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Cervical squamous cell carcinoma (CSC) is expected to rise to become the fourth most prevalent cancer in women globally and to
replace breast cancer as the top cause of death in women in the future years, according to the World Health Organization.
According to the World Health Organization, developing countries are responsible for 86 percent of all cervical cancer cases
globally in women aged 15 to 44 (WHO). Cancer mortality is associated with the largest amount of monotonous antecedent in
low- and middle-income nations, while cancer mortality is associated with the least amount of monotonous antecedent in high-
income countries. Cervical cancer is thought to be caused by aberrant proliferation of cells in the cervix that is capable of stealing
or invading other human organs, according to current thinking. Cancer of the cerebral cell is the most prevalent kind of cancer in
women. It is expected that cervical squamous cell carcinoma (CSC) will be the fourth most frequent cancer in the world and the
main cause of death in women by the year 2050. Despite the fact that technology has improved tremendously since then, this is still
the case. When compared to high-income countries, low- and middle-income countries have the highest consistent antecedent for
cancer mortality, according to the World Cancer Research Fund. Cancerous growths of cells in the cervix, such as cervical cancer,
are caused by cells that have the ability to steal from or invade auxiliary organs of the body, as is the case with cervical cancer.
Although technological advances have been made in recent years, gene expression profiling continues to be a prominent approach
in the investigation of cervical cancer. Since then, researchers have had the opportunity to examine a gene coexpression network,
which has evolved into an exceptionally comprehensive technique for microarray research. This has helped them to get a better
understanding of the human genome. When a specific biological issue is addressed, gene coexpression networks retain a
considerable percentage of their once vast component of physiognomy, which was previously immense. When comparing the
properties of genes in a population, it is well known that feature selection may be used to choose genes that outperform the rest of
the genes in the population. There are several benefits to feature selection, and this is only one of them. Typically used gene
selection approaches have been shown to be insufficient in acquiring the best potential sequence of genes for training purposes,
and as a result, the accuracy of the classifier has likely suffered as a result of this. Recently, a considerable number of scientists have
advocated for the use of optimization approaches in the process of gene selection, and this trend is expected to continue. A
metaheuristic algorithm may be used to choose a suitable subset of genes, according to the preceding assertion, which is also
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consistent with the metaheuristic approach. A Modified Probabilistic Neural Network differs from other networks in that the
underlying gene expression associated with DEGs and standard data in a Modified Probabilistic Neural Network is not uniformly
distributed as it is in other networks (MPN). As previously said, selecting the most relevant genes or repeating genes is a vital step
in the prediction process. It was this technique that was used in the research of cervical cancer. Since then, researchers have had the
opportunity to examine a gene coexpression network, which has evolved into an exceptionally comprehensive technique for
microarray research. This has helped them to get a better understanding of the human genome. When a specific biological issue is
addressed, gene coexpression networks are able to preserve a previously major section of the face that had been lost. When
comparing the properties of genes in a population, it is well known that feature selection may be used to choose genes that
outperform the rest of the genes in the population. There are several benefits to feature selection, and this is only one of them.
Typically used gene selection approaches have been shown to be insufficient in acquiring the best potential sequence of genes for
training purposes, and as a result, the accuracy of the classifier has likely suffered as a result of this. In the field of gene selection,
several scholars have argued in favor of the employment of optimization approaches. A metaheuristic algorithm may be used to
choose a suitable subset of genes, according to the preceding assertion, which is also consistent with the metaheuristic approach. It
was discovered that Modified Probabilistic Neural Networks (MPNs) had a different distribution of gene expression linked with
DEGs and normal data than other networks, which had not been previously seen. This was previously unknown. Following what

has been said before, selecting the most appropriate or repeated genes is a critical task throughout the prediction process.

1. Introduction

ForIAl individuals, a local procedure such as conization or a
tull hysterectomy is recommended, depending on the pa-
tient’s desire to remain fertile. Patients with IA2 are advised
to undergo a radical operation such as a pelvic lymphade-
nectomy if they want to maintain their reproductive po-
tential. Approximately 8% of individuals have lymph nodes
in the pelvis that are positive for the disease on average. At
this stage of the disease, radical trachelectomy is becoming a
feasible option for these women in order to preserve as many
of their reproductive options as possible. Individuals suf-
fering from IB1 may also benefit from the same therapy. A
combination of intermediate-risk factors (vascular and
lymphatic permeation, tumour size greater than 2 cm, deep
cervical stromal invasion, and positive surgical margins) or
high-risk factors (positive pelvic lymph nodes, parametrial
infiltration, and positive surgical margins) is present in early
cases that are surgically treated. In most circumstances,
individuals with early-stage cancer have a fair prognosis,
with 5-year survival rates above 90 percent in the vast
majority of cases.

