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Post pathogen invasion, migration of effectorT-cell subsets to specific tissue locations is of
prime importance for generation of robust immune response. EffectorT cells are imprinted
with distinct “homing codes” (adhesion molecules and chemokine receptors) during acti-
vation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph
node microenvironment along with external stimuli from food (vitamin A) and sunlight (vit-
amin D3) prime dendritic cells, imprinting them to play centre stage in the induction of
tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells,
exhibit tissue-tropic migration. In this review, we have focused on the factors regulating
the generation and migration of effector T cells to various tissues along with giving an
overview of tissue tropism in B cells.
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INTRODUCTION
Recent studies have revealed a diverse population of CD4 and CD8
T-cell effector subsets with distinct attributes in terms of pheno-
type, function, cytokine polarization, and anatomical distribution
(1, 2). Homing of T-cell subsets to specific tissue sites is crucial for
evoking a robust immune response combined with immunologi-
cal memory (3). Activation of naive T cells in secondary lymphoid
organs (SLOs) results in their differentiation to a heterogenous
pool of effector T cells equipped to perform diverse functions (4).
The heterogeneity of the effector T cells so generated partially owes
to the site where progenitor naive T cells were initially activated
(3). To this end, T cells activated in the lymph node of a particular
organ or tissue acquire the “homing codes” and become destined
to migrate accordingly in order to perform effector functions. It
has been well documented that T cells primed in skin-draining
lymph nodes display skin homing receptors whereas the intestinal
lymph node provides the specific environment to the activating T
cells to express mucosal homing receptors (Figure 1). Such decisive
role in lymphocyte recirculation is tightly regulated by expression
of particular adhesion molecules and receptors on lymphocytes,
combined with the spatial and temporal expression of ligands for
these receptors by a variety of tissue cells. The kind of tissue spe-
cific receptor-repertoire induced on the effector T cells is governed
by the cues present in the lymph node microenvironment and
external environment stimuli derived from food (vitamin A) and
sunlight (vitamin D3) which themselves are influenced by tissue
derived dendritic cells (DCs). In the present review, some fun-
damental concepts regulating the tissue specific heterogeneity in
effector T cells has been discussed; emphasizing on cells, molecu-
lar mediators, and environmental signals that are responsible for
imprinting specialized trafficking programs. Since tissue-tropic
B-cell subsets have also been recognized, we have outlined briefly
the mechanisms inducing tissue specific heterogeneity in B cells
as well.

FACTORS INFLUENCING TISSUE TROPISM IN EFFECTOR T
CELLS
MOLECULAR INTERACTIONS
Studies dating back to 1970s had unveiled that adoptively trans-
ferred lymphocytes had a migratory pre-dilection for the tissues
from which they were originally isolated (3, 5, 6). Lymphocytes
isolated from mesenteric lymph nodes or Peyer’s patches (gut-
associated lymphoid tissues) were found to populate preferentially
mucosal effector sites (7–10). Later, “homing subsets” of T cells
with distinct tissue tropism had been identified (11, 12). The
selective expression of cellular adhesion receptors on T cells and
vascular endothelium was found to be of prime importance in
guiding T-cell subsets into and through distinct tissue compart-
ments (13, 14). Since skin and intestinal tissues are the portal sites
for pathogens entry, effector T cells infiltrate them enormously
and this instigated the investigation of tissue-tropic homing of T
cells at these sites. It has been evidenced that the α4β7-integrin
and chemokine receptor CCR9 on T-cell surface target them to
the lamina propria of the small intestine (3, 13–16). By contrast,
skin homing T cells are characterized by expression of Endothelial
cell selectin (E-selectin) and Platelet selectin (P-selectin) ligands
in combination with CCR4 and/or CCR10 (3, 13–15, 17).

The homing receptors for intestinal tissues, α4β7-integrin and
CCR9, interact with MADCAM-1 (mucosal vascular addressin
cell-adhesion molecule 1) and CCL25 (CC-chemokine ligand 25
also called TECK) respectively expressed on endothelial cells of gut
lamina propria venules (17, 18). α4β7-Integrin or MADCAM-1
blocking by antibodies and gene knock-out studies have indi-
cated their role in trafficking CD4 and CD8 effector T cells to
intestinal tissues (3, 15, 18–21). It has been found that the propen-
sity of T cells to colonize intestinal mucosa is abrogated if the
β7-integrin chain expression is hampered. Moreover, antibod-
ies blocking either α4β7-integrin or MADCAM-1 could ablate
inflammation in animal models of colitis and human subjects
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Tufail et al. Tissue specific heterogeneity in effector T cells

