
Roles for the 8-Oxoguanine DNA
Repair System in Protecting
Telomeres From Oxidative Stress
Mariarosaria De Rosa, Samuel A. Johnson and Patricia L. Opresko*

Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC
Hillman Cancer Center, Pittsburgh, PA, United States

Telomeres are protective nucleoprotein structures that cap linear chromosome ends and
safeguard genome stability. Progressive telomere shortening at each somatic cell division
eventually leads to critically short and dysfunctional telomeres, which can contribute to
either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some
stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric
DNA. Numerous studies have shown that oxidative stress caused by excess reactive
oxygen species is associated with accelerated telomere shortening and dysfunction.
Telomeric repeat sequences are remarkably susceptible to oxidative damage and are
preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can
alter telomere length homeostasis and integrity. Therefore, knowledge of the repair
pathways involved in the processing of 8-oxoguanine at telomeres is important for
advancing understanding of the pathogenesis of degenerative diseases and cancer
associated with telomere instability. The highly conserved guanine oxidation (GO)
system involves three specialized enzymes that initiate distinct pathways to specifically
mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and
review the studies focused on investigating how telomeric 8-oxoguanine processing
affects telomere integrity and overall genome stability. We also discuss newly
developed technologies that target oxidative damage selectively to telomeres to
investigate roles for the GO system in telomere stability.
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INTRODUCTION: TELOMERES ON THE GO

Telomere caps at the ends of linear chromosomes are nucleoprotein-DNA structures essential for
genome stability, sustained cellular proliferation, and the overall health of an organism. Telomeres lie
at the interface between aging and cancer because dysfunctional telomeres contribute to degenerative
diseases that occur with aging, but also cause genetic alterations that drive carcinogenesis [reviewed
in (Chakravarti et al., 2021)]. To prevent aging-related diseases and cancer, telomeres solve two
problems that chromosome ends present 1) the end replication and 2) end protection. First,
telomeres shorten progressively with each round of DNA replication and cell division due to the
inability of replicative DNA polymerases to completely copy chromosome ends. Telomeres solve this
end replication problem by recruiting a specialized reverse transcriptase called telomerase, which
synthesizes telomeric DNA to restore the DNA that is lost each time the cell divides (Greider and
Blackburn, 1985). However, while telomerase activity is sufficient in germ cells, some stem cells, and
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most cancer cells, it is insufficient or lacking in most human
somatic cells, which experience telomere shortening with age
(Harley et al., 1990; Bodnar et al., 1998; Opresko and Shay, 2017).
When telomeres become critically short they cannot perform
their end protection role. Functional telomeres prevent
chromosome ends from being inappropriately recognized and
processed by the DNA damage response (DDR) and double
strand break (DSB) machineries, through the engagement of a
6-member protein complex termed shelterin (D’adda Di Fagagna
et al., 2003; De Lange, 2018). DDR activation at dysfunctional,
unprotected telomeres can trigger irreversible growth arrest
(senescence) or cell death. Cells that bypass senescence
experience chromosome end-to-end fusions and genomic
instability, and enter crisis which kills most of the cells.
However, the survivors that emerge either upregulate
telomerase or activate a recombination-based method of
telomere maintenance termed alternative lengthening of
telomeres (ALT) [reviewed in (Opresko and Shay, 2017;
Hoang and O’Sullivan, 2020; Chakravarti et al., 2021)].

Mammalian telomeres consist of long (tens of kilobases)
arrays of tandem 5′-TTAGGG-3′ repeats on one strand and
5′-CCCTAA-3 on the complementary strand. Telomeres
terminate in a 3′ single stranded overhang comprising about
50–200 nucleotides of TTAGGG repeats, that can invade the
telomere duplex DNA to form a large lasso-like t-loop (Griffith
et al., 1999). When the overhang pairs with the duplex it displaces
a portion of the G-rich strand and forms a D-loop, and thus,

single stranded TTAGGG repeats are present at the telomeres
regardless of conformation. This is significant because the G-rich
sequences can form stable four stranded structures termed
G-quadruplexes (G4s) (Hwang et al., 2014). Shelterin mediates
t-loop formation, and while this structure functions in telomere
protection, evidence suggests t-loop structures are dynamic
(Doksani et al., 2013; Markiewicz-Potoczny et al., 2021; Ruis
et al., 2021). The shelterin complex engages telomeric DNA
through proteins TRF1 and TRF2 binding to duplex TTAGGG
repeats, and POT1 binding to single stranded 5′-
TTAGGGTTAG-3′ sequences. These proteins modulate
telomere function by recruiting the other members TPP1,
RAP1 and TIN2 (De Lange, 2018) (Figure 1). The presence of
repetitive G-rich sequence, single stranded DNA, and shelterin
proteins, makes the telomeres a unique context for the processing
of DNA damage. However, these features combined with the fact
that telomeres represent less than 0.02% of the genome, also make
them challenging to study, requiring and fueling innovative
approaches for examining DNA damage and repair.

Nearly 2 decades of work have revealed that telomeres are
particularly sensitive to DNA damage caused by oxidative stress
[reviewed in (Barnes et al., 2019)]. Cells in tissues and organs are
continuously exposed to endogenous and exogenous factors that
lead to the generation of reactive oxygen species (ROS). Primary
sources of endogenous ROS include mitochondrial respiration,
inflammatory responses and by-products of cellular signaling,
while environmental pollution, ionizing radiation, ultraviolet

FIGURE 1 | Telomere structure and sensitivity to oxidative damage. Telomeres are nucleoprotein structures composed of repetitive TTAGGG sequence and
associated telomere-specific proteins, named shelterin. Telomeric DNA terminates in a 3′ single stranded overhang, which invades the double stranded telomeric DNA to
form a lariat-like t-loop. The formation of the t-loop is mediated by the protective shelterin complex, which consists of TRF1, TRF2, RAP1, TIN2, TPP1 and POT1. The
highly repetitive G-rich telomeric repeats are preferred sites for production 8-oxoG (indicated by the lightning bolts), therefore, telomeric DNA is remarkably
susceptible to oxidative stress.
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light, cigarette smoking, certain foods and drugs are the major
exogenous sources of ROS (reviewed in (Nakamura and Takada,
2021)). Low physiological levels of ROS play critical roles in
cellular signaling (Sies and Jones, 2020). However, oxidative stress
is caused by an imbalance between excess ROS production and
deficiencies in the antioxidant defenses that regulate and detoxify
ROS. Oxidative DNA damage caused by ROS can promote
mutagenesis and carcinogenesis, as well as senescence and
degenerative diseases associated with aging (Kregel and Zhang,
2007; Kryston et al., 2011). One of the most common oxidative
DNA base modifications is 8-Oxo-7,8-dihydroguanine (8-oxoG),
which arises in the genome at an estimated 2,800 lesions per cell
per day in unstressed cells (Tubbs and Nussenzweig, 2017). This
relatively high prevalence is partly due to the low redox potential
of guanine, making it highly susceptible to oxidation (Kino et al.,
2017). Telomeric TTAGGG repeats are preferred sites for 8-oxoG
formation (Oikawa et al., 2001) (Figure 1), and numerous studies
have shown that telomeres are highly sensitive to oxidative stress
arising from both endogenous and environmental sources
[reviewed in (Barnes et al., 2019)]. Data ranging from human
population studies, to model organisms and cultured cells reveal a
general association of oxidative stress and accelerated telomere
shortening and dysfunction (Zhang et al., 2016; Graham and
Meeker, 2017; Reichert and Stier, 2017; Ahmed and Lingner,
2018a). A previous model suggested this is due to unrepaired
oxidative base damage, or repair intermediates, interfering with
replication fork progression at telomeres (Von Zglinicki, 2000;
Von Zglinicki, 2002; Wang et al., 2010). Previous work showed
that 8-oxoG lesions and abasic repair intermediates within
telomeric DNA disrupt TRF1 and TRF2 binding in vitro
(Opresko et al., 2005). Collectively, these studies suggest that
telomeric oxidative damage greatly impacts telomere length
homeostasis and integrity, and underscores the need to better
understand the role of 8-oxoG processing and repair in telomere
maintenance. In this review we will focus on the known
mechanisms for managing 8-oxoG damage arising within the
genome, collectively termed the “guanine oxidation” (GO)
system. We will discuss recent advances in elucidating the
function of the GO system at telomeres, along with the
development of new tools for investigating the consequences
of telomeric 8-oxoG damage on telomere integrity, overall
genome stability, and cellular health.

