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A B S T R A C T

Background: Findings from neurodevelopmental studies indicate that adoles-
cents with psychosis spectrum disorders have delayed neurocognitive performance relative to the maturational state of their healthy peers. Using machine learning,
we generated a model of neurocognitive age in healthy adults and investigated whether individuals in clinical high risk (CHR) for psychosis showed systematic
neurocognitive age deviations that were accompanied by specific structural brain alterations.
Methods: First, a Support Vector Regression-based age prediction model was trained and cross-validated on the neurocognitive data of 36 healthy controls (HC). This
produced Cognitive Age Gap Estimates (CogAGE) that measured each participant's deviation from the normal cognitive maturation as the difference between
estimated neurocognitive and chronological age. Second, we employed voxel-based morphometry to explore the neuroanatomical gray and white matter correlates of
CogAGE in HC, in CHR individuals with early (CHR-E) and late (CHR-L) high risk states.
Results: The age prediction model estimated age in HC subjects with a mean absolute error of± 2.2 years (SD=3.3; R2=0.33, P < .001). Mean (SD) CogAGE
measured +4.3 (8.1) years in CHR individuals compared to HC (−0.1 (5.5) years, P= .006). CHR-L individuals differed significantly from HC subjects while this was
not the case for the CHR-E group. CogAGE was associated with a distributed bilateral pattern of increased GM volume in the temporal and frontal areas and diffuse
pattern of WM reductions.
Conclusion: Although the generalizability of our findings might be limited due to the relatively small number of participants, CHR individuals exhibit a disturbed
neurocognitive development as compared to healthy peers, which may be independent of conversion to psychosis and paralleled by an altered structural maturation
process.

1. Introduction

Neurocognitive deficits are a hallmark of first-episode psychosis and
they are predictive of poor functional outcome many years later (Albus
et al., 2006). Executive, attentional and mnemonic impairments have
been traditionally attributed to established psychotic illness, but studies
have compiled compelling evidence for neurocognitive abnormalities
paralleling the emergence of cognitive-perceptual basic symptoms in a
putative ‘early’ clinical high-risk state (CHR-E) and the appearance of
attenuated psychotic symptoms in a ‘late’ ultra-high risk (CHR-L) state
for psychosis (Keefe et al., 2006; Pukrop et al., 2006; Ziermans et al.,
2014). In addition, recent work has suggested that these abnormalities
follow a gradient from typically developing children and adolescents to
peers showing psychosis-spectrum symptoms (Gur et al., 2014). Both
sets of findings emphasize the role of neurocognitive abnormalities as a
proxy for altered neurodevelopmental trajectories underlying the

emergence of psychosis (Pantelis et al., 2005; Rapoport et al., 2012).
Previous neuroimaging studies have suggested that these complex

brain-behavioral trajectories may best be modeled by means of multi-
variate pattern analysis (MVPA) (Koutsouleris et al., 2012a). Machine
learning techniques have successfully been applied to structural MRI
scans to predict age of healthy volunteers (Su et al., 2012). This re-
search has been essential in understanding and creating normative
trajectories of brain development (Erus et al., 2015). Moreover, MVPA
has been employed in studies showing acceleration of normal brain
maturational processes (Koutsouleris et al., 2014; Schnack et al., 2016)
that appears to be an intermediate phenotype for psychosis (Gogtay,
2008) and disrupts the normal process of gray (GM) and white matter
(WM) maturation, potentially continuing to alter brain-behavior tra-
jectories during early adulthood (Cropley et al., 2016).

The cognitive lag in adolescents at risk for psychosis observed re-
lative to their chronological age is commonly due to slower cognitive
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development in the cognitive domains of verbal reasoning and social
cognition (Green et al., 2015; Gur et al., 2014; Lin et al., 2011) and
decline in these cognitive domains usually overlap with those reported
in adult CHR individuals (Lin et al., 2011) and patients with established
psychotic disorders (Green et al., 2015). Nonetheless, cognitive lag in
adolescents at risk for psychosis seems not to be equally and continually
represented in all cognitive domains and age ranges, pointing to a ra-
ther dynamic interplay between structural brain maturation and cog-
nitive development across this life period.