FIGURE 1 | Mechanism of generation of tissue specific effectorT
subsets. The tissue-imprinting-receptors expressed on effector T cells are
induced by signals derived from regionally imprinted dendritic cells (DCs);
expression of α4β7-integrin and CLA are induced at low levels on T cells
activated by DCs, this expression of imprinting receptor-repertoire is
regulated by factors that are explicitly produced by gut- and skin-derived
DCs. (A) Mesenteric lymph node or Peyer’s patch dendritic cells, i.e.,
intestine derived DCs along with external cues (Vitamin A metabolite
retinoic acid) generate CCR9+ and α4β7

+ gut-homing effector T cells by
inducing α4β7-integrin expression and CC-chemokine receptor 9 (CCR9)
expression on responding T cells while suppressing the expression of
ligands for E-selectin. (B) By contrast skin-derived DCs along with external
stimuli [Vitamin D3 metabolite 1,25(OH)2D3] generate factors that enhance
the expression of ligands for E-selectin and CC-chemokine receptor (CCR10
and CCR4) while suppressing the expression of α4β7-integrin and CCR9
resulting in the generation of CLA+ and CCR4+ and CCR10+skin homing
effector T cells.

treated with antibody to the α4β7-integrin exhibited clinical and
endoscopic remission of active ulcerative colitis (18, 22–25). α4β7-
Integrin also seems to play a role in homing T cells to inflamed
small intestine as blocking MADCAM-1 rendered T cells incapable
of populating inflamed ileum in senescence accelerated mouse P1
(SAMP1)/yit mice (26). These studies overrule the plasticity of
effector T cells with respect to α4β7-integrin in homing mucosal
tissues during inflammation and make it seemingly feasible that
α4β7-integrin “homing code” for intestinal mucosa is retained
during mucosal inflammation as well. However, this hypothesis
seemingly fails when the α4β7-integrin or MADCAM-1 antibody
mediated ineffective treatment of ileitis induced by T-cell transfer
from SAMP1 mice to severe combined immunodeficient (SCID)
mice is considered (27). Likewise, β7-integrin deficient CD8 effec-
tor T cells were found to infiltrate small intestine and establish
immunity to rotavirus infection (28). Hence, α4β7-integrin can-
not be absolutely labeled a “guide” for T-cell homing to intestinal
mucosa. The chemokine receptor, CCR9 is the other homing target

for mucosal tissues. A blockade in CCL25, the ligand for CCR9, or
genetic deletion of CCR9 itself severely limit the ability of effec-
tor T cells to localize to the small intestinal lamina propria and
epithelium (15). T cells homing to large intestine (colon) although
display α4β7 and α4β1 integrins but interestingly, in contrast to
small intestine tropic T cells, a minority of T effector cells enter-
ing colon express CCR9 (15, 29). Moreover, unlike small intestine,
colon does not express CCL25 and consequently CCR9 ablation or
CCL25 blockade renders T-cell adhesion to colon unaffected. As
such, T cells homing to colon are seemingly regulated by different
mechanisms from those occurring in small intestine. In contrast
to gastrointestinal tract, CCR9 does not act as the homing recep-
tor for the effector T cells trafficking to liver or lungs (3). This
indicates the selective tropism of CCR9+ T effector cells for the
small intestine. However, CCR9 knock-out mice have been found
to harbor normal small intestine tropic CD4 and CD8 T-cell pool
and CD4 T effector cells lacking CCR9 have also been reported to
colonize lamina propria of small intestine (30, 31). So, seemingly
CCR9 is not absolutely required for T effector cell trafficking to
small intestine.

Effector T cells with tropism for skin are characterized by
the expression of cutaneous lymphocyte antigen (CLA) and
chemokine receptors CCR4 and/or CCR10 (3, 15). CLA acts as
a ligand for E-selectin as well as P-selectin and solely for E-
selectin when expressed along with P-selectin glycoprotein ligand
1 (PSGL1) and CD43 respectively (32, 33). CLA interacts with E-
selectin on skin endothelium and mediates tethering and rolling
of T cells. CLA, CCR4, and CCR10 have been implicated in cuta-
neous T-cell homing under homeostatic as well as inflammatory
conditions although entry of effector T cells in cutaneous tissues
is limited during inflammation (3, 15). Augmented expression of
E- and P-selectin has been observed during cutaneous inflamma-
tion and CD4 and CD8 effector T cells expressing counter ligands
for the same to gain access to skin tissues (34, 35). Since E- and
P-selectins are expressed on endothelium of many tissues during
inflammation, T cells expressing their cognate ligands have been
found to colonize those non-cutaneous tissues as well (36–38). So,
it would be quite premature to call the E- and P-selectin ligands to
be the exact “homing codes” in cutaneous effector T-cell traffick-
ing. CLA+ CD4+ T cells express CCR4 and CCR10. CCL17 and
CCL27, the ligands for CCR4 and CCR10 respectively, have been
found to be displayed by both inflamed and non-inflamed skin
endothelium (15). Although,generally the cutaneous expression of
CCL17 is feeble, its expression is ameliorated during inflammation
(39). Both CCR4 and CCR10 have been implicated in CD4 effector
T-cell homing to delayed-type-hypersensitivity (DTH) induced
inflamed skin (39, 40). However, the contribution of CCR4 and
CCR10 to T-cell homing to inflamed cutaneous tissues depends
on the kind of inflammation induced as only a small population
of CD4 T cells have been found to express CCR10 in experimental
Candida-extract induced and Haemophilus ducreyi-induced DTH
and chancroid skin lesions respectively (3). In a manner similar to
the above mentioned E- and P-selectin ligands, CCR4 and CCR10
cannot be absolutely made responsible for effector T-cell homing
to cutaneous tissues. This is evident from the expression of CCR4
by a circulating human CLA− T-cell subset and T-cell subsets in
lungs and the synovial fluid of arthritis patients (3, 41). Reckoning
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Tufail et al. Tissue specific heterogeneity in effector T cells