Women in industrialized countries die from cervical
cancer at a higher rate than women in developing countries,
according to the World Health Organization [1]. One of the
most frequent malignancies globally, hepatocellular carci-
noma (HCC), has the greatest effect in developing countries
such as India and China, where the illness has the greatest
impact. Using a genetic approach to cervical cancer, re-
searchers hope to uncover particular essential genes that are
involved in the course of the disease. This is an emerging
technology that is becoming more important. Tumors, such
as cervical cancer, spread via the accumulation of genetic
defects that accumulate over time, as is the case with all
malignancies, and this is especially true for cervical cancer.
This process is referred to as carcinogenesis in medical
terminology. As a result of this revelation, it is likely that a
better knowledge of the condition and, therefore, more
effective treatment options [2] may become available. In
conjunction with statistical techniques, gene expression

patterns have been used to explore a diverse range of ma-
lignancies, including breast cancer [3, 4].

Because of the present interest in biological networks
and because of the current interest in biological networks, a
gene coexpression network has been developed as a new
universal technique for microarray analysis in accordance
with the current interest in biological networks (GCEN).
This method allows researchers to monitor the expression
levels of thousands of genes, or even the whole genome, in a
single experiment, allowing them to conduct several ex-
periments in one setting. A higher dataset is required to
achieve higher accuracy in computational intelligence. In
order to take use of this potential, gene coexpression net-
works have been frequently employed to widen the scope of
biological research to include the whole genome, which has
shown to be very beneficial. The differential expression
analysis (DCA) approach is being developed as a distinct
complement to standard differential expression analysis [4]
when two genes coexpress in a differentiating mode of
expression, in addition to the more traditional way of dif-
ferential expression analysis.

According to what has already been shown, many of
these traits, on the other hand, are inapplicable when in-
vestigating a particular biological state that is not in dis-
pute. It follows as a result that, when choosing a limited
subset of genes with the purpose of boosting the output of
experiments that are primarily focused on this restricted
subset of genes, careful feature selection is necessary. Given
the fact that standard feature selection techniques are
unlikely to provide the most comprehensive set of features
conceivable, it is likely that the performance of a classifier
would suffer as a consequence of this shortcoming. The use
of optimization techniques has become more popular
among researchers in order to help them in selecting the
qualities that they want to use in their investigations. Part
of the proposed research includes the introduction of a
feature selection strategy based on the metaheuristic al-
gorithm [5], which is used as an optimal search tool to
choose a subset of characteristics from a larger range of
characteristics.
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Normalization of the gene dataset is essential in order to
guarantee that aspects of the gene dataset that are not sig-
nificant to the gene dataset are removed from the gene
dataset. This goal is achieved by the use of the fuzzy C Means
(FCM) technique for modelling. Using tests, it has been
shown that coupling the suggested IBO with the SVM ap-
proach leads to enhanced accuracy in classifying perfor-
mance for the gene expression datasets that have been
provided.

2. Methodology

In order to get the best gene selection and classification
outcomes in cervical cancer, it is advised that the Improved
Bat Optimization (IBO) approach be utilized in combination
with the Support Vector Machine (SVM) method. The
suggested technique’s structure includes steps for data
standardization, [6] module identification, gene selection,
and classification, all of which are important for the method
to be successful. At a high level of abstraction, the model that
has been given is shown in Figure 1.

