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Mathematical models in infectious disease epidemiology
The first mathematical model of infectious disease transmission was 
constructed by Bernoulli in 17601 to determine the effectiveness of 
variolation, a crude form of smallpox vaccination. Specifically he 
sought to calculate life tables for actuarial purposes assuming an erad-
ication of smallpox in the population (for a review of Bernoulli’s life 
and work, see Dietz & Heesterbeek2). Mathematical systems have been 
used extensively not only in the study of pandemic viral diseases such 
as AIDS, severe acute respiratory syndrome (SARS), influenza, small-
pox and polio, but have also been successful in modeling transmis-
sion of bacterial pathogens including sexually transmitted infections 
(STIs) and methicillin-resistant Staphylococcus aureus, vector-borne dis-
eases including malaria and diseases caused by macroparasites such 
as helminths.

Modern infectious disease epidemiology relies heavily on math-
ematical modeling to characterize the complex interactions between 
the biology and environment of human or animal hosts, the 
 pathogens responsible for disease and, where present, vector species. 
Transmission models are vital for understanding the dynamics present 
in the spread of infectious agents in populations and for assessing the 
likely impact of public health interventions such as isolation, vaccina-
tion and chemotherapy. The defining characteristic of infectious dis-
eases – that they are transmissible – means that an individual’s risk of 
acquiring infection changes dynamically as levels of infection rise and 
fall in the population. Therefore vaccinating individuals or treating 
infectious individuals benefits not only the individual patient directly 
but also benefits others in the population indirectly by reducing their 
risk of acquiring infection through the reduction in levels of infec-
tion in the population. This was demonstrated by the effect of vaccina-
tion against pneumococcus: the incidence of infection with ‘vaccine’ 
serotypes fell in those who were older than the target group for vac-
cination who did not receive the vaccine, as well as those who were 
vaccinated.3

However, ‘indirect’ effects are not always beneficial and may even 
be harmful.4 For example, whilst reducing levels of infection in the 
population through vaccination protects those who are not vaccinated 
as well as those who are vaccinated by reducing the overall rate of 
infection, those who do still get infected are older on average when 
they get infected and can suffer more severe disease outcomes, so 
 vaccination can increase the overall rate of disease for a period, until 
infection is eliminated from the population.4 Mathematical mod-
els can be  constructed that can help predict these effects and aid the 
design of strategies to mitigate them.

Mathematical models of infectious disease transmission are increas-
ingly being used to guide public health policy in the areas of natu-
rally disseminated pathogens such as viruses, bacteria and fungi and 
in developing response measures to mitigate the human and environ-
mental costs caused by the deliberate release of infectious agents, i.e. 
bioterrorism.5 Examples include the control of an epidemic of foot-
and-mouth disease in the UK in 2001,6,7 the SARS outbreak of 2003,8,9 
planning control strategies for TB, HIV and STIs,10–13 and planning for 
pandemic influenza,14,15 as well as examining general principles of 
 disease control.16

Importantly for infectious diseases, there is typically a complex 
nonlinear relationship between the size of an intervention and the 
benefits. This is due to the ‘indirect’ effects interventions have on those 
who are not treated by changing levels of infection in the population, 
which affects the risk of acquiring infection.

As the scale of an intervention (e.g. vaccination coverage or provi-
sion of treatment) increases from a low level, the benefits – reductions 
in levels of disease – increase faster than the costs, until disease has been 
reduced to a low level or even eliminated. This means that when health 
economic analyses are performed to determine the cost-effectiveness of 
interventions, it is essential that the models take account of the trans-
missible nature of infectious diseases and the ‘indirect’ effects of inter-
ventions.17 One example is vaccination, where vaccinating only a small 
proportion of the population mostly benefits only those who receive 
the vaccine because it does little to interrupt transmission, i.e. the indi-
rect effect is small. Vaccinating a large proportion of the population can 
prevent epidemics, providing a large indirect benefit to those who were 
not vaccinated in addition to the direct benefit. Another example is in 
the control of curable infections (e.g. STIs) through treatment: if treat-
ment capacity is inadequate then there is a ‘vicious circle’ where failing 
to control transmission in the present results in more infections in the 
future, maintaining the inadequacy of treatment capacity.13 Conversely, 
making a concerted effort to increase capacity can break this vicious 
circle and change it to a virtuous circle, where promptly treating a large 
enough proportion of infections reduces transmission rates, allowing a 
more intense focus on remaining disease and reducing future need for 
treatment, leading to significant cost savings.13