FROM BACTERIA TO HUMANS: THE GO
SYSTEM AND BER ARE EVOLUTIONARILY
CONSERVED
Oxidative stress resulting from excess cellular ROS represents one
of the most common and significant threats to DNA integrity and
genome stability, therefore, multiple systems have evolved to
counteract the harmful consequences of oxidative base damage.
Generally, the repair of small and often non-helix-distorting
DNA base lesions, such as 8-oxoG, is carried out by the base
excision repair (BER) pathway, which utilizes several highly
conserved proteins involved in the essential steps of damage
recognition and DNA restoration. First, a specific DNA

glycosylase recognizes and excises the damaged DNA base
through the cleavage of the N-glycosydic bond. DNA
glycosylases are classified as mono- or bifunctional according
to the enzymes’ ability to both excise the modified base by
hydrolysis and then cleave the DNA backbone at the resulting
apurinic/apyrimidinic (abasic/AP) product. For monofunctional
DNA glycosylases, the AP site is further processed by an AP
endonuclease, which incises the sugar phosphate backbone 5′ of
the lesion leaving behind a nucleotide gap with 3′-hydroxyl and
5′-terminal abasic deoxyribose phosphate (5′-dRP) residues.
Lyase activity removes the 5′-dRP, DNA polymerase fills the
gap, and then DNA ligase seals the nick to restore the DNA
backbone [for extensive review see (Wallace, 2014; Beard et al.,
2019; Caldecott, 2020)]. In contrast, bifunctional DNA
glycosylases remove the damaged base and then cleave the
sugar-phosphate backbone 3′ of the AP site. Endonuclease
activity removes the 3′ unsaturated hydroxyaldehyde (3′dRP),
enabling gap filling and repair completion. The processing after
DNA glycosylase activity is considered “short-patch” (SP) BER if
a single nucleotide gap is canonically generated, filled and ligated,
or “long-patch” (LP) BER if the generated gap is 2–10 nucleotides
and further processed by additional enzymes [reviewed in
(Fortini and Dogliotti, 2007; Wallace et al., 2012)].

The proteins specifically involved in the removal of 8-oxoG
constitute the GO system, a term first used to describe the DNA
repair enzymes that prevent mutagenesis caused by 8-oxoG in
bacteria (mutT, mutM andmutY) (Michaels et al., 1992; Michaels
and Miller, 1992). In brief, mutT sanitizes the nucleotide pool by
hydrolyzing 8-oxo-dGTP to 8-oxo-dGMP (Ito et al., 2005). If 8-
oxodGTP escapes removal it can be inserted into nascent DNA by
a polymerase during DNA replication or repair. 8-oxoG can also
arise in the genome when guanine is directly oxidized.
Formamidopyrimidine DNA Glycosylase (Fpg or mutM)
recognizes and excises 8-oxoG base paired with cytosine,
initiating BER (Jiricny, 2010). If 8-oxoG remains unrepaired in
the template DNA strand, a round of replication can lead to
adenine insertion opposite 8-oxoG. This happens because 8-
oxoG preferentially adopts a syn conformation in the DNA
due to steric repulsion between the deoxyribose and the O8 of
the modified G, allowing 8-oxoG to stably pair with adenine
[reviewed in (Beard et al., 2010)]. Hence, as the ultimate
protection from mutagenesis, mutY removes the adenine
mispaired opposite 8-oxoG to initiate BER (Whitaker et al.,
2017). Several studies have identified proteins involved in a
functional equivalent of the GO system in human cells, which
includes Nudix hydrolase (NUDT1, also known as MutT human
homolog 1, or MTH1), 8-oxoG glycosylase (OGG1) and the
adenine glycosylase MutY homolog (MUTYH) (Figure 2)
(reviewed in (Banda et al., 2017)). In this section we explore
the repair mechanisms and activities of these enzymes, with
special focus on their known roles at telomeres.

OGG1 Function at 8-oxoG:C Base Pairs in
Telomeres
Since the discovery of yeast OGG1 and the subsequent
identification of the mammalian orthologue, a plethora of
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studies have elucidated this enzyme’s structural features,
mechanism of action and repair activity. OGG1 is a
bifunctional glycosylase, able to hydrolyze the N-glycosydic
bond of 8-oxoG (DNA glycosylase activity) and cleave the DNA
backbone through a β-elimination step (β-lyase activity)
in vitro (Svilar et al., 2011). The glycosylase first searches
for, and finds, the target lesion among a myriad of
undamaged bases, through a combination of rotational
diffusion along the DNA via consistent contact (sliding),
and rapid dissociations and rebinding to the DNA (hopping)
(Blainey et al., 2006). Once the enzyme selectively recognizes 8-
oxoG opposite cytosine, the damaged base is flipped out from
the DNA double helix into the OGG1 active site and excised.
However, OGG1 lyase activity is very weak and OGG1 remains
bound to the abasic site upon 8-oxoG excision, resulting in

product inhibition. AP endonuclease-1 (APE1) enhances
OGG1 turnover, preventing its reassociation with the AP
site (Hill et al., 2001). APE1 cleaves the phosphodiester
backbone 3′ of the abasic site, and then DNA polymerase
(pol) β removes the 5′dRP with its lyase activity and fills the
gap with its DNA synthesis activity. DNA ligase III (LIG3) seals
the nick, facilitated by scaffold protein X-ray repair cross
complementing 1 (XRCC1) (for more comprehensive review
see (Boiteux et al., 2017; Ba and Boldogh, 2018; D’Augustin
et al., 2020)). While not essential for BER in vitro, Poly(ADP-
ribose) polymerase-1 (PARP1) binds the single strand break
(SSB) repair intermediates generated by APE1 and activates
poly(ADP-ribose) (PAR) synthesis to recruit downstream
proteins (Schreiber et al., 2006). A recent study showed
XRCC1, which interacts with and stabilizes the Pol β and

