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Abstract: Fungi are a ubiquitous component of marine systems, but their quantitative relevance,
biodiversity and ecological role in benthic deep-sea ecosystems remain largely unexplored. In this
study, we investigated fungal abundance, diversity and assemblage composition in two benthic
deep-sea sites of the Ross Sea (Southern Ocean, Antarctica), characterized by different environmental
conditions (i.e., temperature, salinity, trophic availability). Our results indicate that fungal abundance
(estimated as the number of 18S rDNA copies g−1) varied by almost one order of magnitude between
the two benthic sites, consistently with changes in sediment characteristics and trophic availability.
The highest fungal richness (in terms of Amplicon Sequence Variants−ASVs) was encountered in the
sediments characterized by the highest organic matter content, indicating potential control of trophic
availability on fungal diversity. The composition of fungal assemblages was highly diverse between
sites and within each site (similarity less than 10%), suggesting that differences in environmental and
ecological characteristics occurring even at a small spatial scale can promote high turnover diversity.
Overall, this study provides new insights on the factors influencing the abundance and diversity of
benthic deep-sea fungi inhabiting the Ross Sea, and also paves the way for a better understanding of
the potential responses of benthic deep-sea fungi inhabiting Antarctic ecosystems in light of current
and future climate changes.

Keywords: deep-sea sediments; fungal diversity; trophic conditions; Antarctica; Ross Sea

1. Introduction

The Southern Ocean, surrounding Antarctica, plays a key role in global ocean cir-
culation and biogeochemical cycles [1,2]. Here, primary productivity and carbon export
to the seafloor are highly variable in space and time, with the highest rates of primary
production occurring during the austral summer in the coastal polynyas (regions of open
water surrounded by sea ice; [3,4]), marginal ice zone [5] and continental shelf [6–8]. De-
spite the extreme environmental conditions (e.g., low temperature, highly variable nutrient
availability), the Southern Ocean hosts rich and diverse benthic deep-sea assemblages,
including several endemic species [9,10].
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Microbial assemblages in benthic deep-sea ecosystems play an important role in C
and nutrient cycling and transfer of energy and material to the higher trophic levels [11].
Besides prokaryotes, fungi are widespread in deep-sea environments spanning from hy-
persaline anoxic basins [12–14] to cold seeps [15,16], from hydrothermal vents [17–19] to
surface and subsurface sediments [13,20–24], including benthic Antarctic systems [25–28]
and references therein). Theoretical estimates suggest that fungi can be the most diversified
component of eukaryotes on Earth, with more than 5 million species of which only 5%
have been described [29,30]. This gap applies in particular to deep-sea ecosystems, where a
significant fraction of fungal diversity is still unknown [24,31,32]. Recent studies suggest
that a variety of environmental factors (e.g., temperature, salinity, nutrient availability) can
influence the diversity and assemblage composition of fungi in marine ecosystems [33,34].
However, factors controlling the distribution and diversity of fungi in benthic deep-sea
ecosystems remain largely unexplored to date [24] and even less is known of fungi inhab-
iting the Southern Ocean. In deep-sea ecosystems, fungi are not only highly diversified,
but they are likely involved in the degradation and cycling of organic matter [13,18,35–38].
In benthic deep-sea ecosystems, organic matter mainly consists of refractory organic com-
pounds [39,40], and fungi are known to be efficient degraders of complex organic molecules
not suitable for other heterotrophic microbes [41,42]. However, their role in C and nutrient
cycling in benthic deep-sea ecosystems remains poorly understood [24].

Global climate change is altering marine biodiversity and food web dynamics, and
such effects are particularly pronounced at high latitudes [43–45]. Changes in environmen-
tal conditions (e.g., temperature, salinity, nutrient availability) due to climate changes in
polar regions can induce a domino effect that could impact biodiversity and ecosystem
functioning from the continental shelf down to the deep seafloor [46,47]. Nevertheless,
information on benthic deep-sea fungal assemblages of Antarctic ecosystems is scant and
insufficient to understand and predict how these components will respond to the expected
changes in environmental conditions.

In this study, we investigated the abundance, diversity and assemblage composition
of fungi in two benthic deep-sea sites of the Ross Sea (one of the most productive sectors of
the whole Southern Ocean; [48]), characterized by different environmental conditions in
terms of trophic availability and thermohaline regime. This work aims at shedding light
on the ecology of benthic deep-sea fungi and factors shaping their distribution at different
spatial scales (i.e., between stations of the same site and between sites). This information is
crucial for better comprehension of the responses of benthic fungal assemblages inhabiting
Antarctic ecosystems, and also in light of climate change scenarios.