Infectious disease epidemiology is inherently multidisciplinary 
because the transmission of infection within a population is affected 
not just by the biologic characteristics of the infectious agent and its 
human host, but also by the patterns of contact between individu-
als, their use of health services, their response to public health inter-
ventions, etc. Mathematical models enable information from diverse 
sources, including social sciences, to be integrated. Infectious disease 
modeling is not a purely technical, ‘mathematical’ exercise – many 
modelers come from biologic or clinical backgrounds.

EPIDEMIOLOGIC DATA

The fundamental measures of the epidemiology of a pathogen in a 
population are the incidence and prevalence, which are sometimes 
confused in the nonspecialist literature. Incidence is the number of 
new infections arising per unit time, and is usually expressed at x% 
per year or x cases per 1000 per year or x cases per 100 000 per year. 
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Prevalence is the proportion of the population (usually expressed as 
a percentage) that is infected at a point in time and is measured by 
cross-sectional surveys. Incidence can be measured directly in longi-
tudinal cohort studies, where a group of subjects is followed through 
time, or can be calculated from a series of cross-sectional prevalence 
surveys.18 Case notifications are often used as a proxy measure for inci-
dence; long-term datasets are available for a large number of infectious 
agents due to mandatory (notifiable) disease surveillance schemes in 
developed countries. Historical datasets containing valuable informa-
tion on causes of death and age, in some cases going back for hun-
dreds of years, are also available. These datasets are rather subjective 
but have been useful in examining epidemics such as the Black Death 
(plague) and smallpox.

Table 5.1 lists 30 disease agents that are currently notifiable by cli-
nicians to the Health Protection Agency (HPA) in the UK and similar 
arrangements are in place with the Centers for Disease Control and 
Prevention (CDC) in the USA. In developed countries demographic 
and clinical information is collected by clinicians when examining 
patients and raw incidence data can therefore usually be stratified by 
sex, age, ethnicity, spatial location and other factors such as tobacco 
and alcohol consumption. This is important because incidence can 
vary markedly across different groups of people. Such stratified lon-
gitudinal studies, where populations are placed into discrete classes, 
are extremely useful in examining trends of infection rates. In many 
of these datasets the impact of vaccination on childhood infectious 
diseases is striking.

Models are tools used throughout science and medicine – they are 
used to derive diagnoses from observed signs and symptoms and test 
results. Formulating models mathematically facilitates rigorous analy-
sis and allows quantitative predictions to be made of trends in disease 
burden and the impact of interventions. The benefit of quantitative 
analysis in research is that one can determine if a putative cause for an 
Table 5.1 Infectious diseases notifiable to the United Kingdom Health 
Protection Agency

Acute encephalitis •
Acute poliomyelitis •
Anthrax •
Cholera •
Diphtheria •
Dysentery •
Food poisoning •
Leprosy •
Leptospirosis •
Malaria •
Measles •
Meningitis •
Meningococcal septicemia (without meningitis) •
Mumps •
Ophthalmia neonatorum •
Paratyphoid fever •
Plague •
Rabies •
Relapsing fever •
Rubella •
Scarlet fever •
Smallpox •
Tetanus •
Tuberculosis •
Typhoid fever •
Typhus fever •
Viral hemorrhagic fever •
Viral hepatitis •
Whooping cough •
Yellow fever •
observed effect would have been strong enough to cause the effect – 
for example, a mathematical modeling analysis of the HIV epidemic in 
Uganda found that several modes of behavior change (delaying sexual 
debut, reducing numbers of sexual partners, increasing condom use) 
must have occurred to explain the observed decline in prevalence. This 
is because no single change was sufficient to account for the reduced 
disease burden observed.19