FIGURE 2 | The human GO repair system. (A) 8-oxoG lesion is among the most common forms of oxidative DNA damage, which can arise following exposure to
endogenous and/or exogenous ROS. (B) An 8-oxoG:C base pair is recognized and excised by the OGG1 glycosylase, producing an apurinic (AP) site, which is cleaved
by APE1, and then processed by downstream BER to restore the correct G:C base pair. If 8-oxoG escapes repair it can miscode for adenine upon DNA replication.
MUTYH glycosylase recognizes a 8-oxoG:Amispair and excises the undamaged adenine, thereby initiating long-patch BER to restore the 8-oxoG:C base pair. This
allows OGG1 another chance to excise 8-oxoG and to initiate BER to restore the G:C base pair. If the 8-oxoG:A mispair is not repaired, a further round of replication
converts the damage to a G:C to T:A transversion mutation. Lesion processing by BER generates repair intermediates, including AP sites and SSBs, which can cause
replication fork collapse and subsequent DSBs. (C) MTH1 sanitase provides further protection against 8-oxoG mutagenesis through removing 8-oxodGTP from the
nucleotide pool by hydrolyzing it to 8-oxodGMP and pyrophosphate. This prevents misincorporation of 8-oxodGTP opposite a template adenine during DNA replication
or repair. The mismatch repair (MMR) enzymes (not shown) can also eliminate 8-oxoG from newly synthesized DNA that has been misinserted opposite adenine. (Black
arrows: canonical repair steps. Brown arrows: Rounds of replication. Dashed arrows: mutagenesis or DNA damage generating steps).
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LIG3, prevents excessive PARP1 engagement and activity at the
SSB intermediate, enhancing access and repair by the
downstream BER enzymes (Demin et al., 2021).

The predominance of guanines in the telomeric sequence and
their high susceptibility to oxidative modification, have
stimulated a longstanding interest in uncovering the
importance and activity of OGG1 at telomeres. In vitro studies
demonstrated the ability of OGG1 to remove 8-oxoG in the
context of telomeric sequences. OGG1-excision assays performed
on 8-oxoG containing double-stranded oligonucleotides with
telomeric or non-telomeric repeats, revealed that OGG1
excision activity is not impacted by the number of 8-oxodG
within GGG runs. However, OGG1 excision is affected by the
position of 8-oxoG in different telomere configurations (e.g., fork,
3′-overhang, and D-loop). For example, OGG1 excises less
efficiently an 8-oxoG placed at the 3′ terminal end of the
invading strand of a telomeric D-loop (Rhee et al., 2011).
Studies in S. Cerevisiae provided the first direct evidence for
OGG1 processing of telomeric 8oxo-G damage in telomere length
regulation in vivo, by showing that OGG1 deficiency leads to
telomere lengthening in yeast under non-stressed conditions
(Askree et al., 2004; Lu and Liu, 2010). Subsequent work in
transgenic mice confirmed that OGG1 depletion caused telomere
lengthening in vivo, and in primary mouse embryonic fibroblasts
(MEFs) cultured under low oxygen tension. However, this study
also reported the novel discovery that loss of OGG1 increased
telomeric 8oxo-G in primary MEFs under high oxidative stress
conditions, and increased telomere attrition and aberrations
(Wang et al., 2010). These findings provide evidence that
OGG1 is involved in the repair of oxidative guanine lesions in
telomeres in vivo, and that low basal telomeric 8-oxoG levels are
associated with telomere lengthening in unstressed mice. This
may be due to the ability of 8-oxoG to disrupt blocking G4
structures (see 8-oxoG Formation and Repair in the Context of
Telomeric G-Quadruplex Structures: Beneficial or Detrimental for
Telomere Stability?). However, too much 8-oxoG arising from
oxidative stress is clearly detrimental, and causes telomere
shortening and aberrations in repair-deficient cultured cells.
Whether unrepaired telomeric 8-oxoG cause similar defects in
vivo in Ogg1 deficient mice experiencing oxidative stress remains
unknown.

Previous studies examining the role of 8-oxoG repair at the
telomeres in genome stability and cellular or organism health,
suffered from the limitation that oxidants used to produce
oxidative stress and 8-oxoG, also damage numerous cellular
components and produce a myriad of oxidative DNA lesions.
The KillerRed-TRF1 system (KR-TRF1) was one approach
developed to investigate whether oxidative stress-induced
damage at telomeres could directly and singularly induce
telomere shortening and dysfunction. KR is a fluorescent
protein which generates superoxide upon excitation with
visible light illumination (550–580 nm). Expression of a KR
fusion protein with shelterin TRF1 enables localized
superoxide production at telomeres upon cellular light
exposure. This system provided evidence that oxidative
telomeric damage induces telomere shortening and related
chromosomal aberrations, such as chromatid telomere loss

and telomere associations (Sun et al., 2015). However,
superoxide production is not selective for 8-oxoG, as
evidenced by KR-TRF1 induction of SSBs and double strand
breaks (DSBs) at telomeres, making it difficult to determine the
specific consequences of 8-oxoG formation and repair. We
overcame this technical hurdle by developing a novel targeting
tool that specifically generates 8-oxoG at telomeres. In brief, this
system expresses a fusion protein of fluorogen-activating peptide
(FAP) and TRF1. The FAP binds with high affinity to the
photosensitizer dye di-iodinated malachite green (MG2I) that,
when bound and excited by 660 nm light, produces singlet oxygen
(1O2), which reacts specifically with guanine to generate 8-oxoG
(Figure 3) (Sies and Menck, 1992; Fouquerel et al., 2019). We
estimated a production of at least one 8-oxoG per 28-kb telomere
in HeLa LT cells after treatment with dye and light for 5 min
(acute exposure). Exploiting this spatially and temporally
controlled tool, we showed that 1O2 production at the
telomeres stimulates OGG1 recruitment, but not the NEIL1
glycosylase which instead processes oxidized pyrimidines and
hydantoin lesions. OGG1 was followed by downstream BER
factors, as shown by PARP1 activation and XRCC1
recruitment. While acute telomeric 8-oxoG formation did not
cause telomere dysfunction in cancer cells, repeated lesion
production over a month decreased cell growth, and caused
telomere shortening and losses, chromosome fusions and
genomic instability, all of which were greatly exacerbated by
OGG1 deficiency (Fouquerel et al., 2019). A recent study
impaired BER with OGG1 inhibitor TH5487 in cancer cells
under oxidative stress, and showed reduced XRCC1
recruitment and increased 8-oxoG levels in telomeric DNA.
This study found pharmacological OGG1 inhibition
recapitulated the increased telomere loss observed in OGG1
deficient cells challenged with targeted telomeric 8-oxoG
formation using FAP-TRF1 (Fouquerel et al., 2019; Baquero
et al., 2021). Both direct 8-oxoG production at telomeres in
OGG1 deficient cells, and pharmacological OGG1 inhibition,
provide evidence that unrepaired 8-oxoG causes telomere
dysfunction by inducing replication stress. On the other hand,
another recent study reported evidence that OGG1 processing of
lesions induced by H2O2 leads to SSBs at telomeres. Depleting
OGG1 in cells deficient for the antioxidant enzyme Peroxiredoxin
1 (PRDX1) attenuated the formation of SSBs, suggesting OGG1
may generate repair intermediates at telomeres that could be
detrimental (Ahmed and Lingner, 2020).

