, underlining that femoral stresses differ according to the muscles and ligament
influence, particularly in the upper part of the femur compared to the diaphysis [53,88].
However, designing the entire muscle insertion significantly complicates the modeling and
requires specific anatomical knowledge [89].

3.2.3. FE Models: A Need for Global Standardization

Image-based FEA modeling has undergone development for more than 20 years. In
order to predict bone strength and its subsequent risk of fracture, it integrates personalized
mechanical failure determinants such as body weight, bone microstructure, and loading
scenarios. Yet, variabilities in FEA modeling techniques have been reported, thus high-
lighting the need for standardization of scan acquisitions, load conditions, and outcome
parameters [90].

Flattening the Inter-Scanner Differences in QCT Analysis

Firstly, although anthropomorphic standardization phantoms are commonly used,
inter-scanner differences in QCT-based measurements of bone density and bone strength
persist, which may limit its uptake [91]. Indeed, significant differences in grayscale values
have been found depending on various parameters: slice thickness, power, and anthro-
pomorphic or water phantom [92]. Studies with cadaveric bone tissue have been carried
out with high amperage in order to increase image quality for FEA input. Conversely,
clinical QCT scans are usually managed with a low tube current time to limit the amount
of radiation to the patient. The strength and stiffness estimated from high-resolution scans
have been reported to be greater than those obtained from low-resolution scans, except for
the strength of normal and osteopenic femurs, which had lower values [93].
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Additionally, regarding acquisition modalities, FE models have been shown to have
a number of specific constraints. Indeed, arthroplasty implants can result in artefacts
that affect the Hounsfield unit (HU) and corrupt the material characterization in CT-FEA
models [85,87], thereby excluding patients with total hip or knee arthroplasty from FEA.
Similarly, air artefacts around the phantom have been described, causing a degree of
shading on the calibration phantom [87]. Eggermont et al. suggested overcoming this
problem by using air–fat–muscle calibration extracted from a histogram of the HU in
a standardized region of interest. They found no differences in failure loads between
nonlinear FE models with phantom and air–fat–muscle calibration [94].

Standardized Modeling Constitutions in CT-FEA Modeling

Secondly, FEA studies have revealed variabilities in modeling constitution. Indeed,
the choice of a specific density–elasticity relationship and the material-mapping method sig-
nificantly influence FE outcomes [95]. In addition, the accuracy of the models is limited by
the use of isotropic material properties. Yet, cortical bone is transversally isotropic, whereas
trabecular bone is orthotropic [74]. Improvements in FEA modeling, integrating derived
subject-specific anisotropic mechanical properties, have been shown to slightly enhance
bone strength and stiffness predictions in pooled stance and side-fall configurations [96,97].

Moreover, loading conditions also participate in FEA study variabilities. Although
linear FE models have been shown to provide good model–experiment correlation [80], the
level of accuracy was insufficient to identify impending fractures during single-limb stance.
Given that pathological hip fractures often occur during daily living activities without a
fall [21], modeling of this particular configuration is needed. This way, non-linear models
integrating post-yield behavior and crack propagation were found to improve fracture
prediction in single-limb stance [79].

The Particular Case of Blastic Lesions in CT-FEA Modeling

In case of MBD, FE models accounting for the internal pressure exerted by a tumoral
lesion have been shown to change the fracture load and mechanisms [98]. Indeed, me-
chanical changes occur in the tumor microenvironment due to cell mechano-sensitivity
and cytoskeletal aberrations that lead to morphological cell alterations and remodeling of
cell adhesion. Acidic and hypoxic conditions may impede bone structure reliability. In
addition, the rapid proliferation of cancer cells gradually increases the pressure [99] and
may affect the overall mechanical response of the femur so that the tumoral environment is
more complex than an empty tissue. In particular, blastic lesions, which are a focal criterion
in the Mirels scoring system, have been reported to affect bone density, elastic moduli,
and femur strength properties [100,101]. Assuming that it could lead to overestimation of
femoral bone strength, Sternheim et al. decided to exclude patients with predominantly
blastic lesions from their study [86].