To date, it is still unclear whether the delay of neurocognitive ma-
turation observed in CHR adolescents (Gur et al., 2014) continues into
adulthood. We used supervised machine learning to train and cross-
validate an individualized age predictor in healthy volunteers using
their multivariable neurocognitive data. The model was then applied to
the respective neurocognitive data of our CHR patients to investigate
systematic differences between neurocognition (NC)-based predicted
age and calendar age (Cognitive Age Gap Estimation; CogAGE) as
compared to the healthy reference population. While our NC model
ought to explain the relationship between age and predicted age, we
were further interested in characterizing how CogAGE alters with re-
spect to calendar age of CHR individuals. We assumed that CogAGE, as
the measure of delay in neurocognitive development, is going to sig-
nificantly differ between CHR-L and CHR-E individuals.

We aimed to investigate whether neurocognitive maturation was
altered in CHR individuals and accompanied by specific brain alterna-
tions as compared to a healthy adult population. As previous findings
suggest that GM volume is an important intermediate phenotype for the
assessment of brain development and cognition (Gennatas et al., 2017),
this highlights the need for combined studies that further investigate
their associations. In addition, we tested if the use of entire NC battery
was justified for multivariate CogAGE modeling.

2. Methods

2.1. Participants

Forty-eight individuals with a clinical high-risk state and 36 age-
and sex-matched healthy controls were recruited at our Early Detection
and Intervention Centre for Mental Crises (FETZ) of the Department of
Psychiatry and Psychotherapy, Ludwig-Maximilian-University,
Germany. Potential CHR individuals were referred to our center by
primary, secondary and tertiary mental healthcare services and were
examined according to a standardized inclusion and exclusion criteria
checklist with operationalized definitions as described previously
(Koutsouleris et al., 2012; Meisenzahl et al., 2008). All participants
underwent neuropsychological testing using a comprehensive battery
(Table 1). Except for five CHR patients, this sample was also examined
using structural MRI scanning.

In summary, study inclusion required either CHR-E with a positive
global functioning and trait marker defined by a ≥30 point reduction in
the DSM-IV Global Assessment of Functioning Scale (GAF), and a family
history of psychotic disorders or a personal history of pre-/perinatal
complications, or at least 1 positive psychopathological state marker in
the basic symptoms (Klosterkötter et al., 2001), or (Keefe et al., 2006)
CHR-L exhibiting attenuated psychotic symptoms (APS) or brief limited
intermittent psychotic symptoms (BLIPS) categories fulfilling specific
duration criteria (Yung et al., 1998). Of the forty-eight CHR patients, 19
fulfilled basic symptom criteria and were therefore assigned to a pu-
tative ‘early’ Clinical High-Risk state (CHR-E), whereas the other 29
individuals showed attenuated (APS) and/or brief limited intermittent
psychotic (BLIPS) symptoms as operationalized by the UHR criteria of
the Personal Assessment and Crisis Evaluation (PACE) clinic in Mel-
bourne (Yung et al., 2003; Yung et al., 2004), and therefore were la-
beled as 'late' Clinical High-Risk State (CHR-L) individuals. Exclusion
criteria were assessed for the candidate CHR and HC individuals by
evaluating the personal and familial history using a semi-structured

clinical interview as well as the Structured Clinical Interview for DSM-
IV (American Psychiatric Association, 2000). Additionally, patients
were rated using the Positive and Negative Symptom Scale (PANSS)
(Kay et al., 1987) and the Montgomery-Åsberg Depression Rating Scale
(MADRS) (Montgomery and Asberg, 1979) (Table 1.) All participants
were followed-up for 4 years after this assessment for transition to
psychosis. They provided written informed consent prior to study in-
clusion and the study was approved by the Local Research Ethics
Committee of the Ludwig-Maximilian-University.

2.2. Neurocognitive testing

A cross-domain neuropsychological test battery comprising 9 stan-
dardized tests was administered to all subjects (Table 1). The neuro-
cognitive battery includes tests measuring domains of premorbid IQ,
processing speed, attention verbal and spatial working memory, verbal
memory and mental flexibility yielding measures of accuracy (number
of correct responses) and speed (time of execution). We used a strong
apriori approach when designing the battery relaying on previous stu-
dies of large scientific consortia investigating neuropsychological
functioning in schizophrenia — Matrics Cognitive Concensus Battery
(Marder and Fenton, 2004) and Philadelphia Neurodevelopmental Co-
hort (PNC) (Moore et al., 2015).

Fourteen test variables were computed across the HC group
(Table 1) and adjusted for the effects of age and gender using partial
correlations. The adjusted scores were z-transformed based on the re-
spective HC data and entered analyses of variance (ANOVAs) that as-
sessed between-group differences in HC vs CHR individuals. Holm's
sequential method (Holm, 1979) was used to adjust P values for mul-
tiple comparisons across the 14 neurocognitive measures and sig-
nificance was defined at P < .05, corrected.