Further study about OGG1 roles at telomeres in the context of
chromatin revealed a surprising role for the UV-damaged DNA-
binding (UV-DDB) protein complex in 8-oxoG repair. UV-DDB
is well known for recognizing UV photoproducts and initiating
the global genome nucleotide excision repair pathway. The
discovery that UV-DDB binds to 8-oxoG lesions and abasic
sites, led to the novel finding that UV-DDB enhances OGG1-
mediated excision of 8-oxoG, facilitating OGG1 enzymatic
turnover by displacing it from the abasic site in vitro. Use of
the FAP-TRF1 tool showed that UV-DDB colocalizes with OGG1
at telomeric 8-oxoG lesions, but precedes OGG1 (Jang et al.,
2019). These data suggest that UV-DDB serves as a BER sensor
and makes the damage site available to OGG1, most likely by
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opening chromatin, and enhances OGG1 turnover allowing
further downstream BER reactions.

MUTYH Function at 8-oxoG:A Mispairs in
Telomeres
The human monofunctional DNA glycosylase homologue of E.
ColimutY is encoded by the MUTYH gene (Slupska et al., 1996),
and has the unique ability to recognize and excise an undamaged
adenine positioned opposite 8-oxoG, rather than removing the
damaged base. 8-oxoG may occur in the template strand during
DNA replication if it escapes removal by OGG1 or arises during
S-phase. 8-oxoG has dual coding properties and can form the
correct 8-oxoG(anti):C(anti) by canonical Watson-Crick-
Rosalind base pairing, or the incorrect 8-oxoG(syn):
adenine(anti) by Hoogsteen base pairing. Most DNA
polymerases can insert C and/or A opposite 8-oxoG, but
preferentially extend from the misinserted base pair (Maga
et al., 2007; Beard et al., 2010; Katafuchi and Nohmi, 2010).
The potential for 8-oxoG to cause a mutation varies among
polymerases and depends on the ability of the polymerase
active site to accommodate the altered correct or incorrect
base pair with 8-oxoG for extension (Rechkoblit et al., 2021).
With its adenine glycosylase activity, MUTYH counteracts the
mutagenic properties of 8-oxoG and prevents C:G to T:A
transversion mutations. Following adenine excision and AP
site formation, MUTYH interaction with key factors in
replication-associated LP-BER recreates an 8-oxoG:C base pair,
offering OGG1 another chance to restore the undamaged DNA.
APE1 stimulates MUTYH glycosylase activity and turnover, and
then cleaves the DNA backbone at the AP site (Yang et al., 2001).
MUTYH is recruited to oxidative damage with downstream
proteins involved in LP-BER including replication protein A

(RPA), PCNA, and DNA polymerase λ (pol λ), which
promotes gap filling with a cytosine (Parker et al., 2001; Yang
et al., 2001; Maga et al., 2007; Van Loon and Hubscher, 2009).
Biochemical reconstitution studies show that pol λ incorporates
2 nt at the gap, causing strand displacement that is processed by
flap endonuclease 1 (FEN1), followed by DNA ligase I sealing the
nick (Van Loon and Hubscher, 2009). However, MUTYH can
also initiate SP-BER, independently of the cell cycle status, for
example under high oxidative stress. This is due to the reinsertion
of an adenine opposite an 8-oxoG during futile BER cycles by
DNA polymerases including pol β and pol κ (Hashimoto et al.,
2004; Vasquez-Del Carpio et al., 2009; Beard et al., 2010). Such
futile BER cycles can lead to SSB accumulation due to repeated
incision of the AP sites generated by MUTYH, causing PARP1
activation, prolonged accumulation of poly(ADP-ribose)
polymers, depletion of nicotinamide adenine dinucleotide
(NAD) and ATP, finally triggering apoptotic cell death (Oka
et al., 2008). These studies have led to the hypothesis that loss of
MUTYH function may contribute to malignant transformation
by sustained cell death evasion under oxidative stress (Sakamoto
et al., 2007). The discovery that biallelic germline mutations in the
MUTYH gene cause the colorectal predisposition disorder named
MUTYH-associated polyposis (Al-Tassan et al., 2002), confirmed
its roles in cancer prevention, and revealed domains
indispensable for its repair activity. MUTYH’s primary
function in suppressing tumorigenesis is likely by preventing
somatic mutations in proto oncogenes or tumor suppressor
genes, which would otherwise develop as a consequence of
oxidative DNA damage. Noteworthy, two of the most
common MUTYH mutations in humans, Y165C and G382D,
are located in the adenine glycosylase active site and in the 8-
oxoG recognition domain, respectively, underscoring the
importance of MUTYH recognition of adenine in the 8-oxoG

FIGURE 3 | The FAP-mCer-TRF1 system. The targeting tool that specifically generates 8-oxoG at telomeres, consists of an overexpressed shelterin protein TRF1
fused with the fluorogen-activating peptide (FAP), along with the fluorescent protein m-Cerulean (mCer) to visualize expression. FAP-mCer-TRF1 expressing cells are
preincubated with 100 nM of the photosensitizer dye di-iodinated malachite green (MG2I), which when bound to the FAP, produces singlet oxygen (1O2) upon excitation
with 660 nm light. The singlet oxygen then reacts specifically with the telomeric guanines to generate 8-oxoG in a temporally and spatially controlled manner.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7584026

De Rosa et al. GO System and Telomere Stability

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


mispair [for extensive review see (Banda et al., 2017) and
(Markkanen et al., 2013)]. This first step in lesion
discrimination was confirmed with recent single molecule
fluorescence microscopy studies, which showed that while
MUTYH binds to both 8-oxoG:A and 8-oxoG:C, its
interaction with the correct base pair, which it cannot cleave,
is shorter-lived (Nelson et al., 2019). However, this raises the
possibility that in a context of high oxidative stress, MUTYHmay
interact at multiple sites of oxidative lesions, without necessarily
initiating the repair. This may have harmful consequences if non-
productive binding hinders replication fork progression or
transcription. Currently, information regarding a direct role
for MUTYH activity in modulating telomere homeostasis and
integrity remains very limited. Studies in fission yeast
Schizosaccharomyces pombe provided the first evidence for
enrichment of Myh1 at telomeres following oxidative stress
(Chang et al., 2011). Later, the histone deacetylase SIRT6 was
found to interact with and stimulate the activities of human
MUTYH and APE1, and to interact with the DNA-damage-
checkpoint complex Rad9/Rad1/Hus1 (9-1-1) in vitro. Consistent
with the known association of human SIRT6, APE1, and 9-1-1
with telomeres and their roles in preserving telomere stability
(Francia et al., 2006; Michishita et al., 2008; Madlener et al., 2013),
a subsequent study also found mMUTYH enrichment at
telomeres in mouse cells following oxidative damage by H2O2

treatment (Hwang et al., 2015). Very recently, this same group
employing the KR-TRF1 system to produce superoxide at mouse
telomeres, showed evidence that SIRT6 and 9-1-1 together recruit
MUTYH to oxidatively damaged telomeres. SIRT6 recruitment
prior to MUTYH may enhance repair through nucleosome
remodeling (Tan et al., 2020). However, H2O2 and superoxide
lead to multiple DNA lesion types, DSBs and SSBs, making it
difficult to determine which damage recruits SIRT6. A similar
damage sensor and nucleosome remodeling role has also been
proposed for UV-DDB, which is recruited to telomeres upon
targeted production of 8-oxoG with the FAP-TRF1 system, and
stimulates MUTYH activity and turnover (Jang et al., 2019; Jang
et al., 2021). It is not clear whether MUTYH recruitment is
dependent on replication, particularly since MUTYH can bind 8-
oxoG:C base pairs, although in an unproductive manner.