Crucially, models allow evaluation of the impact of interventions 
that have been implemented by allowing comparison with what would 
have happened in the absence of the intervention. Epidemics have 
 ‘natural dynamics’, with incidence typically rising to a peak then declin-
ing in the absence of any intervention. Therefore, simply observing  
a decline in incidence following an intervention is not sufficient evidence 
to demonstrate its effectiveness.19 Indeed, in some circumstances it is 
even possible to observe incidence continue to rise despite an effective 
intervention, due to an increase in the prevalence of infection.20

Another important use of models is in setting priorities for empiric 
research by determining the importance of different ‘gaps’ in knowl-
edge. This is done by testing the ‘sensitivity’ of a model’s behavior 
to changes in the value of parameters that are poorly estimated by 
current data – for example, there is uncertainty in the amount of pro-
tection that bacille Calmette–Guérin (BCG) vaccination offers against 
TB acquisition and against progression to disease in those who are 
infected. By testing how much varying these parameters affects a 
 model’s behavior we can determine how important it is to obtain 
more precise estimates of each parameter.

DYNAMICS OF INFECTIOUS DISEASE 
TRANSMISSION

The transmissibility of infectious diseases means that there is dynamic 
feedback between the prevalence of infection (or, more precisely, of 
infectious individuals) and the incidence of infection. This is why 
dynamic models are required for infectious diseases.

In a typical epidemic, the prevalence of infection rises initially as 
infection spreads. This causes an increase in the incidence of infec-
tion, which in turn causes prevalence to increase even faster – so the 
epidemic accelerates. Consequently, the supply of susceptible indi-
viduals becomes depleted (by their becoming infected) and the inci-
dence falls, even though prevalence may continue to rise for a time. 
Eventually, the fall in incidence leads to a fall in prevalence because 
infections are ‘lost’ from the population (due to recovery, death or 
emigration) faster than they are replaced by the spreading of infec-
tion. In the longer term, the infectious agent may be able to persist 
in the population (i.e. become endemic) if there is a high enough 
rate of resupply of susceptible individuals due to birth, immigration, 
recovery from infection (if there is no lasting immunity) or waning 
of immunity (if applicable); otherwise the infectious agent will go 
extinct locally.

The key measure of an infectious agent’s ability to spread in a 
population is the reproduction number (sometimes called the net 
reproduction number or effective reproduction number), R(t), which 
is the mean number of new infections caused by a single infectious 
individual in the population of interest. (Note that ‘(t)’ indicates that 
the value can change with time – see below.) A related quantity is the 
basic reproduction number R

0, which is defined as the mean num-
ber of new infections caused by a single infectious individual in a 
population of wholly susceptible individuals, i.e. the basic reproduc-
tion number is what the value of the reproduction number would be 
if the population were totally susceptible. It is important to under-
stand that the reproduction number is specific to the particular infec-
tious agent in the particular population at the particular time, and can 
be changed by interventions. The value of the reproduction number 
depends upon the average rate of transmission from an infectious 
individual and the average duration of infectiousness. An epidemic 
requires that R(t) be greater than 1, so that the prevalence of infec-
tion increases because more than one new infection arises from the 
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average infected person before that person is ‘lost’ from the infected 
population. In the typical epidemic described above, depletion of the 
‘supply’ of susceptible individuals causes R(t) to fall, even though 
R

0 was not changing. In fact, R(t) falls even as incidence rises; the 
increase in incidence is driven by the increase in prevalence, which 
initially ‘overcomes’ the effect of R(t) falling.