All subjects had never received neuroleptic agents prior to MRI and
clinical examination. The neuropsychological test battery used to ex-
amine neurocognitive functions in these subjects has previously been
described in detail (Koutsouleris et al., 2010).

2.3. Support vector regression for neurocognitive-based age prediction

Support vector regression (SVR) (Montgomery and Asberg, 1979)
was chosen due to its established ability to generate unbiased models
that generalize well across the population, as shown in our previous
study investigating accelerated brain ageing (Koutsouleris et al., 2014).
To train and cross-validate our models, we wrapped our machine
learning pipeline into a nested CV framework as described in our pre-
vious work (Cabral et al., 2016; Koutsouleris et al., 2015) using our
open-source machine learning tool NeuroMiner (https://www.pronia.
eu/neurominer/). More specifically, for the present study we defined a
leave-one-subject-out cross-validation cycle at the outer cross-valida-
tion cycle (CV2) and a repeated 10-by-10-fold cross-validation at the
inner cycle (CV1). This maximized the data available to the machine
learning process while both generating robust parameter estimates and
avoiding any overfitting of the machine learning pipeline to our HC
data. Each training sample at the CV1 loop was first processed using
feature-wise standardization. Then, the standardized neurocognitive
data were projected into a linear kernel space, where the SVR algorithm
determined an optimal age-fitting function at a fixed C (regularization)
parameter of 1 and a ν-parameter, which was optimized in the range of
[0.5 0.7 0.9] within the CV1 cycle. To this end, NeuroMiner generated
CV1 test partition predictions across the ν range and then picked the
optimal ν at the parameter showing the lowest average Mean Absolute
Error (MAE) across the respective CV1 cycle. The 10×10 CV1 models
trained with this ν parameter were then applied to the respective CV2

subject and the resulting age predictions were averaged to obtain a final
out-of-training-sample prediction for a given participant. Finally, to
correct for the over- and underestimation of age in the lower and upper
tails of the distribution as typically encountered in SVR, we computed
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detrending parameters by fitting the CV2 subjects' age residuals with
their chronological age.

The scaled and imputed training matrix entered a greedy forward
search wrapper (early stopping at 50% of features) (Saeys et al., 2007),
to identify the most parsimonious subset of variables within the pool of
neuropsychological tests.

The out-of-training prediction performance was quantified using the
MAE and explained variance (R2). To obtain age predictions for the
CHR group we applied all pre-computed standardization, SVR and de-
trending models to the CHR individuals' neurocognitive data. Finally,
we calculated all participants' CogAGE scores as the difference between
estimated neurocognitive and observed chronological age. In addition,
to evaluate the predictive potential of solely premorbid IQ we used the
General Linear Model (GLM) and the same cross-validation scheme as
in the neuropsychological model with all 14 measures.

2.4. MRI data acquisition and preprocessing

Magnetic resonance images were obtained on a 1.5 T Magnetom
Vision scanner (Siemens, Erlangen, Germany) using a T1-weighted 3D-
MPRAGE sequence (repetition time (TR) 11.6ms, echo time (TE)
4.9 ms, field of view 230mm, matrix 512×512, 126 contiguous axial
slices of 1.5mm thickness, voxel size 0.45× 0.45× 1.5mm). All
images were examined for image artifacts, gross anatomical abnorm-
alities, and signs of neurological disease by trained clinical neuror-
adiologists.

Structural MRI data were preprocessed using the CAT12 toolbox
(http://www.neuro.uni-jena.de/cat/), an extension of the SPM12 soft-
ware (Wellcome Department of Cognitive Neurology, London, UK;
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The CAT12
toolbox extends the unified segmentation model into GM, WM and
cerebrospinal fluid (CSF), executed through SPM12 (Ashburner and
Friston, 2005) from Welcome Department of Clinical Neurology run-
ning on MATLAB2015a (The MathWorks, Natick, MA, USA) by 1)

applying an Adaptive Maximum a Posterior (AMAP) technique, based
on modeling local parameter variances as spatial functions (Rajapakse
et al., 1997), 2) performing a Partial Volume Estimation (PVE), which
estimates the ratio of pure tissue types in each voxel (Tohka et al.,
2004) and 3) denoising using a classical Markov Random Field model
(Rajapakse et al., 1997) for post-processing. A second denoising method
employed after intensity normalization is a Spatial-Adaptive Non-Local
Means (SANLM) filter (Manjón et al., 2010). The DARTEL algorithm
(Ashburner, 2007) was used to normalize the GM and WM maps to the
MNI (Montreal Neurological Institute) structural template. Final images
were modulated with the Jacobian determinant generated through non-
linear spatial normalization and lastly smoothed with a 4-mm Full-
Width-at-Half-Maximum Gaussian kernel.