Interestingly, WRN protein, a helicase of the RecQ family
has also been implicated in BER and in telomere preservation.
Mutations in the gene encoding WRN protein cause Werner
Syndrome, a rare human genetic disorder characterized by
features of premature aging, predisposition to sarcoma and
thyroid cancers, oxidative stress, genomic instability, and
increased telomere loss (Crabbe et al., 2007; Muftuoglu
et al., 2008; Croteau et al., 2014). WRN facilitates telomere
replication by resolving complex DNA structures found at
telomeres such as T-loops, D-loops and G4s (Opresko et al.,
2004; Nora et al., 2010; Damerla et al., 2012). However, WRN
can also promote long-patch BER DNA synthesis by Polλ
during MUTYH initiated repair at 8-oxo-G:A mispairs
(Kanagaraj et al., 2012). Together with findings that WRN
deficiency is associated with 8-oxoG accumulation (Von
Kobbe et al., 2004; Das et al., 2007), it is tempting to
speculate that WRN may also contribute to telomere

preservation by stimulating MUTYH processing of 8-oxoG:
A mispairs in the telomeric sequences. Whether MUTYH,
and associated proteins, play a critical role preserving
telomere sequence integrity, counteracting the harmful
promutagenic effects of oxidative stress, remains to be
determined. However, whole genome sequencing has
revealed the presence of telomere repeat variants,
including TTATGG, which could have derived from
unrepaired TTA(8-oxoG) GG sequences (Lee et al., 2014;
Barnes et al., 2019), and suggests a role for MUTYH at
telomeres in preventing mutagenesis. More study is
required in MUTYH deficient cells using specific oxidative
targeting systems to establish MUTYH’s contribution in
telomere integrity preservation.

MTH1 Function in Removal of Oxidatively
Damaged dNTPs at Telomeres
The nucleotide pool is highly vulnerable to cellular oxidants and
free 2′-deoxyguanosine 5′-triphosphate (dGTP) is more
susceptible to oxidation than guanine in chromatin-protected
DNA (Haghdoost et al., 2006). 8-oxo-dGTP generated upon
reaction of dGTP with ROS, can be inserted into DNA
opposite either cytosine or adenine by DNA polymerases with
different efficiencies depending on the polymerase [as reviewed in
(Katafuchi and Nohmi, 2010)]. Thus, transversion mutations can
be induced during replication not only by misinsertion of A
opposite a template 8-oxoG in DNA, but also by misinsertion of
8-oxo-dGTP opposite template A. As an additional defense
against the harmful effects of oxidative stress-induced 8-oxoG
accumulation in the genome, mammalian cells rely on the activity
of MTH1, also known as nudix hydrolase 1 (Sakumi et al., 1993;
Furuichi et al., 1994). Similar to MutT in bacteria, MTH1
hydrolyzes 8-oxo-dGTP into 8-oxoGMP, which cannot be
incorporated into DNA (Hayakawa et al., 1999). MTH1 also
hydrolyzes oxidatively damaged dATPs, including 2-OH-dATP
and 8-oxo-dATP, which are also mutagenic but arise less
frequently than 8-oxodGTP (Rai and Sobol, 2019). MTH1 not
only counteracts mutagenesis, but also prevents DNA double
strand breaks that can arise following insertion of oxidized
dNTPs, which can trigger senescence or apoptosis [for
extensive review see (Rai, 2010)]. Furthermore, Pol β insertion
of 8-oxo-dGTP during BER can impair downstream ligation,
preventing the completion of repair (Freudenthal et al., 2015;
Caglayan et al., 2017). Several studies have shown a correlation
betweenMTH1 overexpression in cancer and poor prognosis (Rai
and Sobol, 2019). Some studies suggest cancer cells may be more
sensitive to MTH1 inhibitors, due to higher levels of ROS
compared to non-diseased cells (Gad et al., 2014). However,
despite the demonstrated effectiveness of some newly
developed MTH1 inhibitor drugs, the potential efficacy in
targeting MTH1 to treat cancer remains controversial and may
depend on the tumor properties (Warpman Berglund et al., 2016;
Yin and Chen, 2020).

Considering how sensitive telomeres are to oxidative
damage, a deeper understanding of MTH1 in telomere
stability is necessary to shed more light on its cellular
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importance and potential effectiveness as a target in cancer
therapy. Recent studies showed that MTH1 functions in
telomere length regulation because oxidized dNTPs impair
the ability of telomerase to lengthen telomeres. Telomerase is a
reverse transcriptase that uses an inherent RNA template to
add GGTTAG repeats to the 3’ telomeric ssDNA overhang,
and then translocates and ratchets back to add additional
repeats to restore the telomere (Wu et al., 2017). The
number of repeats telomerase adds prior to complete
dissociation from the substrate is termed repeat addition
processivity (RAP). Moreover, like all DNA polymerases,
telomerase contains in its catalytic cycle a nucleotide
addition processivity (NAP), which represents the number
of nucleotides added prior to enzyme dissociation from the
6-nt CCAAUC template (Sanford et al., 2021). We and others
showed that telomerase can insert 8-oxodGTP during
telomeric DNA synthesis, but the damaged nucleotide acts
as a telomerase chain terminator, halting further telomere
elongation after addition (Aeby et al., 2016; Fouquerel et al.,
2016). Telomerase can also insert 2-OH-dATP, but this
addition impairs telomere lengthening by interfering with
telomerase translocation. Even the telomerase repeat
addition processivity factor POT1–TPP1 is unable to rescue
the 8-oxo-dGTP or 2-OH-dATP inhibition of telomerase
extension (Sanford et al., 2020). Consistent with oxidized
dNTPs inhibiting telomerase, MTH1 depletion in
telomerase expressing cancer cells with short telomeres
causes telomere loss and dysfunction, and apoptosis
(Fouquerel et al., 2016). However, cancer cells with long
telomeres were less affected by MTH1 depletion in the
short term. A separate study showed antioxidant enzyme
PRDX1 is enriched at telomeres, and PRDX1 loss increases
oxidative stress induced damage at telomeres, as detected by
SSBs (Aeby et al., 2016). PRDX1 reduces ROS partly by
scavenging hydrogen peroxide, and therefore, may decrease
oxidative damage of free nucleotides within the vicinity of the
telomeres. A follow up study further demonstrated that MTH1
and PRDX1 cooperate in preventing ROS-mediated telomere
shortening. Telomerase expressing colon cancer cells lacking
both MTH1 and PRDX1 showed greater telomere shortening
compared to the single knockout and wild type cells, when
cultured under oxidative stress at 20% O2 (Ahmed and
Lingner, 2018b). As evidence this telomere shortening was
caused by telomerase inhibition, they elegantly showed a
reduction in telomerase-mediated new telomeric DNA
synthesis in cultured cells. This study overexpressed a
mutant telomerase (TSQ1-hTR) that adds variant telomeric
repeats to monitor new telomeric DNA synthesis, and found
addition of the variant repeats was greatly reduced in MTH1
knockout and PRDX1/MTH1 double knockout cells cultured
at 20% O2, compared to wild-type cells (Ahmed and Lingner,
2018b). Collectively, these studies show MTH1 provides an
antioxidant protection by counteracting the inhibitory effects
of oxidized dNTPs on telomerase activity, to ensure telomere
maintenance. However, the bulk of the telomere is duplicated
by the canonical DNA replication machinery, and more work
is required to determine whether insertion of oxidized dNTPs

during telomere replication or repair can impair telomere
stability or cause telomere mutagenesis.