Public health interventions aim to reduce and maintain R(t) below 
1, which may be achieved by reducing the average infectious period 
(e.g. through treatment or isolation) or the transmission rate (e.g. by 
closing schools and workplaces to combat SARS or influenza, or pro-
moting condom use and reductions in numbers of sexual partners to 
combat STIs) or vaccinating people to remove them from the suscepti-
ble population. The higher the value of R

0, the harder an infection will 
be to control. In a homogeneous population (one where everyone has 
the same average risk of acquiring and transmitting infection) the rela-
tionship between R

0 and R(t) is R(t) = R0 × s where s is the proportion 
of the population that is susceptible. To prevent an epidemic by vacci-
nation requires that s be reduced so that R(t) <1 (i.e. that s be reduced 
below 1/R

0), thus the greater the value of R0 the smaller s must be. The 
critical vaccination threshold is the proportion of the population that 
must be successfully immunized to prevent an epidemic; for child-
hood infections such as measles which have high typical R

0 values this 
is typically >90% or even >95%.

It is important to realize that R
0 alone does not provide complete 

information on the transmission dynamics of an infectious agent. 
A highly infectious agent that spreads rapidly but which has a short 
infectious period could have the same R

0 value as another infectious 
agent that is much less infectious but which has a longer infectious 
period – the latter agent would spread more slowly but for longer.

COMPARTMENTAL MODELS OF INFECTION

The most common approach used in mathematical modeling of dis-
ease transmission is to divide or compartmentalize the study popu-
lation with regard to their infection status (Fig. 5.1). Note that the 
structure of the model depends upon the natural history of the infec-
tion and so differs amongst infections. Important characteristics of 
the natural history of an infection are the incubation period (the time 
from the point of infection until the appearance of symptoms) and 
the latent period (the time from infection to becoming infectious). 
These periods vary greatly (from days to years, depending upon the 
infection) and either can be longer than the other. For HIV and influ-
enza the latent period is shorter than the incubation period, with 
people becoming infectious before they become unwell, but for pul-
monary TB they can be the same, with people becoming infectious at 
the time they become unwell.

In modeling there is a trade-off between complexity/realism and 
the ability to understand the model’s behavior. Since even simple 
models can have complex dynamics it is important to make the model 
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Susceptible-infected-recovered model

Susceptible, X(t)
β γ

Infected, Y(t)
Recovered, Z(t)

(Immune)

Fig. 5.1 The population is divided into three compartments according to 
whether they are Susceptible to infection, Infected (and infectious) or have 
Recovered from infection and are immune. Individuals who become infected 
move from the Susceptible compartment to the Infected compartment; 
the process of recovery subsequently moves them from the Infected 
compartment to the Recovered compartment. The parameters b and g affect 
the rate of transmission of infection and the rate of recovery, respectively.
as simple as possible, whilst still capturing the essential features of the 
infection. For example, for gonorrhea the incubation period is often 
omitted from models13 because it is short relative to the infectious 
period – and so has little effect on the dynamics of infection – while 
HIV’s incubation period is long compared with the symptomatic late-
stage period and so it is usually incorporated into models.21 In the case 
of TB, most people with infection never develop infectious disease 
(they remain latently infected) and so models distinguish between 
these states.22

For a directly transmitted pathogen such as influenza, where 
acquired immunity (to a particular strain) is lifelong, the host 
population can be represented by three compartments contain-
ing the number of susceptible, infected (and infectious) and 
recovered (immune, non-infectious) individuals. In this example, 
the latent period is ignored, so individuals become infectious as 
soon as they become infected. This so-called called ‘Susceptible–
Infected–Recovered’ (or ‘SIR’) model approach was first developed 
by Kermack & McKendrick in 1927,23 elaborated upon more recently 
by Anderson & May,4 and now forms the basis for many modern-day 
models of epidemics.

We present a simple example of an SIR-type model (see Fig. 5.1), 
which we apply to data from an outbreak of influenza in a boarding 
school in England.24 Since the time period of the outbreak is short, we 
effectively have a ‘closed’ population: no one enters or leaves the pop-
ulation and there was no mortality due to infection, which simplifies 
our analysis. (Usually, one has to consider people entering the popu-
lation through immigration and birth and leaving through emigration 
and death – and if the infection being modeled causes mortality then 
infected individuals have an additional disease-induced mortality rate 
which must be considered.)