2.5. Statistical analysis

Sociodemographic and clinical characteristics were tested for be-
tween-group differences (HC, CHR-E, CHR-L) using independent sample
t-tests for continuous data, ANOVA and Fisher's exact test for catego-
rical data in SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for
Windows, Version 22.0. Armonk, NY: IBM Corp.). The regression slopes
indicating differences in calendar age and predicted age between HC
and CHR (CHR-E and CHR-L) were calculated in SPSS by deriving SVR
decisions scores from Neurominer. Subsequently, to test for the differ-
ences in the regression slopes when comparing performance of the NC
model versus the model with solely premorbid IQ, Cocor R
(Diedenhofen and Musch, 2015) package was used.

2.5.1. Correlational analysis CogAGE scores with GM and WM volume
A multiple regression model across all participants was set up to

identify brain regions in which voxel-level, whole-brain GM and WM
volume alterations were related to CogAGE scores. In addition, we in-
cluded total intracranial volume (TIV) as regressor into the multiple
regression design to correct for global brain volume variation

Table 1
Demographics, clinical characteristics and neurocognitive test performance.

HC CHR-E CHR-L F/X2 P

Sociodemographic variables:
N 36 19 29 – –
Age: mean (SD) [years] 27.16 (3.71) 25.2 (5.68) 24.35 (5.88) 0.90 0.41
Gender: male/female (%) 19/17 (52.77/47.22) 12/7 (63.16/36.84) 20/9 (68.97/31.03) 1.66 0.20
School education: mean (SD) [years] 12.53 (1.13) 12.22 (1.06) 11.75 (1.24) 3.58 0.03
Clinical variables: mean (SD)
GAF score – 61.75 (8.77) 54.21 (12.95) 2.91 0.10
PANSS total score – 58.08 (14.68) 68.36 (25.71) 1.49 0.23
PANSS positive score – 10.00 (2.66) 14.21 (5.07) 6.68 0.02⁎

PANSS negative score – 15.58 (7.10) 19.14 (9.59) 1.12 0.30
PANSS general score – 32.50 (8.42) 35.00 (12.78) 0.33 0.57
MADRS – 18.58 (8.28) 17.43 (10.81) 0.91 0.77
Neuropsychological variables: standardized Z scores
Premorbid IQ 0.23 (0.41) 0.09 (0.67) −0.02 (0.68) 1.48 0.23
Mehrfach-Wortschatztest B (MWT-B) - Raw score
Digit Symbol Substitution Test (DSST, WAIS-III) - Raw score correct −0.05 (0.96) −0.18 (1.03) −1.15 (1.17) 9.62 0.00⁎

Digit Span Test (DS, WAIS-III) - Raw score correct −0.03 (0.93) 0.08 (1.14) −0.29 (1.17) 0.81 0.45
Letter Number Span Test (LNS) - Raw score correct 0.08 (0.96) −0.13 (2.37) −1.30 (2.96) 3.51 0.04⁎

Trail-Making Test, part A (TMT-A) - Time to completion (s) 0.06 (0.97) −0.14 (1.25) −1.02 (1.50) 6.50 0.02⁎

Trail-Making Test, part B (TMT-B) - Time to completion (s) −0.03 (0.95) −0.93 (1.51) −2.05 (1.95) 14.87 0.00⁎

Difference between TMT-B & TMT-A (TMT-B-A) −0.06 (0.97) −0.96 (1.42) −1.78 (1.87) 11.59 0.00⁎

Trail-Making Test, TMT (part B/part A; BdivA) 1.66 (5.21) −2.02 (12.53) −2.02 (12.53) 1.66 ⁎0.03
Trail-Making Test, TMT (part B – part A/part A; B-AdivA) 0.66 (5.21) −3.02 (12.53) −3.02 (12.53) 1.66 ⁎0.03
Self-Ordered Pointing Task (SOPT) - Error score −0.04 (0.98) −2.58 (3.03) −2.28 (2.11) 14.49 ⁎0.00
Rey Auditory Verbal Learning Test (RAVLT)