DOESMMR FUNCTION AT TELOMERES AS
AN ADDITIONAL 8-OXOG REPAIR
PATHWAY?
DNA mismatch repair (MMR) is an evolutionary conserved
repair system which canonically removes errors associated
with DNA replication (for extensive review see (Jiricny, 2013;
Ijsselsteijn et al., 2020)). In humans, the heterodimer MutSα
(hMSH2-MSH6) recognizes single base mismatches and small
insertion/deletion loops, while the heterodimer MutSβ (hMSH2-
hMSH3) searches for larger insertion/deletion loops. The
heterodimer MutLα (hMLH1-hPMS2) is then recruited and
repair is completed by EXO1 exonuclease-mediated
degradation of the error-containing strand, DNA pol δ gap
filling DNA synthesis, and DNA ligase I sealing of the nick
(Jiricny, 2006). MMR deficiency, mainly due to inactivation of
MSH2 and MLH1, leads to increased spontaneous mutagenesis,
microsatellite instability and the development of Lynch
syndrome, a genetic disorder marked by increased risk for
colorectal cancers (Peltomaki, 2001; Peltomaki, 2005). The
association of MMR with the repair of 8-oxoG lesions has
been shown in yeast and mouse (Deweese et al., 1998; Ni
et al., 1999). Later in vitro studies established that the
hMSH2-hMSH6 heterodimer can bind specifically to
mismatched 8-oxoG containing DNA substrates (Mazurek
et al., 2002). Further studies in MEFs showed that MSH2 and
OGG1 act independently, and have an additive effect on
maintaining low levels of both spontaneous and exogenously
induced 8-oxoG in genomic DNA, and that overexpression of
MTH1 mitigates the mutator effect of MMR deficiency (Colussi
et al., 2002; Russo et al., 2004). Based on these results, the authors
proposed that MMR acts at 8-oxoG:A mispairs formed by 8-
oxodGTP incorporation into the daughter DNA strand opposite a
template A on the parental strand, thus contributing to the
elimination from newly synthesized DNA of the
misincorporated 8-oxoG (Colussi et al., 2002). When 8-
oxodGTP is misincorporated from the nucleotide pool
opposite A, MMR activity is preferred because it allows
restoration of the original T:A base pair. Conversely, MUTYH
removal of A in the parental strand would be mutagenic if C is
then inserted in the parental strand opposite 8-oxoG on the
daughter strand. This converts the original T:A base pair to
8oxoG:C.MUTYH physically interacts with MSH6 (MutSα),
and this interaction stimulates MUTYH DNA binding and
glycosylase activity (Gu et al., 2002). These studies suggest that
MMR can repair 8-oxoG in newly synthesized DNA, and raise the
possibility that the GO repair enzymes crosstalk with MMR
proteins at telomeres to process oxidative damage.

There is very limited information on potential MMR roles in
telomere maintenance and protection from oxidative damage.
MMR deficiency is associated with telomere shortening in
leukocytes of cancer patients with Lynch Syndrome, in tumors
with microsatellite instability and in normal primary human lung
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fibroblasts depleted of hMSH2 (Rampazzo et al., 2010; Mendez-
Bermudez and Royle, 2011; Segui et al., 2013; Garrido-Navas
et al., 2020). Two studies showed knock out of PMS2 or MSH2 in
telomerase (Terc) deficient mice partly rescued the reduced
lifespan and degenerative pathologies caused by shortened,
dysfunctional telomeres (Siegl-Cachedenier et al., 2007)
(Martinez et al., 2009). The improvement of these phenotypes
was due to an attenuated p21 induction in response to telomere
attrition. Despite evidence for MMR proteins in modulating
cellular responses to dysfunctional telomeres in vivo, many
questions remain regarding the potential roles for processing
mismatches in both cancerous and non-diseased cells. Some
studies suggest MMR prevents aberrant recombination at
telomeres [reviewed in (Jia et al., 2015)]. Whether MMR
proteins may function as a backup repair system for 8-oxoG:C
or 8-oxoG:A base pairs that escaped the GO repair activity, or that
arise in excess under high oxidative stress, remains to be
determined. Therefore, it will be interesting to determine
whether MMR proteins are recruited at telomeres after
oxidative damage, and how MMR may coordinate with the
GO system at telomeres.

ALTERATIONS CAUSED BY 8-OXOG
PROCESSING AT REPETITIVE
SEQUENCES
Studies of the GO system in other repetitive regions of the
genome beyond the telomeres demonstrate how DNA
structure can cause aberrant BER, leading to changes in repeat
lengths. Trinucleotide repeat (TNR) inherited disorders are
caused by unstable repetitive DNA sequences, which can occur
in different genomic contexts, including the coding sequence of a
gene which leads to an aberrant protein product [reviewed in
(Jones et al., 2017)]. The TNR disorders are characterized by
repeat expansion, that can occur in dividing and non-dividing
cells, and exhibit genetic anticipation causing an earlier onset of
disease with successive generations (Orr and Zoghbi, 2007).
Huntington’s disease (HD) is a well-studied example of a TNR
progressive neurodegenerative disorder, caused by expansion of
CAG repeats in the huntingtin (HTT) gene, in which the
expansion length determines the age of onset (Duyao et al.,
1993). Several studies showed that both in HD patients and in
transgenic mouse models, mutant HTT expression is associated
with mitochondrial alterations, increased ROS and accumulation
of oxidative DNA damage (Polidori et al., 1999; Askeland et al.,
2018). Similar to telomeric repeats, CAG repeats are considered
hotspots for oxidative DNA damage and can form secondary
structures which are processed during replication and/or repair,
thereby generating deletions or expansions (Kovtun and
McMurray, 2008; Jarem et al., 2009; Volle et al., 2012). A
proposed mechanism for the repeat expansion in HD is BER
processing of 8-oxoG lesions within or near CAG repeats. Acute
H2O2 treatment of human HD fibroblasts caused expansion of
medium- and disease-length alleles, that correlated with
increased SSBs. The age-dependent expansion in vivo was
significantly suppressed or delayed when knocking out OGG1