with these observations, a cocktailed and orchestrated expression
of homing receptors is seemingly required to control tissue specific
targeting of effector T cells.

DENDRITIC CELLS
Internal cues and dendritic cells
For antigen activated effector T cells to be “instructed” to home
specific tissues like skin and intestines, cues are seemingly provided
within the lymphoid tissues. T cells activated in skin-draining
lymph nodes have been found to preferentially express CLA (42).
Moreover, CD4 and CD8 T cells primed in skin-draining lymph
nodes can bind E- and P-selectins while the T cells activated in
mesenteric lymph nodes have been shown to exhibit an augmented
expression of α4β7-integrin and CCR9 (43, 44). Although the
expression of E-selectin ligands is seemingly specifically induced
on CD4 and CD8 T cells activated in skin-draining lymph nodes,
the expression of P-selectin ligand exhibits plasticity in this respect
as it has also been shown to be expressed on CD4 T cells primed in
mesenteric lymph nodes (3). These results demonstrate that T-cell
priming in gut- and skin-draining lymph nodes renders induc-
tion of intestinal and cutaneous homing receptors respectively
upon them.

Generation of gut-tropic and skin-tropic effector T cells in
intestinal and skin-draining lymph nodes respectively is medi-
ated by DCs. Stimulation of mouse CD4 and CD8 TCR-transgenic
T cells with antigen pulsed-DCs isolated from intestinal lymph
nodes induces expression of CCR9 and α4β7-integrin (3, 45, 46).
Moreover, in the presence of these DCs, TCR-transgenic T cells
with CD3 specific antibody exhibit expression of CCR9 and α4β7-
integrin (3). DCs play a decisive role in the induction of CCR
and α4β7-integrin expression since stimulation of CD8 T cells
with peptide-pulsed mesenteric lymph node cells deficient in DCs
could not induce expression of these homing receptors (47). α4-
Integrin mRNA expression has been found to be increased in
CD8 T cells primed with Peyer’s patch DCs which shows that
α4β7-integrin expression is regulated at the level of α4-integrin
expression but not β7-integrin expression (45). On the contrary,
DCs from skin-draining lymph nodes induce increased expres-
sion of fucosyltransferase VII (Fuc-TVII, the enzyme involved in
the synthesis of E- and P-selectin ligands and expression of CLA
on human T cells), E- and P-selectin ligands, CCR4 mRNA as well
as protein (48–50). However, plasticity appears in CCR4 expres-
sion as CCR4 has been found to be expressed on CD8 T cells
activated in non-cutaneous lymph nodes in vivo (49). Thus, skin
and intestinal lymph node specific DCs are capable of inducing
tissue specific homing receptors on T cells both in vitro and in vivo
leading to generation of tissue-tropic effector T-cell subsets.

External cues and dendritic cells
The internal cues in the lymph node microenvironment imprint
tissue homing receptors on effector T cells but evolution has
adapted two instances where external environmental stimuli
“instruct” effector T cells for tissue specific homing (51–54). Vit-
amin A which exclusively enters the body through diet, has been
adapted to induce small intestine homing properties (14, 51, 52,
55, 56) and vitamin D3 produced in skin on exposure to sunlight
imprints T cells to achieve skin tropism (52, 57, 58).