Each compartment has a state variable that ‘keeps track’ of the 
number of individuals in that compartment, and how that num-
ber changes through time. In this case, the state variables are X(t) 
for the Susceptible individuals, Y(t) for the Infected individuals and 
Z(t) for the Recovered individuals, where ‘(t)’ indicates that the val-
ues can change with time. The total population size is N(t), where 
N(t) = X(t) + Y(t) + Z(t). (In this particular example, N(t) does not 
change because the population is closed and there is no mortality.) 
The model consists of a set of differential equations which describe 
the rates that individuals flow between different compartments as 
they become infected, recover, die (if applicable), etc. The net rate 
of change in X(t) is described by the differential equation dX(t)/dt, 
the net rate of change in Y(t) is described by the differential equation 
dY(t)/dt, etc. In this example, there are two processes: infection and 
recovery.

The rate of infection (the number of people becoming infected per 
day) in the population depends upon the force of infection, the risk 
per susceptible individual of acquiring infection per unit time; and 
the number of susceptible individuals available to become infected, 
X(t). The force of infection depends upon the prevalence of infection, 
Y(t)/N(t), and the transmission parameter, b, which is a combination 
of the rate of contact between people in the population and the prob-
ability of transmission upon contact between an infected person and 
a susceptible person. Therefore, the force of infection is bY(t)/N(t) 
and the transmission rate is X(t) × bY(t)/N(t), which is conventionally 
written as bX(t)Y(t)/N(t). Since infection transfers people from the 
susceptible compartment (X(t)) to the infected compartment (Y(t)), 
the term bX(t)Y(t)/N(t) appears negatively in dX(t)/dt and positively 
in dY(t)/dt. (Note that the transmission parameter, b, does not change 
with time; changes in the infection rate are due to changes in Y(t)/N(t) 
and X(t).)

The rate of recovery (the number of people recovering per day) 
depends upon the per capita rate of recovery, g, and the number of peo-
ple who are infected, Y(t), and is g Y(t). Since recovery transfers people 
from the Infected compartment (Y(t)) to the Recovered compartment 
(Z(t)), the term g Y(t) appears negatively in dY(t)/dt and positively in 
dZ(t)/dt. (Note that the per capita rate of recovery, g, does not change 
with time; changes in the recovery rate are due to changes in Y(t).)

http://healthmap.org/dl?disease=67
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The equations of the model are:
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Note that this model is deterministic, i.e. random (stochastic) events are 
not considered. This is a common simplification that makes it much eas-
ier to gain insight into the fundamental dynamics of transmission because 
the effects of random chance, which cause fluctuations in the graph, are 
omitted. This model was fitted to data from an outbreak of influenza in a 
boarding school in England24 (Fig. 5.2) by estimating values of b and g.

The algebraic expression for R0 depends upon the particular model. 
For this model, it can be derived simply. R0 is the mathematical product 
of the transmission rate from a single infected individual in a wholly 
susceptible population and the average infectious period. The rate of 
transmission from a single infected individual when the population is 
wholly susceptible (i.e. when Y(t) = 1 and X(t) = N(t); we ignore the 
fact that really X(t) = N(t) – 1 because one person is infected, because 
we assume that N(t) is large) is:

b b bX t Y t
N t

N t
N t

( ) ( )
( )

( ).1
( )

= =

The average infectious period is the reciprocal of the average recov-
ery rate (the faster people recover, the shorter their infectious period), 
which is 1/g. Therefore R

0 = b/g. The estimated values of b and g 
obtained by fitting to the data were b = 1.97 per day, g = 0.47 per day 
(corresponding to a mean infectious period of 2.12 days). Therefore 
the estimated R

0 value was 1.97 day−1/0.47 day−1 = 4.18.
Note that there are other types of model used to represent infectious 

disease transmission, including stochastic compartmental models, 
individual-based network simulation models and spatial metapopu-
lation models.25