in HD mouse models. As confirmation, in vitro experiments
showed that OGG1-mediated BER initiates repeat expansion by
subsequent APE1 production of a nick that leads to stable CAG
hairpin formation, which causes an expansion following ligation
and repair completion (Kovtun et al., 2007; Kovtun and
McMurray, 2008). This explains how oxidative stress can
cause sequence expansion in quiescent and non-replicating
cells such as neurons. Furthermore, the nucleotide pool
sanitizing activity of MTH1 protects both nuclear and
mitochondrial DNA from the increased oxidative damage, and
MTH1 over expression attenuates the HD symptoms in mice (De
Luca et al., 2008; Ventura et al., 2013). Moreover, DNA pol β can
incorporate 8-oxodGTP in CAG repeat sequences in vitro,
leading to the formation of 8-oxodG:C and 8-oxodG:A
mispairs, which can be processed by the OGG1 and MUTYH
DNA glycosylases, further generating closely spaced SSBs on
opposite DNA strands that cause TNR expansion.
Interestingly, the authors of this study also found high levels
of oxidized bases in the genome together with increased oxidized
dNTPs in the nucleotide pool in the areas affected by
neurodegeneration of an HD mouse model (Cilli et al., 2016).
Collectively, these studies demonstrate how the processing of 8-
oxoG lesions by the GO enzymes affects the stability of repetitive
DNA sequences capable of forming secondary structures.
Whether 8-oxoG processing can similarly impact telomere
repeat length dynamics in replicating and quiescent cells
remains to be established.

8-OXOG FORMATION AND REPAIR IN THE
CONTEXT OF TELOMERIC
G-QUADRUPLEX STRUCTURES:
BENEFICIAL OR DETRIMENTAL FOR
TELOMERE STABILITY?

The ability of telomeric sequences to spontaneously fold into
G-quadruplex (G4) structures greatly influences the efficiency of
damage recognition and processing by the GO system. G4s are
non-canonical secondary structures that can form in single-
stranded DNA and RNA containing four or more runs of
guanine bases [reviewed in (Bryan and Baumann, 2011)]. The
guanine bases of G4 structures interact by Hoogsteen base-
pairing forming planar G-quartets, whereby two or more
G-quartets stack on top of each other, stabilized by centrally-
located monovalent cations, particularly potassium or sodium
ions. The conformations of G4 structures vary depending on the
sequence.

The repetitive TTAGGG sequence and single-stranded regions
makes telomeres ideally suited for quadruplex formation, and
intra-molecular G4s readily fold in oligonucleotides containing at
least four telomeric repeats (Lee et al., 2005; Hwang et al., 2014).
The biological roles of G-quadruplexes throughout the genome
include modulation of DNA replication, DNA repair, gene
expression, and telomere maintenance (Rhodes and Lipps,
2015; Johnson, 2020). Folded G4s prevent the binding of
proteins that normally interact with double-stranded B-DNA,
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effectively masking tracts of DNA from binding and recognition
factors. For example, the folding of guanine-rich regions in gene
promoters in G4 structures can inhibit gene expression (Cogoi
and Xodo, 2006). G4 folding also influences processing of DNA
lesions by BER enzymes, and can thereby influence gene
expression when the lesion resides in a G-rich promoter (for
review see (Fleming and Burrows, 2020). While NEIL1 and
NEIL3 glycosylases can remove hydantoin lesions from a G4,
OGG1 is unable to recognize and excise 8-oxoG residing in a
telomeric or promoter G4 (Zhou et al., 2013; Zhou et al., 2015;
Ferino and Xodo, 2021). Whether MUTYH can excise A in the
context of a G4 is unknown but is unlikely given that the A:8-
oxoG base pair is disrupted in a G4. While APE1 can bind an
abasic residue within a telomeric or promoter G4, its cleavage
activity is attenuated depending on the G4 conformation
(Broxson et al., 2014; Zhou et al., 2015). Thus, G4 structures
impact the GO system, and may decrease 8-oxoG repair within
telomeric G4s by inhibiting OGG1 and APE1. Whether 8-oxoG
repair is less efficient at telomeres in vivo is not clear. Telomeres
can also take advantage of adjacent repeats to remodel a G4,
which may enable 8-oxoG repair. In this “spare tire” model
(Fleming et al., 2015), when an 8-oxoG arises in four G-tracks
(i.e., telomeric repeats) folded into a G4, a nearby G-track
(i.e., spare tire or fifth telomeric repeat) can participate in the
G4 and thereby extrude the 8-oxoG, to a loop, making it
accessible to repair enzymes. We previously demonstrated that
increasing the number of telomeric repeats beyond four in
oligonucleotides, increases the structural dynamics and
conformations (Hwang et al., 2014), suggesting G4 remodeling
within a telomere may promote lesion accessibility and repair.

The relationship between G4 and the GO system is further
complicated by the alterations and dynamics that guanine
oxidation imparts on G4 structures. Conversion of guanine to
an 8-oxoG, disrupts the hydrogen-bonding pattern on the
Hoogsteen face for the base within a G-quartet (Figure 4).
Solution NMR studies of single-stranded oligonucleotides with

G-rich telomeric sequences show that the formation of G4s is
substantially disrupted by the substitution of guanine for 8-oxoG.
The tendency for 8-oxoG to adopt a syn-orientation instead of the
anti-orientation typically assumed by guanine bases, changes the
preferred loop conformations assumed by the oligonucleotide.
While telomeric G4s containing 8-oxoG can still fold, they melt at
significantly lower temperatures compared to undamaged G4s
(Cheong et al., 2015; Bielskute et al., 2019). 8-oxoG substitution at
the 2nd G in TTAGGG within the middle G-quartet, is
significantly more disruptive than substitution at the 1st or
3rd Gs which participate in an outer quartets (Bielskute et al.,
2019). These structural studies are complemented by single-
molecule Forester Resonance Energy Transfer (smFRET)
experiments to monitor G4 folding in real time. In this
approach G4 folding brings two strategically placed dyes
within a telomeric oligonucleotide close enough to FRET,
whereby one dye donates its energy to a proximal acceptor
dye, which then fluoresces. SmFRET shows that 8-oxoG
substitution for a single guanine in a telomeric sequence does
not completely unfold the G4, but instead induces dynamic
fluctuations between partially-unfolded and short-lived folded
G4 conformations. Consistent with the position-dependent
effects of 8-oxoG seen in NMR, conversion of the central 2nd
guanine to 8-oxoG also has the strongest destabilizing effect (Lee
et al., 2020). Furthermore, the 8-carbon of most guanines within a
G4 is solvent-exposed, which allows for guanine oxidation in the
context of a folded G4. Single-electron oxidation experiments
demonstrate that, while guanine oxidation is slower than in
duplex DNA, 8-oxoG can form in folded telomeric G4s
(Merta et al., 2019).