Selecting the Threshold Outcome Parameter in CT-FEA Modeling

Finally, consensus regarding threshold outcome parameters, along with a uniform
image-based FEA methodology, are needed to provide a reliable risk of fracture assessment
tool. Whereas Sternheim et al. used a critical SFR of 1.48 [85], Kawabata et al. proposed
a threshold value of 3.67 mm for the thickness of the inner cortex [83]. Eggermont et al.,
on the other hand, focused on a 7.5 x BW cutoff point [102]. Goodheart et al. suggested
combining FEA level walking + a Mirels score > 8, providing a sensitivity of 80% and 100%
specificity [103]. Surprisingly, the level walking that they used was only equal to 2.5 x BW,
which can be assumed to be the baseline load conditions on the hip joint [104]. Although
parameters have to be harmonized, and there are limitations for blastic lesions, CT-FEA
appears to yield the best predictive values for assessing long bone fracture risk (Table 3).
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Table 3. Diagnostic values comparison. 1 Total lesion glycolysis > 81; 2 reduction > 35% in axial, bending, or torsional
rigidities; 3 linear model, failure load < 7.5 × BW; 4 non-linear model, SFR > 1.48; RT: radiation therapy; MDB: metastatic
bone disease; * carcinoma, myeloma, and lymphoma patients; † in breast cancer patients.

Predictive Tool Population Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Mirels score > 8
Sternheim et al., 2020 [86] Femur palliative RT (n = 41) 0.88 (0.47–0.99) 0.38 (0.47–0.99) 0.32 (0.19–0.59) 0.90 (0.55–1.00)
Damron et al., 2016 [68] Femoral MBD * (n = 78) 0.67 (0.22–0.96) 0.48 (0.36–0.60) 0.10 (0.02–0.23) 0.94 (0.81–0.99)

Van der Wal et al., 2020 [56] Femur palliative RT (n = 100) 0.77 0.45 0.17 0.93

ACI > 30 mm
Eggermont et al., 2020 [87] Femur palliative RT (n = 50) 0.86 0.42 0.19 0.95
Van der Wal et al., 2020 [56] Femur palliative RT (n = 100) 0.86 0.50 0.20 0.96

18F-FDG PET CT 1

Ulaner et al., 2017 [62] Proximal femur fracture † (n = 27) 0.85 (0.65–0.96) 0.80 (0.67–0.90) 0.67 (0.48–0.82) 0.91 (0.80–0.98)

CT-RA 2

Damron et al., 2016 [68] Femoral MBD * (n = 78) 0.99 (0.54–1.00) 0.61 (0.48–0.82) 0.18 (0.07–0.35) 1.00 (0.92–1.00)

CT-FEA
Eggermont et al., 2020 3 [87] Femur palliative RT (n = 50) 0.86 0.74 0.39 1.00
Sternheim et al., 2020 4 [86] Femur palliative RT (n = 41) 1.00 (0.66–1.00) 0.69 (0.45–0.84) 0.53 (0.28–0.77) 1.00 (0.79–1.00)

4. What Are the Next Steps?
4.1. Net Benefit Analysis: A Help for Surgical Indications in MBD?

As previously stated, preventive surgical procedures of long bone metastatic lesions
depend on a benefit vs. harm balance analysis. Given that prognostic models based on
measures of accuracy do not take into account clinical consequences, Vickers and Elkin
sought to devise a method to evaluate prediction models by incorporating benefits and
harmful consequences, which requires only the dataset on which the models have been
tested [105]. This decision curve analysis model assumed that the probability of preferring a
treatment relies on how the patient and the physician weigh up the relative harm of a false-
positive and a false-negative prediction. By deriving a net benefit from these probabilities,
some authors have recommended decision curve analysis as a method to be considered in
preventive surgery for MBD [78]. However, as underscored by Kerr et al., this method is
useful only if each patient has the same expected benefit and cost of intervention. Moreover,
risk thresholds as predicted by net benefit curves are dictated by the risk prevalence [106].
Considering that the mechanical behavior of metastatic lesions of long bones can differ
depending on the primary tumor, thereby resulting in distinct consolidation patterns after
radiotherapy, a single scoring system for risk fracture assessment could be limited in terms
of accuracy [107].