Vitamin A (retinol) is converted to retinal which is further
metabolized to retinoic acid by the catalytic action of retinal
dehydrogenases (RALDHs) (3). Recent studies have demonstrated
that induction of small intestine tropic homing receptors on
responding T cells is a function of DC generation and presence
of retinoic acid (52). Iwata et al. observed that addition of retinoic
acid to activated mouse CD4 and CD8 T cells in vitro induces the
expression of intestinal homing receptors α4β7-integrin and CCR9
while suppressing the expression of E- and P-selectin ligands (51).
Importantly, the presence of RALDH inhibitor reduced the ability
of mesenteric lymph nodes and Peyer’s patch DCs to generate gut-
homing T cells and mRNA encoding RALDHs are expressed by
DCs isolated from gut-associated lymphoid tissues (GALTs) but
interestingly not by the DCs isolated from spleen. GALT-DCs per-
form better than splenic DCs in converting retinal to retinoic acid
in vitro and they also upregulate α4β7-integrin and induce CCR9
on T cells better than the peripheral lymph node DCs (51, 52).
Vitamin A metabolizing enzymes are also expressed by the intesti-
nal epithelial cells and they may too impact gut T-cell responses
but DCs being able to present both antigen and environmental
cue retinoic acid to T cells seemingly are crucial in defining the
efficiency and specificity of imprinting instructions received by T
cells (52). Intestinal DCs can also carry antigen and gut-homing
receptor cues to the draining mesenteric lymph nodes to present to
naive T cells. Retinoic acid binds specifically to retinoic acid recep-
tors (RARs) and the retinoid X receptors (RXR), the two families
of nuclear receptors (3). An RAR antagonist blockade rendered
mesenteric lymph node and Peyer’s patch DCs unable to induce
α4β7-integrin on T cells (51). Moreover, in RAR response element
reporter mice, RAR signaling is augmented on activation of CD8 T
cells in mesenteric lymph node as compared to their activation in
spleen (52). Together these results are suggestive that induction of
gut-homing receptors on T cells is the result of selective ability of
GALT-DCs to generate retinoic acid. However, peripheral lymph
node DCs and splenic DCs induce expression of α4β7-integrin but
not CCR9 on responding T cells in vitro (48). Splenic DCs have
also been observed to be incapable of inducing α4β7-integrin on
CD8 T cells in the presence of pan-RAR antagonist which indicates
that splenic DCs may generate retinoic acid (3). CD103 DC subset,
rapid inducer of RAR signaling upon T-cell activation, is specifi-
cally associated with induction of CCR9 (59, 60). Isolated splenic
DCs which are incapable of inducing CCR9 in vitro also increase
RAR signaling in responding CD8 T cells but not rapidly (52).
Lamina propria (of the small intestine) populating CD103 DCs but
not CD103 DCs of colon and lungs are potent inducers of CCR9
as well (59, 60). α4β7-Integrin mediates homing to both large and
small intestine but CCR9 is more specifically required for small
intestine homing (52). Thus, CCR9 is stringently regulated by
retinoic acid. The preferential role of retinoic acid in small intestine
is conceived since CD103 DCs from small intestine but not large
intestine induce CCR9 (59). Moreover, non-intestinal DCs loaded
with antigen when injected into lymph draining into mesenteric
lymph nodes were found to induce the expression of CCR9 and
α4β7-integrin on adoptively transferred TCR-transgenic T cells
although not as efficiently as intestinal DCs (61–63). A recent
study demonstrates that retinoic acid is necessary and sufficient for
instructing DCs to regulate T-cell trafficking to gut (64). Moreover,
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the findings by Villablanca et al. indicate a crosstalk between the
RAR and MyD88-dependant Toll like receptor signaling pathways.
Retinoic acid seemingly induces the expression of α4β7-integrin
and CCR9 on T cells by a direct effect of RA/RARα on Itga4 (α4-
integrin expressing gene) and Ccr9 gene promoters (14, 65–67).
Recently, an essential role of retinoic acid has been dissected in the
promotion of CD4 T-cell effector responses and RARα has been
found to be a critical mediator of it (68).