2. Materials and Methods
2.1. Study Area and Sampling Strategy

Sediment samples were collected in the Ross Sea, Southern Ocean (Figure 1), during
the austral summer 2017 onboard the research vessel M/N Italica in the framework of the
XXXII Italian Antarctic Expedition. Samples were collected at two different sites, named B
and C, located about 170 km from each other. Site B (average depth of ca. 580 m) is located
in the cross-shelf valley in the northern part of the Joides basin, and it is characterized
by bio-siliceous olive-gray mud sediments. Site C is located at ca. 430 m depth close
to the shelf break on the northern flank of the Mawson Bank, and it is characterized by
sand, gravel, pebbles and coarse biogenic carbonate debris and high near-bottom current
velocities (up to 20 cm s−1; [49]). At both sites, two stations located at ca. 2 km from each
other were selected to investigate spatial variability within the same site (hereafter defined
B1 and B2 and C1 and C2). At each station, the main physical–chemical characteristics of
the bottom waters were acquired by CTD casts along with the collection of undisturbed
sediment samples by three independent box corer deployments. Once on board, sediment
subsamples of the top 1 cm were collected and stored at −20 ◦C until laboratory analyses
for the determination of organic matter quantity and quality (used as a proxy of trophic
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conditions [50,51]), fungal abundance, diversity and assemblage composition. All samples
were processed within six months of their collection.
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Figure 1. Location of the study area (A) and sampling locations of the two benthic deep-sea sites
investigated (B) and of the stations within sites B (C) and C (D). The map was generated upon freely
available layers within QGIS 3.22 environment (http://www.qgis.org; accessed on 7 January 2022).

2.2. Trophic Conditions

Trophic conditions of benthic systems were assessed on the basis of the quantity and
biochemical composition of organic matter [50,51]. Chloroplastic pigments (chlorophyll-a
and phaeopigments) were analyzed fluorometrically [52]. Pigments were extracted with
90% acetone (12 h in the dark at 4 ◦C). After centrifugation, the supernatant was used
to determine the functional chlorophyll-a and then acidified with 0.1N HCl to estimate
phaeopigments. Total phytopigment concentration (CPE) was defined as the sum of
chlorophyll-a and phaeopigment concentrations.

Protein, carbohydrate and lipid concentrations in the sediment were determined
according to previously described protocols [52]. Briefly, protein concentration was assessed
by a colorimetric method, based on the reaction of proteins with copper tartrate and the
Folin–Ciocalteau in a basic environment (pH 10), which provides a stable blue coloration
with an intensity proportional to protein concentration. Carbohydrate concentration was
determined spectrophotometrically based on the reaction between carbohydrates and
phenol in the presence of sulfuric acid, which provides a coloration whose intensity is
proportional to carbohydrate concentration. Lipids were extracted by direct elution with
chloroform and methanol followed by reaction with sulfuric acid and determination by
a colorimetric method. Protein, carbohydrate and lipid concentrations were expressed as
albumin, glucose and tripalmitin equivalents, respectively. All analyses were carried out in
three replicates. Protein, carbohydrate and lipid concentrations were converted to carbon
equivalents (conversion factors: 0.49, 0.40 and 0.75 gC g−1, respectively) to determine
biopolymeric C content (BPC) in the sediments [50]. The protein to carbohydrate ratio (P:C)
was used as a proxy of organic matter quality [51].

http://www.qgis.org
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2.3. DNA Extraction and Purification for Molecular Analysis

DNA was extracted and purified from sediment samples using PowerSoil DNA iso-
lation kit (QIAGEN), following the manufacturer’s instruction with slight modifications
to remove extracellular DNA (based on three subsequent washing steps), before DNA
extraction [52].

2.4. Fungal Abundance Estimated by Quantitative Real-Time PCR (qPCR)

To estimate fungal abundance, DNA aliquots were used for quantitative real-time
PCR (qPCR) analysis of the fungal-specific 18S rRNA gene [53]. Briefly, fungi-specific
primers (FR1 5′-AIC CAT TCA ATC GGT AIT-3′) and FF390 (5′-CGA TAA CGA ACG AGA
CCT-3′), which amplify a 18S rRNA gene fragment of about 350 bp [54], were used with
the Sensi-FAST SYBR Q-PCR kit (Bioline, London, UK). The 15 µL reactions contained
8 µl Sensi-FAST master mix, 1 µL of each primer (final concentration 1 µM), 1µL of DNA
template and 5 µL nuclease-free molecular-grade water [53]. A Bio-Rad iQ5 instrument
was used to perform qPCR analyses using the following thermal protocol: 94 ◦C for 3 min.,
then 40 cycles of 94 ◦C for 10 s, annealing at 50 ◦C for 15 s, elongation at 72 ◦C for 20 s
and acquisition of fluorescence data at 82 ◦C. The CFX Manager™ (v3.1) software was
used to calculate Cq, efficiency (E) and R2 values of standard curves for each plate and
to quantify 18S rDNA copy numbers present in the samples analyzed. Standard curves
were generated using known concentrations of Aspergillus niger 18S rDNA. The number of
fungal 18S rDNA copies was standardized per gram of dry sediment.