4.2. Machine Learning: Multimodal Data Management in a Single Decision-Making Tool

Currently, three-dimensional models outperform the Mirels score and the ACI Index
for assessment of fracture risk, as mentioned above. Nevertheless, it needs to be kept in
mind that imaging should not be the only basis for surgical decision-making: assessment
of the risk of fracture should incorporate other contributing parameters, such as biological
and clinical data.

Consequently, decision-making tools need to take into account not only radiological
findings but also clinical, biological, and quantitative molecular imaging methods parame-
ters, which may influence each other. In this context, machine learning (ML) is expanding
in a wide range of medical applications. It has increasingly come to the forefront in recent
years, partly owing to the advent of big data [108,109].

In machine-learning, neural network-based models of computation such as artificial
neural network (ANN) enable a large number of computing elements (or artificial neurons)
to connect and interact with each other. By allowing management of big non-structural
data, it soon became the most popular type of algorithm used to model fast simulations of
anatomical structures [110]. Alternatively, Bayesian belief network (BBN) modeling is based
on conditional probabilistic relationships between variables. It helps in the interpretation
of these structural data by estimating the likelihood of an outcome. The use of machine-
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learned BBN is increasing in various medical fields, such as helping to analyze complex
clinical elements in order to provide clear guidelines as a decision-making tool.

4.2.1. Real-Time FE Models Generation

As AAN deals with big non-structural data management, its relevance to improve
biomechanical modeling based on quantitative computed tomography is clear. Even though
FEA simulations were initially reported to take 8 h per sample for complex biomechanics
analysis requirements [47,70,80], they can now be an automatic process and take only
an hour to complete [86]. Similarly, future work focusing on machine learning-based
approaches could help generate fast automated FE models of pathologic fractures in
MBD. In this way, machine-learning models trained with data coming from finite element
simulation of a side fall have already been demonstrated to provide an assessment of the
risk of hip fracture in osteoporotic patients with a high degree of accuracy (87%) [111].
Furthermore, using machine-learning, FEA-based simulations for bone damage have
been reduced from 1800 min to 1000 milliseconds in the past decade, thus allowing for
considerable time savings [110,112].

4.2.2. Predicting Survival after Bone Metastases Surgery

The contribution of orthopedic surgeons to preventing pathologic fractures in MBD
management could help to decrease the incidence of this particular impairing skeletal-
related event. However, given the potential post-operative complications, not all metastatic
long bone lesions warrant being operated on. The patient’s general oncologic status and
medical condition, and above all their life expectancy, are critical points that need to be
evaluated before any surgery is undertaken. In this regard, machine-learned BBN models
have been successfully developed and trained to estimate survival in patients undergoing
surgery for bone metastases [113–115]. In PATHFx 3.0, various data are taken into account
such as gender, the Eastern Cooperative Oncology Group (ECOG) performance status,
and the number of bone metastases and visceral or lymph node metastases. Patients are
followed for common types of solid cancers such as lung, hepato-cellular, sarcoma, breast,
prostate, thyroid, and renal cell carcinomas, as well as myeloma and lymphoma. The AUC
(area under the curve) for the PATHFx model is as high as 0.70 for predicting 3-month and
6-month survival. This tool could hence help physicians to opt for palliative radiotherapy
rather than surgery for patients assessed as having a low chance of survival [115]. Although
AAN appears to have better accuracy in predicting patient life expectancy after surgery
for MBD (AUC = 0.89) [113], BBN may be easier to use since it can accommodate missing
input data [116].

Finally, given that it is available online (www.pathfx.org, (accessed on 14 June 2021)),
PATHFx could be a useful clinical decision support tool based on machine learning. In
the survey by Cumming et al., only 5 out of 28 oncologists routinely used a fracture
prediction score, thus highlighting the importance of a multidisciplinary approach in MBD
management, with involvement of an orthopedic surgeon to advise regarding preventive
stabilization of impending fracture [117]. This type of easy-to-use tool may be an impetus
for healthcare providers to more widely employ prediction scores in clinical practice.