ExAMPLES

Below we discuss SARS and influenza. Recent reviews of modeling of 
STIs and HIV10,26,27 and TB22 can be found elsewhere.
Example output of a ‘SIR’ (Susceptible-Infected-Recovered) model

Time (days)

Number
in each
compartment

800

600

400

200

0
0 5 10 15

N(t)

X(t)

Y(t)

Z(t)

Data

Fig. 5.2 Example output of a Susceptible–Infected–Recovered (SIR) model 
applied to data from an outbreak of influenza. Model parameters were 
adjusted to fit the number of Infected individuals, Y(t), to the observed data.
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Severe acute respiratory syndrome
The huge rise in the volume of international travel and the huge 
growth in population densities in many cities, especially in Asia, 
offer new challenges in controlling the spread of new epidemics. 
The first such epidemic, ‘the first severe and readily transmitted dis-
ease of the 21st century’ was SARS.28 On November 16, 2002 the 
first human case of SARS was identified in Guangdong province in 
China. From here the disease is known to have spread quickly to 
other parts of Asia, then to Europe, the Americas and elsewhere, 
infecting >8000 individuals in 29 countries and killing at least 774 
people.8,28 SARS is caused by a coronavirus (SARS-CoV) normally 
found in wild animals such as the palm civet cat and Chinese ferret 
badger.29 Early cases are thought to have involved zoonotic infection 
from animal reservoirs, a jumping of the species barrier, but genetic 
changes in the coronavirus enabled human-to-human transmission 
which accounted for the vast majority of cases in the global pan-
demic of 2002/3.

The causative agent of SARS was identified at an early stage of the 
outbreak and its genome was sequenced in a timely effort involving a 
multinational collaborative effort.30 The sequence, published on May 
30, 2003, showed it to be a single-stranded RNA virus containing 11 
presumptive genes (open reading frames). Other RNA viruses include 
influenza and HIV and these are thought to be particularly prone to 
mutation as they are not proofread by DNA polymerases before tran-
scription. The WHO global alert of March 2003 alerted countries to 
the spread of SARS and accurate case definitions were communicated 
to identify symptomatic carriers worldwide which led to the rapid 
control of the disease. This effective collaboration between health-
care professionals in different countries and the sharing of patient and 
demographic data informed public health policy which limited the 
scale of the epidemic so that more than half of the countries affected 
reported fewer than 10 cases.

Sophisticated mathematical models of the SARS epidemic of 
2002/3 have been developed, providing estimates of the key epi-
demiologic quantities and showing how disease transmission was 
controlled by effective intervention. The mean incubation period of 
SARS was reported to be between 4 and 6 days in most patients with 
a generation time of 8–12 days. The number of reported cases in the 
epidemic with time were used to estimate the initial growth rate (r, 
the rate of exponential increase in new cases at the start of an epi-
demic) which is related to the basic reproduction number (R

0) and 
the generation time (Tg, the mean period of time from a host becom-
ing infected to infecting another individual) by the equation R

0 = 
rTg + 1. Using data from the initial period (before control measures 
were introduced) of the SARS epidemic in Hong Kong the epidemic 
growth rate was shown to be approximately 0.15 cases per day31 
which, when used in the above equation with Tg = 10, gives an R0 
value of 2.5, an estimate close to that made by analyses of data from 
Singapore by Lipsitch et al.32 of between 2.2 and 3.6 days. Wallinga 
& Teunis33 analyzed incidence data from four countries before and 
after the WHO global alert and subsequent control measures of 
March 2003. Before and after the alert, average Z(t) values for Hong 
Kong, Vietnam, Singapore and Canada were 3.6 before the alert (0.7 
after), 2.4 (0.3), 3.1 (0.7) and 2.7 (1), respectively. The reduction in 
the reproductive number in each country reflects the effectiveness of 
control measures such as quarantine and travel restrictions in curb-
ing the epidemic.