2.5. Fungal Diversity and Assemblage Composition

DNA extracted from two sediment samples collected at each station by independent box
corer deployments was amplified using the primer set ITS1F (5′-GGAAGTAAAAGTCGTAAC-
AAGG-3′) and ITS2 (5′- GCTGCGTTCTTCATCGATGC-3′), which amplify the internal tran-
scribed spacer-1 (ITS1) region of the fungal rRNA gene [55,56]. Amplicons were sequenced on an
Illumina MiSeq platform by the LGC group (Berlin, Germany), following the Earth Microbiome
Project protocols (http://www.earthmicrobiome.org/emp-standard-protocols/; accessed on
15 September 2018). Paired-end sequences were analyzed within the QIIME2 environment [57].
First, the ITSxpress plugin was used to trim sequences targeting the ITS1 region [58]; then,
trimmed paired-end sequences were analyzed through the DADA2 procedure [59], and the
resulting biologically significant Amplicon Sequence Variants (ASVs) were compared against the
UNITE database (Version: 8.3; Last updated: 11 December 2020) for taxonomic affiliation [58].
Taxonomic affiliation was performed through the USEARCH SINTAX procedure [60] using
three different thresholds: 0.8 (default), 0.6 and 0.5 to evaluate potential distant affiliations. To
allow for a proper comparison among samples, the ASV table was then rarefied to 900 randomly
selected sequences, corresponding to the lowest read count obtained in our samples [61,62].

2.6. Data Analyses

Differences in environmental and trophic variables, fungal abundance (as 18S rDNA
copy number) and ASV richness between and within sites were tested by permutational
two-way nested analysis of variance (2-way nested PERMANOVA; [63,64], considering the
two factors Site (2 levels: B and C) and Station (nested in Site, 2 levels: 1 and 2). P-values
were calculated with unrestricted permutation of raw data (perm.: 9999) with adonis
function in vegan package. To investigate the relationships between fungal abundance
and ASV richness and environmental and trophic variables, Spearman Rank correlation
analyses were carried out.

The rarefied ASV table was used to assess the number of either “core” ASVs (i.e., at
least one ASV present in all samples) and “exclusive” ASVs (i.e., ASVs found only in a single
sample) and the output was visualized by network analysis through the Gephi package [65].
To determine similarities of the fungal assemblage composition between stations and sites,
a similarity percentage analysis (SIMPER; [66]) was carried out. To identify potential
factors influencing fungal assemblage composition, DistLM routine and distance-based

http://www.earthmicrobiome.org/emp-standard-protocols/
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redundancy analyses (dbRDA) were carried out with Primer+PERMANOVA (v7) [67]. In
particular, temperature, salinity and dissolved oxygen concentrations of the bottom waters
and quantity (i.e., biopolymeric C concentrations and total phytopigment content) and
quality (protein to carbohydrate ratio) of organic matter in the sediments were used as
predictor variables.

3. Results and Discussion

The thermohaline conditions of bottom waters of the benthic systems investigated
in the present study changed widely, with temperature values ranging from −1.880 ◦C
to −0.046 ◦C and salinity values ranging from 34.650 to 34.756 (Table 1). Stations at Site
B were characterized by colder, saltier and more oxygenated waters than stations at Site
C, reflecting differences in water mass characteristics. In particular, cold waters with
temperatures below the surface freezing point observed at stations of Site B were associated
with the Ice Shelf Water (ISW) overflowing on the continental slope of the Ross Sea [68].
The two benthic sites were also characterized by differences in terms of sediment grain
size, which was mainly represented by silt–clay particles at stations of Site B and by coarse
particles, including carbonate debris, at stations of Site C.

Table 1. Values of temperature, salinity and dissolved oxygen concentrations of the bottom waters
and biopolymeric carbon and total phytopigment concentrations and protein to carbohydrate ratios
(P:C) in the surface sediments of the different stations investigated. Mean values and standard
deviations (±) are reported.