Vitamin D3, formed by isomerization of previtamin D3 upon
sunlight exposure in the skin, enters liver via circulation where
it gets converted to 25(OH)D3 by the action of the enzymes 25-
hydroxylases CYP27A1 or CYP27R1 and then in the kidney to the
active form 1,25(OH)2D3 (69) by 1-hydroxylase CYP27B1 medi-
ated catalysis which regulates calcium homeostasis by circulating
systemically (52, 70–72). However, enzymes required for vitamin
D3 metabolism have also been found to be expressed in ker-
atinocytes (73), macrophages (74), and DCs (57). Both CYP27A1
and CYP27B1 enzymes are particularly present in human DCs
which can therefore convert vitamin D3 to active 1,25(OH)2D3
(52). Thus, in a manner similar to vitamin A produced retinoic acid
entering intestinal tract, vitamin D3 abundantly present within
the skin itself are processed locally by DCs to active 1,25(OH)2D3
form. 1,25(OH)2D3 is an inducer of CCR10 expression on pro-
liferating T cells (57). The addition of vitamin D3 in abundant
concentration as produced in skin after sun exposure in the T-
cell DC co-cultures induced the skin homing receptor CCR10 on
responding T cells (52). CCR10 targets T cells from dermis to
epidermis to bind to CCL27 secreted by the keratinocytes (75).
Therefore, upon sun-exposure vitamin D3 may induce expression
of CCR10 on activated T cells which are recruited to the dermis
from systemic circulation. Since vitamin D3 is transported via
systemic circulation, in some instances, CCR10 expression can be
induced in skin-draining lymph nodes as well in addition to skin as
a function of higher vitamin D3 concentrations. While the trans-
port of intestinal retinoic acid to mesenteric lymph nodes is owed
to gut DCs, if skin DCs can export vitamin D3 or its metabolites
to peripheral lymph nodes remains elusive. 1,25(OH)2D3 inhibits
rapid augmentation of α4β7-integrin on primed human T cells
and reduces the ability of retinoic acid to upregulate α4β7-integrin
and induce the expression of CCR9 (52). Of note, CLA and CCR4
(skin homing receptors) expression is slightly inhibited by vita-
min D3 itself. 1,25(OH)2D3 was found to inhibit the expression
of CLA specifically on effector CD4 cells which downregulated
their migratory potential to the skin (76). These findings indicate
that physiological regulation of skin T-cell phenotype and hom-
ing are quite complex as CLA and CCR4 are highly expressed by
almost the complete pool of circulating CCR10 T cells in vivo.

1,24-(OH)2 D3 (tacalcitol), an analog of 1,25(OH)2D3, has also
been found to downregulate the expression of CLA on effector
CD4 T cells which prevented their skin infiltration, nevertheless,
it could not render any effect on other homing receptors (77).

ROUTE OF ANTIGEN ADMINISTRATION, ANTIGEN DOSE, AND
PRESENCE OR ABSENCE OF ADJUVANT
Antigen administration route, antigen dose, and presence or
absence of adjuvant are some of the other factors regulating
tissue specific T-cell generation. Administration of ovalbumin

orally in an ovalbumin-specific TCR-transgenic adoptive-transfer
model resulted in robust expression of α4β7-integrin and CCR9 on
responding T cells in mesenteric lymph nodes while antigen given
intra-peritoneally induced expression of these receptors efficiently
only when administered along with adjuvant (3). These may be
because of differential targeting of DCs. Moreover, antigen dose
has been found to influence RAR signaling induced gut-homing
receptors (52). Low antigen dose pulsed-DCs can efficiently and
specifically induce α4β7-integrin and CCR9 on responding T
cells while DCs pulsed with high antigen dose could not induce
α4β7-integrin and CCR9 efficiently on priming T cells thus reduc-
ing their gut-homing property (78). Upregulated selectin ligand
expression related to skin homing in mouse is associated with high
antigen doses. Whether high dose antigen induces generation of
T cells migrating with lesser specificity (i.e., of more promiscuity)
to other tissues in vivo remains obscure.

CYTOKINES
Cytokines being crucial effectors and regulators of immune
responses also seemingly regulate T-cell homing but is poorly
understood. CLA expression on in vitro primed T cells is induced
by the Th1 cytokine interleukin (IL)-12 whereas suppressed by the
Th2 cytokine IL-4 (42,52,79). Interestingly, these cytokines exhibit
opposite effect on the skin homing chemokine receptor CCR4
which gets upregulated by IL-4 and suppressed by IL-12 (80).
Indeed, these conflicting regulatory events in vitro are not reflective
of physiological expression patterns since CLA and CCR4 together
direct the homing of T cells into the skin. It seems quite possible
that in vivo homing specificity to skin requires a cocktailed and
coordinated expression of specific receptor combinations along
with coordinated activity of numerous cytokines. Also, Aldh1a2
transcription is found to be diminished in IL-4rα−/− mesenteric
lymph node DCs which efficiently induce CCR9 on responding
CD4+ T cells, indicating that IL-4 has a potential role to play in
imprinting CD103 mesenteric lymph node DCs with gut-homing
receptors (63, 81). Moreover, IL-15 has been found to modulate
the effect of retinoic acid by promoting inflammation rather than
oral tolerance to dietary antigens (82, 83). Therefore, physiolog-
ical imprinting possibly is a function of combinatorial signaling
together with sequential exposure to external environmental and
cytokine cues during the evolution of antigen-dependent T-cell
and DC responses.