2.1. Normalizing Gene Data Using FCM. Cervical biopsy
samples from patients who had been diagnosed with cervical
cancer were used in the study. A written informed consent
was obtained from each participant prior to the collection of
the samples in question, in accordance with the Kasturba
Hospital’s ethical committee. DNA was acquired from a
variety of sources, including tissue biopsy, Pap smear, and
cell lines, among others. To prepare the biopsy samples, they
were washed and diced into small pieces, which were then
put on sterile Petri dishes using sterile 1XTBS solution.
Afterward, it was placed in a 1.5-mL microcentrifuge tube
filled with 500 L DNA extraction bufter (50 mg Tris pH 8.0,
200 mg NaCl, 20 mg EDTA pH 8.0, and 1 percent SDS) and
centrifuged for 15 minutes at 1,500 rpm. In order to get the
RNAse product, the lysate was transferred to a 1.5mL
microcentrifuge tube and incubated at 37°C overnight with
10g/mL proteinase K and 10g/mL RNAse. The tube was
inverted a few times throughout the experiment to guarantee
that it did not create a vortex at any point over the duration
of the experiment. Following the completion of the digestion
procedure, about equal amounts of buffer saturated phenol
were added to the 1.5 mL microcentrifuge tube and stirred
for 20 minutes.

Afterward, the contents of the tube were centrifuged at
12,000 rpm for 15 minutes at 4°C, following which they were
thrown away.

Removed from the tube and transferred to a new tube,
the top layer was a result of the procedure. The reaction was
terminated after 15 minutes of mixing at room temperature
with equal parts chloroform and isoamyl alcohol (24:1),
according to the protocol. It was necessary to spin the tube a
second time at 12,000 rpm for 15 minutes at 4°C, after which
the top layer was transferred to a sterile 1.5mL micro-
centrifuge tube for use in the next step. To this, 1/10th
volume of 3 M sodium acetate was added, along with twice
the amount of 100 percent ethanol, and the combination was
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FIGURE 1: Flowchart of the proposed system.

allowed to settle at —80°C for 2 hours before being discarded.
The tube was centrifuged at 12,000 rpm for 15 minutes at
4°C, and the supernatant was removed after the centrifu-
gation at 12,000 rpm. In order to extract the pellet from the
mold, 500 mL of 70 percent ethanol was poured over it. The
tube was centrifuged in the same way as before, and the
supernatant was removed and disposed of as before. It was
necessary to dry the tubes on a bench top until they were
semidry before putting them away. This was then mixed with
about 50 mL of 1XTE pH 8.0 (10mM Tris/1 mM EDTA
Buffer) or MilliQ water, which was left to rest on the bench
until completely dissolved before using. The DNA was then
stored at —20°C until it could be repurposed in another
experiment. A total of 500 mL of DNA extraction buffer was
added to the cells after they had been washed twice with PBS
and centrifuged at 800 rpm for 5 minutes. This allowed us to
get DNA from cell lines and exfoliated cells separately.
Similar to the procedures used for DNA extraction from
biopsy samples, the following steps in the procedure were
followed for DNA extraction from blood samples.

A user’s input is normalized and missing values are filled
in before any information is shown to them. This is done
before any information is displayed to them. The raw data
are normalized by using the log-ratio (median of CHI/CH2)
as a criterion for the raw data and calculating the resulting



standard deviation. Using the example of residual genes, the
data gaps were filled in by computing the mean value of the
remaining samples taken under comparable conditions in
the lab. To replace the probe sets that had previously been
employed, a clustering strategy is used in conjunction with
other techniques. The purpose of clustering analysis is to
produce partitions of gene data that are based on the
similarity of the gene information contained in the data set
rather than the similarity of the genes themselves. When
data is partitioned, it is separated into a large number of
clusters, which is represented by the fuzzy partition matrix
U, which is shortened as fuzzy partition matrix U. The
membership values ij for each gene I in each cluster j, as well
as the membership values ij for all genes in all clusters, are
included in this collection of membership values. It is
possible to characterize the fuzzy partitioning space My, with
relation R as follows, using the following equation:

My ={U; € R*N| Y p;{0,1}Vi, j
i=1
N (1)
0< ) py; < NVi
j=1

Here, ¢ represents the number of clusters, and N rep-
resents the entire amount of genetic information. As
explained further below, a critical objective function for
fuzzy clustering [7] is the c-means functional Jm, which
weights the summation of squared errors inside the clusters
based on the c-means functional Jm. Gene expression data
may be expressed in the following ways, according to the
scientific community:
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Iteration switching between equations (3) and (4) is used
to adjust ij and pj until the variance in Jm falls below a
specific threshold or the maximum number of iterations ¢ is
achieved after a specified number of iterations. The symbol
pj represents the weighted mean of the cluster j data set. It is
governed by the fuzzification parameter m how fuzzy the
partitioning is, or how much gene membership is spread
amongst the clusters, and how many genes are in each
cluster. With respect to m 1, the data’s fuzzy clustering
converts into the data’s hard clustering, as seen in Figure 1.
After then, the prototypes pj are nothing more than a
technique by which the clusters j work, and they are no
longer relevant. Each cluster is given a gene I [8] in the same
way as the others. The study goes into further detail about
this phenomenon and gives advice for how to best utilize the
parameter m in your calculations. As a distance, the standard

; vj. (4)
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Euclidean norm may be established by applying the matrix
“A,” which is the equivalence matrix of the identity matrix.