Site Station
Depth Latitude Longitude Temperature Salinity Dissolved Oxygen

(m) EPSG: 4326 EPSG: 4326 (◦C) (mg L−1)

B B1 585 −74.03951 175.07945 −1.88 ± 0.0002 34.752 ± 0.0002 10.96 ± 0.05
B B2 587 −74.01603 175.04279 −1.878 ± 0.0002 34.756 ± 0.0001 11 ± 0.05
C C1 433 −72.49527 174.94336 −0.5 ± 0.001 34.65 ± 0.0002 6.25 ± 0.003
C C2 434 −72.49967 174.99696 −0.046 ± 0.0024 34.667 ± 0.0001 9.92 ± 0.005

Biopolymeric Carbon Total phytopigments
P:C(mg g−1) (µg g−1)

B B1 3.23 ± 0.23 3.28 ± 1.27 0.39 ± 0.1
B B2 2.32 ± 0.61 3.44 ± 0.84 0.19 ± 0.1
C C1 0.28 ± 0.08 0.33 ± 0.08 0.7 ± 0.19
C C2 0.23 ± 0.08 0.24 ± 0.11 0.46 ± 0.06

There is evidence that the distribution and accumulation of organic matter in surface
sediments of deep-sea systems of the Ross Sea are influenced not only by vertical inputs
from the upper water column, but also by lateral advection processes [69,70]. The formation
and cascading of the Ice Shelf Water can represent an important process of C supply to the
sea bottom, which may be responsible for the high organic matter content observed at the
benthic deep-sea stations of Site B (Table 1). Values of total phytopigment concentrations, a
proxy of the organic material produced by photosynthesis in surface waters and settling on
the seafloor, and biopolymeric C concentrations in surface sediments of stations of Site B
were, indeed, 10 times higher than those of Site C stations (Table 1).

There is a general consensus that trophic availability controls the abundance and
distribution of benthic deep-sea standing stocks from prokaryotes to meio- and macro-
fauna [71,72], but information on its relevance in influencing the distribution of deep-sea
fungi is still largely lacking [24]. In this study, fungal abundance, expressed as fungal
18S rDNA copies per gram of dry sediment, ranged from 1.3 ± 0.7 × 106 copies g−1

to 1.6 ± 0.5 × 107 copies g−1 (Figure 2A,B). Our results fall within previously reported
ranges for deep-sea sediments of the Pacific Ocean (from 3.5 × 106 to 5.2 × 107 28S
rDNA copies g−1 [73]) and the Mediterranean Sea (from 1.4 × 106 to 5.1 × 107 18S rDNA
copies g−1 [24]) and provide the first evidence of the quantitative importance of fungi in
benthic deep-sea ecosystems of the Southern Ocean. Fungal abundance changed between
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and within sites (Site: Pseudo-F2,8 = 5.27, p < 0.05; Station (Site): F1,8 = 15.86, p < 0.05;
Figure 2A,B), with values up to 1 order of magnitude higher at stations of Site B than at
stations of Site C. Significant positive relationships were found between fungal abundance
and total phytopigment and biopolymeric C concentrations in the sediment (Figure 3A,B).
In particular, biopolymeric C concentrations alone explained 87% of the total variation
in fungal abundance (t = 8.1, p < 0.001, Spearman’s ρ = 0.87). Overall, these findings
suggest that benthic deep-sea fungi, besides prokaryotes, can be actively involved in the
decomposition and utilization of organic matter settling on the seafloor, thus contributing
to its cycling.
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The clustering of the 113,635 fungal ITS sequences obtained in the present study
after trimming allowed us to identify a total of 1251 fungal ASVs. Rarefaction curves
indicated that the sequencing effort was sufficient to describe the fungal diversity present
in the benthic systems investigated, even after rarefaction to the lowest sequencing depth
(Figure 4A). We found a high variability of fungal ASV richness between the two sites
(Figure 4B), and also between the stations, in particular of Site C (Figure 4C). Fungal
ASV richness was higher at Site B, where a higher trophic availability was also found,
compared to Site C (F1,4 = 108.2; p < 0.01). However, the values of fungal richness reported
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in the present study fell within the range previously reported for other benthic deep-sea
ecosystems [22,24], including Southern Ocean sediments [26].
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Taxonomic analysis showed that using a default confidence threshold (cutoff of 0.8),
most of the fungal ASVs could not be assigned to known fungal taxa (on average ca.
90%, Figures 5 and S1). Relaxing the confidence thresholds, the number of unknown
fungal ASVs decreased (68% with a 0.6 cutoff and 58% with a 0.5 cutoff), but with a less-
reliable classification (Figure S1). This result indicates that benthic deep-sea Antarctic
sediments can harbor a large number of novel fungal lineages, while fungal ASVs affiliating
to known fungal taxa included members affiliated to Ascomycota and Basidiomycota,
which typically represent the main phyla reported in different benthic deep-sea ecosystems
worldwide [24,26,27,32].
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Only a few ASVs could be affiliated to known fungal genera. In particular, we
found 12 ASVs affiliating to nine genera, including genera commonly encountered in
a variety of benthic deep-sea ecosystems (e.g., Aspergillus; [24,32]) and polar systems
(e.g., Naganishia, Dothideomycetes and Agaricomycetes; [27,74,75]). Fungi belonging to the
genera Trichoderma found in this study were already reported and isolated from lake and
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sediments of the Penguin Island in Antarctica [76,77], while other genera commonly found
in Antarctic sediments, such as Metschnikowia, Galciozyma and Psedogymnoascus, were not
encountered (for a more detailed list see [28]). Furthermore, other fungal taxa, including
members belonging to Fusarium and Wickerhamomyces, have been reported to be associated
with Antarctic sponges and macroalgae [78–80], while taxa affiliated with Exophiala and
Aspergillus have been previously isolated from different Antarctic marine samples [28,81].
Such a comparison suggests that Antarctic deep-sea sediments can host profoundly different
fungal assemblages depending on specific environmental and ecological settings.