TISSUE-TROPIC EFFECTOR T-CELL SUBSETS IN INTERNAL
ORGANS
Effector T cells have been found to traffic actively in some instances
to non-inflamed extralymphoid tissues or internal organs (other
than skin and intestine) as well (3, 84–86). For instance, intercel-
lular adhesion molecule 1 (ICAM 1) and vascular cell-adhesion
molecule 1 (VCAM1) mediate CD8 T-cell effector localization
to non-inflamed liver (87). Moreover, CD8 effector T-cell hom-
ing to non-inflamed lung parenchyma is mediated by lymphocyte
function-associated antigen 1 (LFA-1; CD11a–CD18) and is sen-
sitive to pertussis-toxin which partially owes constitutive CCL5
expression in lungs (88). Also, CD4 T-cell blasts exhibit sensitivity
to pertussis-toxin and dependence for LFA-1 and α4-integrin-
VCAM1 while homing to un-inflamed spinal-cord parenchyma
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(89, 90). CD8 effector T cells primed with a model antigen (selec-
tively expressed by epithelial tissues of the small intestine) in the
gut draining lymph nodes home to a number of extralymphoid
tissues like liver, kidneys, brain, and lungs (85). These findings
elucidate that effector T cells trafficking these organs bypass the
requirement of priming in draining lymph nodes of corresponding
organs. On a similar line, post 3 days of intraperitoneal adminis-
tration of antigen, intestinal lymph node derived CD8 effector
T cells expressing CCR9 and α4β7-integrin are found lodging in
the lungs and liver (47). Of note, it has been observed that T
cells primed in the cervical lymph node, show preferential tro-
pism for central nervous system (CNS) (3). Priming of mouse
CD8 T cells with intra-cerebrally injected tumor cells in cervical
lymph nodes induced expression of partially redundant but dif-
ferent adhesion molecules in comparison to T cells activated in
mesenteric and inguinal lymph nodes. An upregulated expression
of α4β7-integrin and P-selectin ligand was induced on T cells (44).
Moreover, cervical lymph node primed effector T cells exhibit bet-
ter access to CNS after being transferred to brain-tumor-bearing
mice than their inguinal lymph node derived counterparts. Impor-
tantly, human subjects manifested with relapsing multiple sclerosis
when treated with anti-α4β7-integrin chain humanized antibody
(natalizumab) show health betterment highlighting a role of inte-
grin in mediating localization of encephalitogenic T cells in CNS
(91, 92). These findings indicate that T cells activated in the rele-
vant draining lymph nodes of extralymphoid tissues (other than
skin and intestine) may exhibit migratory pre-dilection for those
tissues and imprinting of specific homing codes on T cells in drain-
ing lymph nodes may be harboring obscured complexity/may be
a more generalized phenomena.

TISSUE TROPISM IN B CELLS
In a manner similar to effector T cells, heterogeneity in the B-
cell effector pool is also observed since plasma cells embody the
attribute of homing to specific tissues. The development of effec-
tor B cells, i.e., antibody secreting cells (ASCs) or plasma cells is
a multi factorial event and the underlying mechanisms that reg-
ulate the development of specific plasma cell have been reviewed
(93). Generally, the site of antigen presentation and ASC differ-
entiation (together with the nature of the stimulating antigen)
determines the main immunoglobulin isotype that is expressed
by the induced ASCs; thereafter, these ASCs can differentiate into
sessile plasma cells that reside in the secondary lymphoid tissues
of origin (a phenomenon particularly common for IgM ASCs)
or traffic through the efferent lymph to the blood to populate
distant sites for targeting the preferential production of specific
antibody to mucosal surfaces, to lymphoid tissues, and to sites
of inflammation. Rummage around the literature to dissect the
mechanism for the differential homing of ASCs gave us the link
that both the site of induction and the isotype expressed cor-
relate with the homing potential and final tissue distribution of
the resulting ASCs (7). Moreover, the existence of tissue tropism
are regulated by chemokines and adhesion molecules which work
together with environmental cues to mediated the distinct tissue
trafficking patterns of various ASCs as in case of effector T cells.

It is found that the IgG ASCs populate the inflammatory sites
whereas IgA-ASCs have homing specificity for mucosal tissues and