WGCNA is being used to design a gene network, which
is currently under development.

A commonly used data mining technique for under-
taking biological network studies, Weighted Correlation
Network Analysis (WGCNA) [9], is based on duo corre-
lations between distinct genetic variables [10]. In addition to
module identification, network building, and topological
property calculations, it also offers features for gene selec-
tion, data display, data simulation, and interfacing with
other programs.

A genetic network’s nodes are often represented by
genes, proteins, or transcripts, but the edges of a biological
network are more likely to reflect experimentally discovered
commonalities or functional correlations between the nodes
and edges of the network. Through the use of network
analysis, it is possible to determine the position of a bio-
logical entity in relation to its immediate surroundings
throughout the network as a whole, allowing for more in-
depth investigation. A beneficial use of the notion of con-
verting gene expression data into a network graph that is
based on correlation measurements is the discovery of genes
that are expressed in a manner that is similar to one another.

It is feasible to use one of a variety of statistical meth-
odologies to determine the degree to which individual ex-
pression patterns are comparable to one another. Using a
predetermined technique for measuring correlation as well
as a specified threshold for each transcript, networks are
formed by linking transcripts together with edges that
generate some amount of coexpression. When it comes to
genetic analysis, the emphasis is mostly on discovering
statistical changes among groupings of sample genes rather
than on individual genes. A number of explorative clustering
algorithms [11, 12] make use of it to partition data into
groups of genes with expression patterns that are similar to
one another. In order to be successful, the network model for
data analysis must be used in conjunction with a correlation
measure that reveals similarities between gene expression
patterns, and create gene networks necessitates the use of
bioinformatic skills in order to properly organize, integrate,
assess, and effectively utilize the data. This is necessary in
order to generate biological intuitions, which necessitates
the use of bioinformatic abilities.

If you are working with CC Gene Data, you may use
PAM-DTC to detect module differences.

A method called Partition Around Medoids (PAM) is
introduced in this study, which translates a distance matrix
into a set of clusters with a predetermined number of
clusters. The technique is then applied to the training set in
order to identify the proper set of k-medoids from among
the k clusters [12], and the results are reported. In the form of
Pearson correlations, which are applied to gene pairings that
are differentially expressed, this information is made
available. The Pearson correlation coeflicient is used to assess
the difference in expression levels between each gene pair.
Regarding the proposed model, the correlation threshold has
been fixed at 0.8 for the sake of simplicity. It is common
practise to link together gene pairs that have a correlation
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bigger than some predetermined threshold when creating
differential coexpression networks. Following this limitation
led to the production of two DCNs that could be classified
into two unique states: the normal state and the abnormal
state, respectively.

Unique dynamic branch cutting techniques for finding
the proper clusters in a dendrogram based on their mor-
phology were described in Dynamic Tree Cut [13], which
aimed to enhance cluster identification by introducing novel
dynamic branch cutting algorithms. PAM is being employed
in this work for the goal of effective module detection, which
is being accomplished via the utilization of cervical cancer
gene data. The fixed height cut process, which has a pre-
defined cut height that is generally greater than the cut
height using dendrogram, is called first in this technique,
and it is followed by the dendrogram cut process, which is
called second. It results in the formation of a starting set of
gigantic clusters, which are subsequently dispersed into
smaller clusters as a consequence of the subsequent pro-
cessing. It is necessary to distinguish between the ordered
dendrogram of each starting cluster and the remainder of the
cluster. As a consequence, a collection of cluster-based
dendrograms is produced, which are denoted by the letters
H1, H2, and so forth. Following that, PAM runs over each
cluster and processes it [14]. While the procedure is in
progress, new clusters are produced, and the value of “” is
updated to reflect the most recent clusters that have been
added to the database. In addition, PAM is called for each
and every cluster in the system. This procedure is repeated
continuously until there are no new clusters generated in the
system. Using the distance metric Bhat that is described in
PAM, clustering may be accomplished [15]. In addition, the
medoids serve as great representations of the positions of the
cluster centers they represent. They are particularly re-
markable in light of the fact that a large number of com-
ponents do not become the property of any one cluster of
elements in the aggregate. Because of the user’s existing
understanding of gene expression data clustering and par-
titioning, PAM may uncover both small clusters and ex-
cellent partitions around medoids in a relatively short period
of time. When the number of criteria for producing simi-
larity genes is increased, PAM may be utilized to manu-
facture them more expertly and effectively [16].