SIMPER analysis revealed a very low similarity between the fungal assemblage com-
positions of the two sites and within them, as highlighted by the network plot (Figure 6).
In particular, the average similarity between stations of Site B were higher than those
between stations of Site C (7.7 vs. 1.6%), while the similarity between Site B and C was on
average < 1%. Such very low similarity values were due to the presence of a large fraction
of exclusive ASVs of each sample (accounting for 76–94% of the total ASVs; Figure 6).
Overall, these findings suggest that differences in ecological and environmental conditions
occurring even at spatial scales of a few meters (i.e., between replicates) can have a ma-
jor role in shaping fungal assemblage composition, thus contributing to increase fungal
turnover diversity.
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Previous studies suggested that environmental factors and trophic availability can
influence fungal assemblage composition [24,82–84]. The distance-based redundancy anal-
ysis (dbRDA) allowed us to identify significant relationships between fungal assemblage
composition and trophic (total phytopigment and biopolymeric C concentrations, protein
to carbohydrate ratio) and environmental variables (temperature, salinity and oxygen
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concentrations). Altogether, the environmental and trophic variables explained 87% of the
observed variation in fungal assemblage composition, but only temperature significantly
explained 18% of the total variance (Figure 7). Thus, other factors acting at the local scale,
such as habitat heterogeneity, competition and predation processes [85], may have an
additional role in promoting a high diversification of benthic deep-sea fungi. Overall,
results of the present study indicate that Antarctic deep-sea sediments host abundant and
highly diversified fungal assemblages most of which still unidentified and suggest that
fungi inhabiting Antarctic benthic deep-sea ecosystems can be sensitive to an interplay of
environmental and ecological factors, whose variations, potentially induced also by climate
changes, can profoundly influence their assemblage composition.
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4. Conclusions

This study provides new insights into the quantitative relevance and diversity of
benthic deep-sea fungi in the Ross Sea. Our findings reveal that the distribution of fungal
abundance and richness is primarily driven by trophic availability, whereas an interplay of
factors shapes fungal assemblage composition. Our findings also suggest that the spatial
variability even at a small scale can promote important differences in deep-sea fungal
assemblages, thus allowing for the maintenance of overall high fungal diversity. Results
reported in this study could be relevant for a better understanding of the potential impact
of thermohaline and trophic modifications due to climate changes on Antarctic deep-sea
ecosystems. Modifications of ice coverage and thermohaline conditions affecting the plank-
tonic food web structure could, indeed, profoundly influence organic carbon export to the
seafloor, with cascading effects on benthic deep-sea biodiversity and ecosystem functioning.
Although altered freezing and melting cycles of Antarctic pack ice are expected to drasti-
cally change ecosystem functioning, we still have a limited knowledge of biogeochemical
cycles and ecological processes in which fungi are involved. Therefore, our results highlight
the need to improve our understanding of the ecological role of benthic deep-sea fungi for
better comprehension and prediction of the potential effects of climate changes on Antarctic
deep-sea ecosystem functioning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8010065/s1: Figure S1. Taxonomic analysis of fungal ASVs
obtained using 3 different confidence thresholds through the USEARCH SINTAX command.
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