both types of ASCs populate the bone marrow (8, 94, 95). It has
been observed that a large fraction of IgG ASCs express L-selectin
and α4β1 and upregulate their expression of CXCR3 (96–98). The
ligand for α4β1 is vascular cell-adhesion molecule (VCAM1) and
for CXCR3 are monokine-induced by interferon-γ (MIG/CXCL9)
and (IP10/CXCL10), these ligands are expressed by inflamed
tissues resulting in recruitment of the plasmablasts expressing
α4β1 and CXCR3 to these sites. Thus, IgG ASCs probably using
these receptor-repertoires traffic to inflamed tissues. Likewise, a
large population of IgA-ASCs induced in SLOs express α4β7-
integrin and CCR9 and CCR10 receptor and traffic to mucosal
tissues which constitutively and differentially express α4β7 ligand
MADCAM-1 and both chemokine ligands respectively (7, 16). It
is to be noted that CCR10, a skin homing receptor for T cells is
a mucosal homing receptor for IgA-ASCs; on the contrary, CCR9
remains the small intestinal traffic code for both the effectors, T
cell and B cell. A significant role of the chemokine CCR10 and
CCR9 in providing mucosal and small bowel immunity has been
documented (7). Most IgA-ASCs in the lamina propria of the small
intestine express CCR9 whereas the expression of CCR9 by IgA-
ASCs from other segments of the gut is rare (99). In concordance
with these observation the CCR9 ligand CCL25 are restricted to
crypt epithelial cells and endothelial cells in the small intestine
whereas the CCR10 ligand CCL28/MEC is expressed by most
mucosal epithelial cells (for example, the large intestine, stom-
ach, trachea and bronchi, mammary glands and salivary glands)
and its cognate receptor is also expressed on all ASCs homing to
mucosal tissues (99–102). However, it is more intriguing that even
IgA-ASCs in the small intestine which in essence are responsive-
ness to CCL25/TECK (a ligand for CCR9) also express CCR10
(99); justifying the broad role of CCR10 chemokines in provoking
immune response to antigens at mucosal tissues. The scenario gets
more complicated, as in one instance IgA-ASCs are seen to require
both CCR9 and CCR10 for efficient localization to small intestine
(99), on the contrary, in another case redundant roles of CCR9 and
CCR10 are showed for successful migration of IgG-ASC to small
intestine (103). The reason for these incongruities remains to be
elucidated, although a possible explanation may be inflammation
induced upregulation of CCL28 in the small intestine which may
suppress the dependence of ASC homing on CCR.

Bone marrow, the chief site for serum antibody production,
harbors a large number of IgG and IgM ASCs and a smaller pool
of IgA-ASCs. Systemically induced and intestinally induced IgG
ASCs and IgA-ASCs respectively populate the bone marrow (95,
97, 104). The ability of IgG ASCs to migrate to the bone marrow is
associated with their expression of CXCR4 and their responsive-
ness to CXCL12 expressed by bone marrow stromal cells. Because
IgA-ASCs in mucosal lymphoid tissues maintain responsiveness
to CXCL12, CXCR4 can probably mediate trafficking of IgA-ASCs
to the bone marrow. Other chemokines responsiveness may con-
tribute in the homing of ASCs to the bone marrow. CXCL16, a lig-
and expressed by bone marrow has its cognate receptor (CXCR6)
expressed upon many ASCs populating bone marrow and numer-
ous circulating CD38+ ASCs (of undetermined isotype) (105).
Moreover, CCL28 may also have some role in the recruitment
of CCR10-expressing cells (particularly IgA-ASCs) to the bone
marrow and more importantly the ligands including α4β1, LFA-1,
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P-selectin ligands, and CD22 participate in ASC trafficking and/or
survival in this site (95, 106, 107).

As discussed above, that plasmablasts or early ASCs leave the
lymph nodes and Peyer’s patches to migrate to tissues via sys-
temic circulation. During this migration they reduce responsive-
ness to chemokines expressed by the lymphoid tissues and gain
responsiveness to chemokines expressed by the non-lymphoid
tissues. In this regards, antigen-specific IgG ASCs generated in
the spleen downregulate their responsiveness to CXCL13, CCL21,
and CCL19 (chemoattractant for lymphoid tissues) although they
retain responsiveness to CXCL12 (chemoattractant for bone mar-
row) (95). Moreover, ASC differentiation in vitro as well as in vivo
renders deficits in expression of CCR6 (and responsiveness to
CCR6). This loss of responsiveness (and/or receptor expression) to
lymphoid tissue chemokines and parallel upregulation of expres-
sion of cognate receptors for tissue or inflammation selective
chemokines facilitates plasmablast trafficking to specific tissues.
Homologous chemokines CCL28 and CCL25 belonging to the
chemokine subfamily differentially expressed by epithelial cells,
attract IgG ASCs to the epithelial surfaces. CCL27 (keratinocyte-
expressed chemokine), second ligand for CCR10 and CCL20, the
CCR6 ligand are the other members of the same subfamily and
these chemokines have seemingly evolved to coordinate immu-
nity at exposed epithelial surfaces. A feeble expression of CCR10 is
seen in upto one-sixth population of circulating IgG ASCs which
may be responsible for lodging these cells to mucosal epithe-
lial tissues particularly upper respiratory tract. Moreover, low
levels of CCR10 expression combined with feeble expression of
α4β7-integrin explain the low frequency of IgG ASCs observed in
intestinal mucosal tissues. Also, upregulated expression of CXCR3
(and CLA) together with downregulated expression of CCR10 by
IgG ASCs could facilitate their recruitment to the skin (where the
other CCR10 ligand CCL27 is expressed) during chronic inflam-
mation. From the above discussion it is clear that the differential
interactions of ASCs with cell-adhesion molecules VCAM1 versus
MADCAM-1 and their responsiveness to a subset of chemokines
are likely to be an important for selective trafficking of IgA ver-
sus IgG ASCs, however, until today there is no clear data on the
expression of other tissue specific adhesion molecules that might
also contribute to the distribution of IgG or IgA-ASCs; more-
over, the identification of newer chemokines and their cognate
receptors along with cell-adhesion molecules may offers answers
to our unsatisfied queries of differential homing of specific ASCs
to specific sites.