It was feasible to estimate the similarity between a pair of
genes by using the adjacency function, which then allowed
researchers to calculate the distance between them. The
name “Pearson” refers to the correlation function that is
utilized. Initially, it begins with a basic set of medoids and
then iteratively substitutes one gene among the medoids and
one gene among the nonmedoids, starting with the medoids.

When it does, the overall distance between the clusters
that are formed as a consequence of it grows. It creates a
random selection of k representative medoid data bits from a
large pool of available data. The total switching cost S is
determined for every pair of nonmedoid data items x and a
chosen medoid m that is replaced by x when S equals or
exceeds zero. Switching costs are zero if S is larger than zero,
and else they are zero. Following that, every residual data
item is allocated to a cluster depending on how similar the

item in question is to the normal medoid. This process is
repeated for every residual data item. The medoids should be
checked as often as required until no change is seen.

2.2. PAM-DTC

(1) To define the clusters, descriptors derived from the
data set should be used to describe the genes.

(2) Select k sample products to be used as medoids at
random from the list.

(3) Determine the total switching cost S for each pair of
nonmedoid data xi and each pair of medoid mk with
the use of the following formula: (ximk). As long as S
is less than zero, mk is switched with xi for each pair
of xi and mk that exists. Assign each data item to the
cluster that includes the representative item that is
the most similar to the data item in question,
commonly known as the medoid cluster.

(4) Repeat steps 2-3 as many times as required until
there is no change in the medoids’ appearance or
function.

(5) Recognizing clusters in the form of a dendrogram
(tree of life diagram).

(6) Using the gene dataset that has been provided to you,
create the most informative modules that you can.

It is more appropriate to consider the filtered genes as
nodes in the network rather than as nodes in and of
themselves when creating the coexpression networks. Those
gene pairs that are more similar than a certain threshold are
linked together, and a DCN may subsequently be created in
the manner envisioned by the programmer based on this
information.

The network depicts the link between various levels of
gene expression data collected over a period of time. In the
case of the link between the levels of two expressed genes that
has been found, Single Nucleotide Polymorphisms (SNPs)
may account for at least a portion of this association at least
in part. In gene network reconstruction, it is critical to have
connected gene expression properties because genes that are
strongly correlated are more likely to have comparable
activities, a point that has been underlined before.

2.2.1. HSIC-IBO Model for Gene Selection. If the kernel of y
is considered to be B, then dependency between the expo-
sures and dependence between the y used as the response
variable is calculated [17] by empirical HSIC in the following
way:

The root of tr(HKHB) Equals the root of tr(HXTuuTx
HB) (5).

With an increase in the size of u, the goal function (5)
grows to an arbitrarily large magnitude [18]. The need for
sparsity while constraining the length of u to a single length
is required in order to accomplish the feature selection
assignment. The ideal solution is discovered via the appli-
cation of a method known as the bat algorithm.



When using the bat algorithm in [19], we are attempting
to emulate the echolocation behavior of bats [21]. They come
in a range of sizes, styles, and colours to suit your needs.
Regardless of their size and weight, all bats display very
identical behavior whether traveling, hunting, or diving in
water [21], regardless of their species. Microscopic bats, for
instance, make considerable use of their echolocation ability.
While searching for prey or avoiding threats in full darkness,
this feature is very beneficial to microbats’ survival. Consider
Microbat’s behavior from the perspective of a fresh optimi-
zation method in order to better comprehend it [22]. The bat
technique may traverse the search space using position and
velocity vectors (or updated position vectors) in order to locate
a collection of genes from coexpression networks that were of
interest to the user. Every bat in a d-dimensional search space
has a frequency (Fr), a position (gf}), and a velocity (Ve;) that
correspond to a frequency (Fr) and a location (gf;) corre-
sponding to a frequency (Fr) and a location (gf;) (gf;). In this
chapter, the vectors of position, velocity, and frequency are
introduced and discussed.