Sum of raw score correct after trials 1–5 (RAVLT-IR) 0.15 (0.96) −0.75 (1.21) −1.96 (2.12) 15.71 ⁎0.00
Raw score corrects after delayed recall (RAVLT-DR) 0.08 (0.92) −0.79 (1.54) −2.38 (2.99) 12.39 ⁎0.00
Retention: difference between raw score correct in trial 5 and delayed recall (RAVLT-Ret) 0.03 (0.94) −0.81 (1.45) −0.90 (2.19) 3.27 ⁎0.04

Verbal Fluency - Sum of correct responses (letters) (VF) −0.02 (0.85) −0.03 (1.42) −0.55 (1.50) 1.73 0.18

Significance was defined as p < .05.
⁎ Tests that survive Holm's sequential method to correct for multiple comparisons.

L. Kambeitz-Ilankovic et al. NeuroImage: Clinical 21 (2019) 101624

3

http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/


introduced by modulating the GM tissue maps during pre-processing.
The positive contrast indicated relationship between GM and

CogAGE whereas the negative contrast indicated relationship between
WM and CogAGE scores. To sensitize our neuroanatomical analysis
both for large focal and subtle, spatially contiguous effects, we used

Threshold-Free Cluster Enhancement (TFCE) (Smith and Nichols, 2009)
as implemented in the SPM TFCE toolbox (http://dbm.neuro.uni-jena.
de/tfce/). We performed N=2000 permutations of each previously
generated contrast. Statistical significant effects in the TFCE maps were
defined at P < .05 corrected for multiple comparisons using the

Fig. 1. The relationship between age and predicted age a) in HC and CHR group b) HC, CHR-E, and CHR-L. The model illustrating the relationship between age and
cognitive Age Gap Estimator (CogAGE) c) in HC and CHR group d) HC, CHR-E, and CHR-L; and e) the selection probability of neuropsychological measures derived
from SVM model generated for predicted age.
RAVLT_A5-A7, Rey Auditory Verbal Learning Test – Retention; SOPT, Subject-Ordered Pointing Task; VF, Verbal Fluency; RAVLT_IR, Rey Auditory Verbal Learning
Test – Immediate Recall; TMT_B-A, Trail-Making Test Part B minus Part A; TMT-B-AdivA, Trail-Making Test Part B minus Part A divided by A; TMT-BdivA, Trail-
Making Test Part B divided by A; ZVR,Digit Span Forwards and Backwards; LNS, Letter Number Span; TMT-B, Trail-Making Test Part B; TMT-A, Trail-Making Test
Part A; RAVLT-DR, Rey Auditory Verbal Learning Test – Delayed Recall; DST, Digit Symbol Test.
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family-wise error rate (FWE).

3. Results

The age prediction model estimated age in HC subjects with a mean
absolute error of 2.2 years (SD=3.3; r2=0.33, P < .001). Mean (SD)
CogAGE measured +4.3 (8.1) years in CHR individuals compared to
HC (−0.1 (5.5) years, P= .006) (Fig. 1a and b). The ANOVA model
showed that CHR-L differed significantly from HC, (+5.6(9.0) years;
P= .003) while this was not the case for the early CHR-E group (+2.3
(6.3) years; P= .234). Compared to HC, CogAGE was increased both in
converters (+5.5 (4.5) yrs.; P= .005) and non-converters (+4.0 (6.6)
yrs.; P < .001) to psychosis. The multiple regression model confirmed
(Fig. 1c) a negative relationship between CogAGE and age in CHR
group (R2=−0.36, P= .01) as compared to HC volunteers that seems
particularly driven by CHR-L (R2=−0.43, P= .02) and not CHR-E
(R2=−0.21, P= .38) group (Fig. 1d). Additionally, the negative re-
lationship between CogAGE and chronological age in CHR patients
appears to be undoubtedly more pronounced in younger CHR patients.
The highest selection probability in CogAGE modeling was achieved for
the neuropsychological test measuring Premorbid IQ and Digit Symbol
Substitution (DSST) Test (Fig. 1e).