As already discussed that DCs are essential for efficient T-cell
activation, on the same line, DCs seemingly also influence B-cell
responses by enhancing their differentiation to ASCs and survival.
DCs have been shown to present unprocessed antigens to B cells
in vivo and influence B-cell function in a tissue specific manner.
For example, Peyer’s patch DCs have been found to induce class
switching to IgA by activated B cells. Moreover, recently Mora et al.
demonstrated that GALT-DCs but interestingly not DCs of other
lymphoid organs induce gut-homing properties on primed B cells
as they are essential for the coordinate expression of CCR9 and
the IgA immunoglobulin isotype during the GALT response to
small intestinal antigens (13); as induction of homing properties

upon effector T cells is influenced by external cues like vitamins,
similarly vitamin A has been found to imprint plasmablast hom-
ing to the small intestine (108, 109). As for T cells, retinoic acid
presented by GALT-DCs during B-cell stimulation enhances α4β7

and induces CCR9 on the responding cells. DCs from mesen-
teric lymph node also enhance IgA production, an effect that is
amplified by retinoic acid but also requires DC-expressed IL-6
or IL-5 (13). In contrast to the overlapping role of retinoic acid
in imprinting small intestine homing properties on T cells and
plasmablasts by inducing CCR9 expression, the signals inducing
CCR10 expression on IgA plasmablasts are poorly understood.
Moreover, the presence of high levels of RA in intestine and GALT
promote B-cell class switching to IgA and thus boost the produc-
tion of IgA in the intestinal mucosa (110). It is documented that
RA can potentially interact with mechanisms inducing IgA-ASCs
such as TGFβ, iNOS/NO, and probably others. However, the over-
all relevance of RA for TD and/or TI IgA responses in vivo as of yet
remains to be unveiled. Of note, it is intriguing that gut-associated
DCs and RA modulate intestinal immune responses by affecting
both lymphocyte migration and effector activity (64).

Although 1,25(OH)2D3 mediated induction of CCR10 on
human B cells is elucidated, but if this molecule has any part to play
in inducing CCR10 on mucosal lymphoid tissue is yet to be deter-
mined. Deficiency of vitamin A (but not vitamin D3) has been
correlated to shrinkage of IgA ASC pool in mucosa; induction of
CCR10 expression on IgA plasmablasts does not require vitamin
D or its receptor in mice and it is yet not clear whether the concen-
tration of 1,25(OH)2D3 in mucosa associated lymphoid tissues
is sufficient to induce CCR10 expression. Hence, CCR10 expres-
sion by IgA-ASCs are seemingly controlled by diverse mechanisms
which are however independent of RAR or VDR signaling. Of
note, in addition to DCs, macrophages possibly too play some role
in B-cell homing to specific tissues since macrophages populating
intestinal lamina propria have been observed to secrete retinoic
acid which could be sufficient to induce gut-homing receptors on
activated B cells but require further confirmation (110, 111). Thus
by directing plasma-cell homing, these players might help to deter-
mine the phenotype and efficiency of mucosal, inflammatory, and
systemic antibody responses.

CONCLUSION
The heterogeneity in the effector T-cell population has become
quite apparent and trafficking programs involved have been dis-
sected to some extent with the identification of various adhesion
molecules, chemokines together with the elucidation of the crucial
role played by internal, external tissue environment,and DCs. Nev-
ertheless, in spite of considerable advances made in understanding
lymphocyte trafficking, numerous aspects of the imprinting and
regulation of homing programs remain to be addressed. It is nec-
essary to clarify whether generation of tissue specific effector T
cells is limited to skin and intestine or is a generalized attribute
of all tissue-draining lymph nodes. Moreover, cells, factors, and
molecular mechanisms targeting lymphocyte migration to tissues
other than skin and intestine remain yet to be unraveled. It is
also of utmost importance to dissect the specific site where DCs
are imprinted and the molecular mechanism behind this process
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together with elaborative conception of the molecular signals
produced by DCs to induce tissue tropism in responding lympho-
cytes. Understanding the reason and the mechanism of differential
expression of homing receptors on T and B cells targeting the same
tissue is also important. Deciphering these unveiled issues will
open avenues to novel prospects for therapeutic regulation of lym-
phocyte migration, with potential use in increasing the efficiency

of vaccine-induced immunity and in restraining the pathologies
associated with autoimmune and inflammatory diseases.
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