V(t+1)=Ve;(t)+ (gf;(t) — Gbest)Fr;,

(5
git+1)=gf;(t)+Ve;(t+1).

Pseudo Code: A. Parameters: The following parameters
are used to solve the problem.

Bat Population: Gene Pulse Frequency: Features
Pulse Rate: Gene feature rate Loudness: Irrelevant feature.
Velocity: Moving from one gene to another.

Positions: Number of genes.

2.2.2. Topological Relation between Gene Samples

(1) Pseudo code: Support Vector Machine (SVM). Given

cancer dataset CD=(sgy, ¥1), - .. (88m ¥u), Csl/sg;, y are

samples with labels, Cs-class [11] (Algorithm 1).
Categorize the genes as cancer and noncancer.

2.3. Experimental Results. To appraise the performance of
the imposed models, initially, the experiment is performed
by utilizing gene data. Cervical cancer microarray samples
are collected from GEO (https://www.ncbi.nlm.nih.gov/
GEO/). Moreover, the results of the classifiers are imple-
mented using the MATLAB environment [23].

2.3.1. Dataset Description. Specifically, the gene data in the
GSM99077 dataset has been separated into two phases of the
channel, referred to as CH1 and CH2, and each phase has
been labeled with a Cy5 or a Cy3 label, as appropriate.
Chromatin homogenate (CHI1) is composed of cervical
cancer tissue obtained by biopsy of a tumor stage IIIB and
total RNA extracted from the tissue sample [24]. CH2 is
made out of a normal (nonmalignant) cervical tissue sample
obtained from a radical hysterectomy and extracted from
total RNA, which is then used to make a vaccine. A total of
54 characteristics are available for each gene dataset, from
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which combinations of fluorescence intensity mean and
median, background fluorescence intensity mean and me-
dian, a sum of medians and means and their ratio, as well as a
sum of medians, means, and their ratio, are selected for
experimental findings [21].

Specifically, the gene data in the GSM99078 dataset has
been separated into two phases of the channel, referred to as
CH1 and CH2, and each phase has been labeled with a Cy5
or a Cy3 label, as appropriate. It was necessary to extract the
RNA from normal (nonmalignant) cervical tissue obtained
through a radical hysterectomy and add it to CH1 in order
for it to be useful. CH2 was created using RNA extracted
from ten distinct human cell types. Cell lines from adeno-
carcinoma, mammary gland Melanoma, hepatoblastoma,
liver liposarcoma adenocarcinoma, cervix histiocytic lym-
phoma, macrophage, histocyte, and several other types were
used in this study. The number of features and their de-
scriptions in the first dataset, GSM99077, and the second
dataset, GSM99078, are the same as in the first and second
datasets, respectively. They are used in the third and fourth
chapters of the book [19] as well as in the introduction.

Four unique phases of cervical cancer with IB1, 1A2, IIA,
and IB2 are represented among the 300 samples of recurrence
genes in the GSE44001 dataset. The largest diameter, disease-free
survival (dfs months), and the status of disease-free survival were
extracted from total RNA using the Cy3 label. This dataset has
been connected with the GPL14951 platform ID for identifi-
cation purposes. This dataset is being utilized in the proposed
work in Section 5and has already been made available.

2.3.2. Evaluation Measure for Proposed System
(1) Precision and Recall. Recall, also named as sensitivity, is

computed by true-positive rate, whereas precision is com-
puted with Predicted Positive Value (PPV) [3].

Precision (Pr) = ﬁ,
. (6)
pv
1l =
Recall (Re) (tpv + fav)