The ability of 8-oxoG to alter G4 conformation and stability
suggests that guanine oxidation at telomeres may lead to a
reduction of telomere G4s, even when quadruplexes folded
prior to oxidative damage. Given that G4s have been
implicated in inhibiting telomere replication and telomerase
mediated telomere lengthening, 8-oxoG modulation of G4

FIGURE4 | The impact of 8-oxoguanine on a G-quartet. G-quadruplexes consist of two or more stacked G-quartets and central monovalent cations. These planar
arrangements of four guanine bases are stabilized by hydrogen bonding on their Hoogsteen face (highlighted by green dashed line on one representative base).
Conversion of the guanine to 8-oxoguanine (affected atoms and bonds in orange) introduces a steric clash with the adjacent guanine that prevents them from forming a
Hoogsteen binding interaction, destabilizing the G-quartet and the G-quadruplex as a whole.
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structure likely influence telomere maintenance. SmFRET studies
revealed that substitution of G with 8-oxoG in telomeric
oligonucleotides enhances accessibility and binding of a
complementary DNA strand, telomerase, and telomeric
ssDNA binding protein POT1 (Lee et al., 2017). As a result, 8-
oxoG substitution also improved telomerase extension of
telomeric oligonucleotides that were pre-folded into G4s
(Fouquerel et al., 2016; Lee et al., 2020). POT1 can partially
unravel G4s as well (Zaug et al., 2005;Wang et al., 2011), and may
cooperate with 8-oxoG to modulate telomeric G4s. The ability of
8-oxoG to destabilize G4may partly explain why OGG1 loss leads
to telomere lengthening in vivo under non-stress conditions (Lu
and Liu, 2010; Wang et al., 2010). The role for G4 structures in
telomere regulation and protection, and for 8-oxoG modulation
of G4 at telomeres remain unclear. More research into the
interplay between G-quadruplexes, oxidative damage, shelterin,
and telomerase is needed to fully understand how 8-oxoG and the
GO system influence telomere stability and cellular health.

PERSPECTIVE

During the last 2 decades, a large number of studies have revealed
that telomeres are highly susceptible to oxidative stress, and that
oxidative damage to telomeric DNA is associated with accelerated
telomere shortening and/or dysfunction. As we discussed in this
review, one of the most common oxidative lesions within the

genome is 8-oxoG. The biological importance of this lesion is
underscored by the evolution of the highly conserved GO system
that involves three distinct enzymes that recognize and process 8-
oxoG in various contexts to preserve the genome. The recently
developed cutting-edge FAP-TRF1 technology has made it
possible to specifically produce 8-oxoG selectively at telomeres,
in the absence of damage elsewhere in the genome. Since
oxidative stress damages numerous cellular components,
targeted lesion production allows researchers to determine
what damage is collateral and what damage drives the cellular
response and genomic alterations. Both OGG1 genetic depletion
and pharmacological inhibition have provided evidence for a
crucial OGG1 role in protecting telomeres from the harmful
effects of high oxidative stress in cancer cells. More investigation
is needed to uncover the role of OGG1 in preserving telomere
integrity and modulating cellular responses to telomeric oxidative
damage in non-diseased and primary cells. Furthermore, despite
the lack of studies assessing the roles of the GO system enzymes at
telomeres in quiescent cells, findings in HD cellular and animal
models show how TNR expansion in quiescent and non-
replicating cells can result from the repair of oxidative damage
(Kovtun et al., 2007; Kovtun and McMurray, 2008). This raises
the possibility that 8-oxoG processing in non-replicating cells at
other repetitive sequences such as telomeres, may affect their
integrity and length dynamics. Finally, potential activation of
ATM and ATR kinases by 8-oxoG processing in normal cells with
intact DNA damage response pathways may alter telomere length

FIGURE 5 | Telomere 8-oxoG hormesis model and the crucial roles of the GO system enzymes in telomere stability. In unstressed conditions of basal ROS, low
levels of 8-oxoG (yellow X) may promote telomere maintenance by destabilizing G4s structures (as shown in Figure 4) which block telomerase loading and impair
replication, and may thereby facilitate telomere lengthening. Conversely, elevated ROS under oxidative stress inhibits telomere maintenance by producing excess 8-
oxoG lesions (yellow X) and repair intermediates that impair telomere replication, and by producing 8-oxodGTP (yellow X) which inhibits telomerase. Thus, under
oxidative stress the GO system may play a critical role in telomere preservation through MTH1 hydrolysis and removal of 8-oxodGTP, OGG1 initiated BER of 8-oxoG
opposite C, and MUTYH initiated BER removal of A misinserted opposite 8-oxoG in the template strand. Thus, a little telomeric 8-oxoG may be beneficial for telomere
maintenance, but too much telomeric 8-oxoG is detrimental for telomere stability.
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based on evidence that these kinases regulate telomerase
recruitment (Lee et al., 2015; Tong et al., 2015). The
consequences of OGG1 processing at telomeres will likely
differ depending on the cell and tissues type, underscoring the
need for future studies.

Notwithstanding evidence for MUTYH association with
telomeres undergoing oxidative stress, more investigation is
required to understand the impact of 8-oxoG:A mispairs at
telomeric repeats for telomere function and stability. In
regards of studying potential mutagenesis at telomeres,
sequencing of telomeric DNA has been challenging because of
its repetitive nature. However, the advent of long-read or third-
generation sequencing, including PacBio single-molecule real-
time (SMRT) sequencing and Oxford Nanopore Technologies
(ONT) sequencing, enables detection of mutations in repetitive
regions of the genome, where short reads cannot be mapped
uniquely (Amarasinghe et al., 2020). Therefore, these recent
advances in third-generation sequencing, or new developments
in bioinformatic tools able to accurately map telomeric sequences
even from short-reads, may help to elucidate whether telomeres
undergo mutagenesis due to 8-oxoG formation in contexts of
functional or disrupted repair. The possibility of targeting 8-oxoG
at telomeres in human cellular models, singly, doubly, or triply
deficient for MUTYH, OGG1, and MTH1 will further uncover
the role various GO system components play in safeguarding
telomeric repeats.

Based on evidence that OGG1 promotes telomere lengthening
under non-stressed conditions in vivo, but accelerates telomere
shortening and dysfunction under oxidative stress (Wang et al.,
2010; Fouquerel et al., 2019), we propose a hormesis model for 8-
oxoG roles in telomere stability (Figure 5). According to this
model, low 8-oxoG levels may facilitate telomere maintenance by
disrupting G4s thus promoting replication fork progression and
telomerase loading. Alternatively, studies in yeast suggest low 8-
oxoG can promote telomere elongation by RAD52-mediated
homologous recombination [not shown, (Lu and Liu, 2010)].
In contrast, elevated 8-oxoG levels under oxidative stress inhibit
telomere maintenance because persistent 8-oxoG lesions and
repair intermediates impair telomere replication and 8-

oxodGTP inhibits telomerase, thereby accelerating telomere
shortening and loss. In the proposed model, the GO system
enzymes play crucial roles in telomere stability particularly under
oxidative stress conditions. For example, MTH1 depletion only
causes telomere shortening when cells are cultured at 20%
oxygen, not when cultured at low 5% oxygen (Ahmed and
Lingner, 2018b). Establishing how the GO system enzymes
OGG1, MUTHY and MTH1 cooperate and cross-talk with
additional repair pathways to safeguard telomere integrity
from oxidative stress, will be valuable for developing new
therapeutic strategies that preserve telomeres and delay aging-
related diseases, or that conversely target telomeres in cancer cells
to halt proliferation.
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