SARS transmission was linked to close contact with another case 
and most of these were hospital-acquired infections of health-care 
workers or patients.8,34 The mortality due to SARS calculated from 
WHO figures of 8098 probable SARS cases and 774 deaths gives a 
crude case fatality rate (CFR) of approximately 10.5%; however, the 
actual CFR is strongly positively correlated with age, with mortal-
ity in those over 65 years old exceeding 50% in a number of studies 
reviewed in Donnelly et al.8 Estimating the case fatality rate of newly 
emerged pathogens is difficult as defining true cases can be problem-
atic. The CFR may be overestimated if many subclinical infections go 
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uncounted. Alternatively, in epidemics where patients are hospital-
ized for lengthy periods, the CFR may be underestimated as patients 
can be recorded as cases before their outcome is known. In the 2003 
SARS epidemic estimates of the CFR became more accurate as the 
fate of more patients became known but at the time this increasing 
CFR was wrongly taken as evidence that the virus was increasing in 
virulence.8

Influenza
In common with SARS, influenza is a disease that has been extensively 
modeled using data from past pandemics to predict the effectiveness 
of particular interventions in different disease scenarios. Influenza A is 
divided into subtypes based on differences in hemagglutinin (H) and 
neuraminidase (N) proteins. The ‘Spanish flu’ of the 1918 pandemic 
was an H1N1 lineage that was estimated to have caused up to 80 mil-
lion deaths – many more than were killed in the First and Second 
World Wars combined. Small alterations to the influenza A genome 
occur by a process known as antigenic drift, where mutations increase 
in prevalence in the population driven by the selection of mutations 
in the viral genome in proteins exposed to the host immune sys-
tem. These small changes lead to the differing severity of seasonal flu 
epidemics.

From a public health perspective the rarer phenomenon of anti-
genic shift is much more worrying. This results from the recombi-
nation of influenza genes to give novel combinations of virulence 
genes such as strains of avian flu of the H5N1 subtype that is widely 
feared to be the cause of the next pandemic wave of influenza. Past 
pandemic strains of influenza A are thought to have emerged from 
animal reservoirs following antigenic shifts that enabled them to 
become extremely pathogenic to humans, with surface proteins 
to which the host had little acquired immunity. Pandemic influ-
enza differs from seasonal epidemic strains not only in the sever-
ity of infection but in other ways also. It is not restricted to the 
‘flu season’ of the winter months and it tends to be most lethal in 
young children who presumably lack the immune memory of older 
patients.

In 2008 an epidemic of H5N1 influenza amongst Asian and 
African wild bird and poultry populations led to 385 cases of 
human disease resulting in 243 deaths – a case fatality rate of 63%.35 
These cases were overwhelmingly in individuals from Indonesia 
and Vietnam who had been in contact with poultry later shown to 
be infected with H5N1 strains. Control measures to destroy birds 
infected with H5N1 have been effective in limiting the number of 
human cases thus far but experts fear that a strain of highly patho-
genic H5N1 will emerge that will acquire the ability to transmit 
between humans at high frequency which would lead to a global 
pandemic.

The 1918 influenza pandemic claimed between 50 and 100 mil-
lion lives worldwide,36 even although effective infection control 
procedures were in place in some areas (e.g. in some US cities). 
Bootsma & Ferguson37 modeled the impact of infection control 
measures (such as the banning of mass gatherings, isolation, and 
improved hygiene and disinfection procedures) on transmission of 
the H1N1 epidemic in 16 US cities using historical datasets. The 
found that R

0 was reduced in cities with the most effective control 
measures (introduced at an early stage), which increased the length 
of the epidemic but reduced the overall and peak mortality. These 
data indicate that control measures may have a significant impact 
on a future H5N1 pandemic if introduced early in the course of the 
pandemic – in this case reducing mortality by 30–40%. The authors 
of this study caution against extrapolating data from the study too 
precisely on modern cities as family units and workplaces nowa-
days contain fewer people who are generally healthier. However, 
an H5N1 virus causing death in 14–33% of individuals infected 
would be expected to kill more individuals globally. This mortality 
could be mitigated by the rapid deployment of an effective H5N1 
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vaccine and the use of antiviral drugs such as neuraminidase and 
influenza A protein M2 inhibitors.38