(2) The Area under the ROC Curve. Table 1 shows the
performance metrics of the proposed work. In order to
demonstrate the diagnostic capabilities of a binary classifier
system when the discrimination threshold of the system is
modified [5], Receiver Operating Characteristic (ROC)
curves are plotted against the threshold value. The ROC
curve may be produced and examined when the TPR and the
FPR are plotted against each other at different threshold
values [8, 25]. Here Table 1 gives the Performance analysis
via False-Positive Rate vs. True-Positive Rate. Although IBO-
SVM is the preferred classification algorithm, as illustrated
in Figure 2, the average value of the ROC curve for the other
classification algorithms, such as DCA and DCN, is 76.5
percent and 86.3 percent, respectively, for the other clas-
sification algorithms, according to the preferred classifica-
tion algorithm, according to the preferred classification
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(i) Let v = 0, b=0//initializing the vector “v” and bias vector “b”
(ii) SVM is trained and the model is learnt using (3.11)
(iii) For each sgie SG do//sgi-taken as a vector with selected genes illustrating as i
(iv) With f (sgi), classify sgi
(v) If yi (f(sgi)) < 1//for class label prediction
(vi) Finding w', b’ of familiar data//w’, b’ are taken as new features
(vii) Append sgi to familiar data
(viii) Reduce error function by applying (3.12) and calculate with (3.13)
(ix) Retrain in the case of the wrong prediction
(x) Repeat
(xi) End
ALGORITHM 1: Pseudo code of PNN.
TaBLE 1: False-positive rate vs true-positive rate. 12
TPR
FPR
DCA DCN IBO-SVM
0.02 0.72 0.83 0.93
0.04 0.76 0.86 0.95
0.06 0.77 0.865 0.965
0.08 0.783 0.870 0.98
1 0.790 0.890 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
precison
83 . . . —o— ref [15]
82 —o— ref [17]
proposed-IBO
81 - -
FIGURE 3: Area under ROC curve vs. three models.
80
79 above, and all of the assessments are carried out using both
78 normal and malignant datasets, which produces superior
. results when compared to the presently existing method-
ologies in the field [27].
76
Ref[12]  Ref[13] Ref[14]  Ref[15] Proposed-IBO Table 2 shows the recommended model outperforms

FIGURE 2: Precision comparison vs. classifiers.

algorithm (IBO-SVM). When the suggested model is
compared to the other models, it becomes clear that the
recommended model’s distinguishing efficiency is much
larger than that of the others [25]. Here Table 1 gives the
Performance analysis.

Figure 3 depicts the results of the ROC curve analysis for
three algorithms, including DCN, DCA, and IBO-SVM. The
results are separated into three parts, and each section is
divided into three portions. Also shown is that the suggested
IBO-SVM approach has a higher TPR, ranging between 0.9
and 1, when compared to other models, such as the DCA,
which yield TPR rates between 0.8 and 0.9 and between 0.75
and 0.8, respectively (see Figure 3).

2.3.3. Classification Results. In the suggested research, a new
model, the IBO-SVM, surpasses variant models when it
comes to accuracy [26]. The performance of the classifier is
tested using the multiple performance measures described

DCA in terms of precision, sensitivity/recall, F-measure,
specificity, and accuracy, while DCA outperforms DCN in
terms of precision, sensitivity, F-measure, specificity, and
accuracy [28].

Using the cervical cancer dataset as an example, Figure 2
displays a comparison of three different classifiers using a
precision metric for the cervical cancer dataset [29]. The
number of processes is indicated by the x-axis, and the
metric values are represented by the y-axis in this diagram.
In the experiments, it was discovered that the supplied IBO-
SVM technique obtains a better accuracy value of 91.59
percent, which is 1.84 percent and 0.65 percent higher than
the DCA and DCN methods, respectively, and that the al-
gorithm is more efficient than the other approaches [30].

Figure 4 shows the recall comparison of the cervical
cancer dataset using three different classifiers shown in the
following image. As shown by the experimental results, the
proposed IBO-SVM algorithm has a higher recall value of
90.66 percent, which is 20.66 percent and 14 percent greater
than the DCA and DCN algorithms, respectively, and is thus
preferred [31]. Figure 4 shows the recall comparison of the
proposed work.
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TABLE 2: Performance comparison analysis.
Methods Precision (%) Recall (%) F-measure (%) Specificity (%) Accuracy (%)
DCA 89.75 70 80.92 69.45 83.50
DCN 90.94 76.66 85.91 75.61 86.75
IBO-SVM 91.59 90.66 91.13 90.5 91.56
83 83

precison
m Ref[12] m Ref[15]
= Ref [13] = Proposed-IBO
= Ref[14]

FIGURE 4: Recall comparison vs. classifiers.

As seen in Figure 5, the f-measure comparison of
classification algorithms was performed [32]. The number of
classifiers is indicated on the x-axis, while the f-measure
values are depicted on the y-axis in the graph below. Re-
searchers discovered that the f-measure value obtained using
the proposed IBO-SVM algorithm is 91.13 percent, which is
10.21 percent higher than the DCA technique and 5.22
percent higher than the DCN approach, based on their
results [33].

