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Overcoming resistance to immunotherapy by teaching old drugs new tricks
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ABSTRACT
Cancer stem cells (CSCs) underlie resistance to therapy. Cancer develops only in the context of failing 
immunosurveillance, and stem cells occupy immune privileged microenvironments. Recent evidence 
demonstrates that CSCs borrow immune privilege from their normal counterparts. However, low doses 
of doxorubicin can target CSCs by restoring anticancer immunity.
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Autocommentary

Current anticancer therapies typically use broadly toxic drugs. 
Combination chemotherapy is often effective at initially elim-
inating the majority of tumor cells; however, rare tumor- 
initiating cancer stem cells (CSCs) resist these therapies. 
CSCs retain or hijack normal stem cell properties. Stemness 
combines the ability to perpetuate a cell lineage by producing 
a large mass of more differentiated cells while maintaining 
a rare, self-renewing population protected from injuries that 
kill other cells.

An underappreciated stem cell protective property is the 
occupation of immune privileged microenvironments. For 
example, mesenchymal stem cells evade the immune system 
to the point that even interspecies transplantation is possible.1 

While not this extensive in hematopoietic stem cells (HSCs), 
evidence indicates HSCs evade the immune system and occupy 
immune privileged sites. The immune checkpoint Pd-l1 
(Cd274), which is frequently associated with immune escape 
in cancer, is expressed on HSCs and improves allogeneic 
transplant capability.2 Similarly, Cd47 is expressed on HSCs 
and certain cancer cells, which enables evasion of phagocytosis 
by macrophages.3 Specialized T regulator cells have been 
shown to provide HSCs with immune privilege.4 It has been 
hypothesized that HSCs generally express low levels of surface 
immune suppressors, which could be increased during times of 
stress or expansion to reinforce immune privilege and protect 
these rare but essential cells.2

Unfortunately, CSCs can also borrow immune privilege 
from their normal stem cell counterparts. Immune resistance 
and escape arise from squamous cell carcinoma stem cells.5 

These tumor-initiating cells are resistant to T cell immunother-
apy and subsequently form the root of relapse. Similarly, leu-
kemia stem cells (LSCs) in acute myeloid leukemia (AML) have 
been functionally defined by their capacity for immune evasion 

irrespective of traditionally defined LSC-specific cell surface 
marker expression.6 Specifically, AML cells lacking expression 
of a critical mediator of anti-cancer immunity, KLRK1 (best 
known as NKG2D), had the stemness properties of LSCs 
whereas those expressing NKG2D were recognized and killed 
by natural killer cells. Overall, these studies demonstrate 
a strong link between CSCs and immune escape.

Our recent work also highlights the powerful role CSCs can 
play in immune escape. The Wnt and PI3 K (phosphatidylino-
sitol 3-kinase)/Akt pathways cooperatively interact to drive 
stem cell self-renewal and, when constitutively overactivated, 
the transformation of HSCs into LSCs.7,8 Both pathways also 
play a critical role in resistance to immunotherapy.9 Given 
these roles, we sought to specifically target the interaction 
between them, specifically the activation of Ctnnb1 (best 
known as β-catenin) by Akt. High-throughput screening sur-
prisingly identified doxorubicin (DXR), a highly toxic che-
motherapy when used at typical clinical doses, as the top 
screen ‘hit’. Importantly, DXR’s on-target effect occurred well 
below the generally toxic dose. Consequently, we repurposed 
DXR as a targeted therapy to inhibit Akt-activated β-catenin.

Transplantation experiments into immunocompromised 
mice found that low dose DXR could inhibit the establishment 
of leukemia from patient samples that had chemoresistant 
LSCs but had no effect on those lacking these cells. These and 
other experiments demonstrated that low dose DXR has an 
LSC autonomous targeting effect. However, investigating the 
broader mechanism in the full context of leukemia develop-
ment and progression in immunocompetent mice revealed 
a striking role for the immune system in mediating low dose 
DXR’s LSC targeting ability (Figure 1). Gene expression ana-
lysis revealed that stem cell/self-renewal related pathways were 
not the only or even predominant pathways altered by low dose 
DXR treatment. Instead, pathways relating to the immune 
system, particularly T cell pathways responsible for anticancer 
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activity, were induced specifically with low but not high dose 
DXR treatment. Importantly, LSCs normally expressed multi-
ple immune checkpoint genes, which were induced by Akt- 
activated β-catenin. By inhibiting Akt:β-catenin interaction in 
LSCs, low dose DXR treatment reduced expression of immune 
checkpoints. Furthermore, functional studies found that low 
dose DXR’s targeting of LSCs was largely abolished in the 
absence of CD8+ T cells. Overall, low dose DXR’s ability to 
target LSCs was found to be largely due to its LSC-intrinsic 
effect on the expression of multiple IC genes combined with an 
extrinsic effect of preserving and even stimulating T cell 
responses against LSCs.

Conventional chemotherapy and targeted anticancer agents 
can have largely unappreciated but positive immunological 
side effects.10 For instance, they can increase the immunogeni-
city of cancer cells and inhibit immunosuppressive tumor 
microenvironments. In laboratory experiments, several che-
motherapy drugs, particularly anthracyclines such as DXR, 
are known to induce immunogenic cell death (ICD). Unlike 
most forms of regulated cell death, ICD stimulates an immune 
response to dying cells – clearly an attractive prospect if the 
dying cell is malignant. Theoretically, one could induce cell 
death in a subset of cancer cells and exploit the ICD response to 
systemically eliminate cancer. However, until recently, antic-
ancer drug development ignored any potential role for the 
immune system, and testing drugs in immunocompromised 
mouse models (a standard step in the process) fails to identify 
candidates that might function by stimulating the immune 
system. Any positive immunological side effects of typical 
chemotherapy and targeted drugs were merely fortuitous, and 
these drugs have not been optimized to account for such 

theoretical effects. Conversely, cancer is increasing recognized 
not simply as a cell-autonomous disease but as a failure of anti- 
cancer immunosurveillance. That CSCs, already known for 
their chemoresistance, can also be immunotherapy resistant 
complicates an already challenging situation. The need to bet-
ter understand existing drugs and, more importantly, to 
develop new therapies accounting for the critical role of antic-
ancer immunity particularly as it relates to CSCs will be essen-
tial to preventing treatment failure and relapse.
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Figure 1. Low-dose doxorubicin (DXR) overcomes immunoevasion by cancer stem cells (CSCs). A) CSCs occupy immune privileged sites and express diverse immune 
checkpoints, which protects them from elimination by T cells. B) Low dose DXR inhibits immune checkpoint expression driven by Akt-activated Ctnnb1 (β-catenin). C) 
Now lacking their immunosuppressive shield, CSCs are exposed to anticancer T cell activity and selectively eliminated (d).
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