Modeling pandemic influenza
A case fatality rate of 63% for avian influenza (from the number of 
cases and fatalities reported by WHO above) will be higher than the 
CFR during a pandemic as the number of cases reported so far will be 
an underestimate due to the non-inclusion of many nonfatal, mild and 
asymptomatic cases which will not be entered on the WHO reporting 
system. Additionally, some authors maintain that changes in the viral 
genome resulting in high rates of human-to-human transmission may 
cause a reduction in virulence in humans. From historical data the 
CFR for pandemic influenza A was calculated at between 0.1% (1957 
and 1968 pandemics) and 2.5% (1918).39 However, a recent article by 
Li et al.39 suggests that a CFR of between 14% and 33% may be more 
realistic for a human transmissible H5N1 strain derived from an avian 
reservoir.

The examination of the SARS epidemic using mathematical 
models demonstrates some key qualities that enabled it to be con-
tained effectively; however, when we compare these to features of 
past influenza epidemics and pandemics it appears that containing 
a future H5N1 pandemic will be much more difficult using simi-
lar containment/control measures. The generation time for influ-
enza (4–6 days)40 is much shorter than for SARS (8–12 days)9,32 
which means that influenza will spread much quicker than SARS 
given an overwhelmingly naive population (e.g. an H5N1 genotype 
epidemic). This will make a human transmissible H5N1 epidemic 
much harder to control than SARS. The R

0 of SARS of ~2.5 is simi-
lar if not higher than that estimated from reanalyses of pandemic 
influenza of 1.4–3.0,40,41 but with a much higher expected CFR. In 
younger age groups in particular the impact of H5N1 would be 
expected to be much more costly not only in terms of disease but 
also from an economic viewpoint as a larger proportion and num-
ber of working-age individuals will be removed from the workforce 
by influenza.

One caveat about H5N1 that should be mentioned is that the 
factor that has primarily restricted transmission from birds to 
humans is that the sialic acid linkage favoured for binding to respi-
ratory epithelium by highly pathogenic H5N1 is found primarily 
in the lower respiratory tracts of humans. This is one of the rea-
sons that respiratory distress is such a common cause of death. 
The relative lack of these receptors in the upper respiratory epithe-
lium causes much lower titers of virus to grow in nasal mucosa; 
hence, the virus is more pathogenic but much less transmissible 
by infected humans. In order to maintain its pathogenicity, the 
virus would need to maintain its tropism for the lower respiratory 
epithelial sialic acid receptor linkage and to acquire the ability to 
simultaneously bind to sialic acid linkages present in upper respi-
ratory epithelium. It is quite possible (indeed likely) that the virus 
would have to compromise and be less pathogenic if it becomes 
more transmissible. Thus, a more highly transmissible H5N1 might 
be less transmissible than SARS and currently circulating strains of 
influenza A and less pathogenic than the strains that have to date 
been acquired directly from birds.

FUTURE RESEARCH

There is increasing integration between infectious disease modeling 
and empiric research in the field and laboratory. As noted above, 
models can be used to help set research priorities by determining 
which gaps in knowledge are most important epidemiologically. 
Increases in computing power make it possible to develop increas-
ingly sophisticated simulation models and to use them in real-
time to analyze outbreaks to determine whether interventions are 
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working and to guide policymakers in their response. DNA finger-
printing techniques are being used to identify clusters of transmis-
sion between individuals42,43 and there is currently a lot of interest 
in synthesizing analysis of evolution and transmission dynamics, 
termed ‘phylodynamics’.44 Another area of research is in characteriz-
ing  contact patterns between individuals in more detail45 since this 
has important consequences for patterns of transmission. Finally, 
the use of modeling in planning and evaluating clinical trials has 
been advocated.46
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