On the right-hand side of Figure 6, you can see a
comparison of specificity across various classification al-
gorithms. The proposed IBO-SVM method outperforms
both the DCA and DCN processes in terms of specificity,
achieving a value of 90.50 percent, which is 21.05 percent
greater and 14.89 percent higher, respectively, than the other
two techniques [34].

Figure 7 shows the accuracy evaluation for the cervical
cancer dataset for the purpose of demonstration. Specifically,
when compared to the DCA and DCN approaches, which
were previously discussed in Table 2, the experimental re-
sults reveal that the proposed IBO-SVM algorithm achieves
a higher accuracy value of 91.56 percent, which is 8.06
percent and 4.81 percent, respectively, higher than the DCA
and DCN approaches [35].

In order to separate curcuminoids, thin-layer chroma-
tography (TLC) was utilized, and the Rf values for curcu-
minoids from C, DMC, and BDMC were, respectively, 0.75,
0.55, and 0.27 for curcuminoids from C, DMC, and BDMC
[36]. With the enhanced resolution of the Rf value, it was
established that chloroform and methanol could be utilized
as solvents in column chromatography for the separation
and separation of diverse compounds [37]. When Gupta
et al. explored alternative compositions of the mobile phase
for the separation of curcuminoids, it was revealed that
utilizing chloroform and methanol (95:5) as the mobile

precison
= Ref[12] = Ref[15]
m Ref[13] = Proposed-IBO
m Ref[14]

FIGURE 5: F-measure results comparison vs. classifiers.

precison
m Ref[12] m Ref[15]
= Ref[13] = Proposed-IBO
= Ref[14]

FIGURE 6: Specificity results comparison vs. classifiers.

performance metrics
83 - - - - -

precison
m Ref[12] m Ref [15]
m Ref[13] = Proposed-IBO
= Ref[14]

FIGURE 7: Accuracy results from comparison vs. classifiers.

phase allowed them to accomplish the necessary separation.
The Rf values found for C, DMC, and BDMC were 0.69, 0.44,
and 0.29, respectively, with C being the most favorable.
During the separation column chromatography process, a
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continuous difference in Rf value is critical to the success of
the procedure [38].

In column chromatography, separation is accom-
plished by elution with chloroform and methanol, with the
polarity of the elution solutions increasing as the separation
proceeds [39]. UV spectroscopy was used to determine the
total curcuminoids present in the fractions, which were
found to be 84 percent, 86 percent, 80.6 percent, and 80.6
percent of C, DMC, and BDMC, respectively, in the
fractions. A few fractions showed two distinct curcumi-
noids in TLC due to the 10-15 percent loss of curcuminoids
that occurred during the extraction process; as a conse-
quence, they were concentrated and chromatographed on
the column for further separation [40]. It is estimated that
8.8 percent of the pigments were wasted on average due to
the difficulty of separating colors mixed together on the
column. Following the completion of further purification,
the following products were obtained: curcumin crystals
that are bright yellow needle-shaped, DMC crystals that are
light yellow, and BDMC crystals that are reddish-orange in
color.

3. Conclusion

Using the IBO-SVM methodology to determine the gene
expression profile of microarrays is addressed in detail in
this chapter, as well as how it varies from other approaches.
A unique swarm-based strategy known as IBO gene selection
has been developed with the goal of picking the most in-
formative genes from among a large number of potential
candidates. As a result, it is employed in the resolution of
cervical cancer classification paradigms that deal with high-
dimensional information, such as microarray gene expres-
sion profiles, and in enhancing the overall accuracy of the
classification system. An optimum gene selection in a
microarray dataset may be achieved using the HSIC strategy,
which picks genes from a sample in order to get the highest
number of genes feasible. Applying the IBO-SVM technique
presented in this paper to a microarray dataset, the goal is to
identify the gene with features that are both similar and
instructive in nature. In addition, the SVM classifier is
trained and evaluated, with the classification accuracy being
tested using the genes that have been selected for inclusion in
the analysis. In this study, it was discovered that although the
proposed technique gives higher classification results for
gene-gene expression datasets, it continues to present dif-
ficulty for datasets with uneven distributions of gene ex-
pression levels.

Data Availability

The data sets used are available at https://www.kaggle.com/
competitions/cervical-cancer-screening/data.
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