4.2.3. Considering Both Radiological and Clinical Data at the Same Time

In 2017, Oh et al. focused on patients with lung cancer and femoral metastases.
Using machine-learning algorithms to combine CT-RA data and clinical features, they
demonstrated that including clinical criteria such as gender, osteolysis, and the absence
of radiation therapy improved the power of pathologic fracture prediction compared
to CT-based radiological features on their own [118]. Moreover, with the aim of SRE
prediction in cancer patients with MBD, Wang et al. developed a machine-learning model
based on a decision-tree that included four variables: a VAS (visual analog scale), PINP
(amino-terminal pro-peptide of type I collagen), CA 15-3, and BALP (bone-specific alkaline
phosphatase), providing good sensitivity (87.9%) as well as good specificity (83.3%) [119].

www.pathfx.org
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As this model is focused not only on fractures but also on the overall SRE, it demonstrated
the importance of biological data adjunction.

Overall, a similar tool could be devised for fracture risk prediction in long bone
metastatic disease. Similar to the FRAX or CatBoost examples of fracture risk assessment
tools in osteoporotic bones [120,121], it should include both clinical data as well as radi-
ological parameters regarding femoral neck bone mineral density. Given the promising
time savings in CT-RA/FEA models generated with machine-learning progress, it should
be easier to integrate these personalized biomechanical models into everyday practice.
Combining it with patient survival prediction data, as well as the biological and clinical
parameters, machine-learning could provide major advances in impending pathologic
fracture assessment.

5. Conclusions

Altogether, these results demonstrate that prediction of long bone pathologic fracture
remains a clinical challenge for tumor boards. In many cases, MBD has to be managed with
conservative treatments, although some patients with impending fractures are likely to
benefit from preventive surgery. However, disease specificities such as life expectancy or
responses to irradiation or chemotherapies have underscored the difficulty of establishing
a general yet accurate predictive tool for pathologic fracture risk assessment.

Although the Mirels score and ACI have yielded relatively disappointing outcomes
due to low specificity and positive predictive values, due to the limited number of criteria,
on the basis of plain radiographs, they nonetheless provide a readily available and simple-
to-use threshold for surgical intervention guidance. As such, they remain the gold standard
guidelines in most centers.

Conversely, promising QCT biomechanical models such as CT-RA and CT-FEA have
better specificities than the Mirels rating system. By modeling bone strength and load-
bearing scenarios that take into account patient weight and bone density at the lesion site,
these powerful strategies fully shift the focus away from standard fracture risk assessment
tools. Yet, the uptake of CT-RA PPV remains relatively low, and these strategies will
only be adopted in routine clinical practice if a fast, highly automated procedure can
be implemented.

In particular, the imaging acquisition duration and the standardization of each proce-
dure have to be improved so that a widespread use of these techniques could be imple-
mented into each MBD management. Since tumor boards face the question of prophylactic
surgery for impending fractures in their everyday practice, efforts should focus on these
predictive tools availability and comparative studies to ensure their exploitation.

Currently, predicting impending fractures in long bone metastases is a multifactorial
problem, and there is a need to better define the contribution of mechanical and non-
mechanical features to fracture risk. This calls for a multidisciplinary approach involving
oncologists, orthopedic surgeons, radiologists, radiotherapists, and nuclear medicine physi-
cians. Moreover, given that lesions are likely to progress, leading to repetitive assessments
during the follow-up of oncology patients, predictive independent factors need to be
easy to input, limited in number and complexity, and cost-effective. To date, none of the
available tools combine all of these qualities.

Finally, by not only allowing integration of clinical, biological, and survival predictive
data, but also radiological parameters, the expansion of machine-learning applications has
yielded encouraging outcomes that herald better pathologic fracture risk prediction in the
future. Combined with personalized mechanical failure determinants provided by CT-RA
or CT-FEA models, it would constitute a powerful making-decision tool.
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