Therefore, we also investigated predictive potential of solely
Premorbid IQ and DSST as the most relevant features among the 14
neuropsychological measures in the study. Predicting chronological age
based on IQ scores yielded significant results in the group of HC vo-
lunteers (r= 0.472, p= .003) similarly to model using all the 14 fea-
tures, yet the IQ model was equally generalizable to CHR group
(r=0.270, p= .064) and therefore unable to detect CogAGE dis-
crepancy in CHR group. This contrasts to our initial findings using all
NC model with 14 neurocognitive tests, which was able to show a
significant difference between the slopes of the HC and CHR models
(z=2.6853, p-value= .0072). The model based on DSST failed to
predict age in healthy volunteers (r=0.13, p= .43) when used seg-
regated from the rest of the neuropsychological battery and therefore
was not further applied to CHR patients.

The multiple regression models performed on CogAGE scores of all
HC and CHR individuals and neuroanatomical data revealed significant
clusters of volume increase and decrease in multiple brain areas
(Fig. 2a). Across the sample CogAGE was positively correlated with the
increased GM volume in left cingulate gyrus, left superior temporal
gyrus followed by left superior and middle frontal gyrus, whereas po-
sitive correlations on the right hemisphere were identified in the an-
gular and supramarginal gyrus. Further positive correlations were
found in the superior temporal gyrus and frontopolar cortices, in the
right hemisphere. Whilst higher CogAGE scores across the sample were
associated with increased GM volume, they were also correlated with a
significant WM volume decrease within the middle cerebellar peduncle
of the right hemisphere left genu and the splenium of the corpus cal-
losum (CC), as well as the third branch of the right superior long-
itudinal fasciculus (SLF III) of the right hemisphere (Table 2). The as-
sociations between the CogAGE and cingulum as the first GM
eigenvariate and respectively between middle cerebellar peduncle as
the WM eigenvariate from the multiple regression model are shown in
scatterplots of the Fig. 2b and c. The correlations between remaining
GM and WM eigenvariates can be found in the supplementary mate-
rials.

4. Discussion

In this study, we investigated whether neurocognitive maturation
was altered in CHR individuals and accompanied by specific brain
changes as compared to a healthy control population. Although a ma-
jority of studies showed that both cognitive impairment and brain al-
terations are commonly found in CHR individuals, only one study so far
has investigated how neurocognitive trajectories evolve during

adolescence (Gur et al., 2014), but not in the early adulthood of CHR
individuals. In line with the results of this neurodevelopmental popu-
lation study that demonstrated neurocognitive delay in adolescents
with psychosis-spectrum symptoms, we were able to show discrepancy
between calendar age and neurocognitive age, suggesting delayed
neurocognitive development in young CHR adults.

Whilst our results suggest that CogAGE is more pronounced in the
younger individuals from the CHR sample, the CogAGE delay seems to
stabilize if the patients fulfilling CHR criteria are in their early thirties.
This observation may suggest that CogAGE captures neurocognitive
delay, rather than a static cognitive impairment that is usually asso-
ciated with early psychosis spectrum disorders. Additionally, the ne-
gative relationship between CogAGE and chronological age in CHR
patients appears to be undoubtedly more pronounced in CHR-L patients
than in CHR-E patients. Notably, the subgroup analysis of CHR patients
with vs. without transition to psychosis did not yield any significant
results in this regard.

Our finding that CHR patients' premorbid IQ and processing speed
measures were most relevant for the age prediction provides further
hints to a potential dysmaturational process in these individuals.
Namely, a cross-sectional study of cognitive maturation in healthy
subjects indicate maturation of processing speed through late childhood
and into adolescence (Luna et al., 2004). The improved speed of per-
formance could be attributed to increased efficiency in neuronal orga-
nization and communication through myelination and pruning pro-
cesses. Previous studies on adolescent-onset psychosis patients failed to
show normal age-related increases in processing speed, which is in
keeping with the findings in our CHR patients (Erus et al., 2015;
Bachman et al., 2012). The premorbid IQ has always been strongly
associated with risk for psychosis and used as one of the main argu-
ments for a widespread neurodevelopmental hypothesis of the disorder
(Khandaker et al., 2011; Reichenberg et al., 2002). Though the pre-
morbid measure of intelligence and digit symbol substitution test
proved to be strongly relevant for the age prediction, they were in-
sufficient when used separately from other neuropsychological mea-
sures. The SVR model including all the neuropsychological measures
was able to detect subtle relationships between the features that would
not be detectable at a univariate level.

The neural changes subserving the growing complexity of cognitive
functions in response to higher environmental demand (Pantelis et al.,
2005; Gogtay, 2008) occur in a non-linear fashion which seems to be
supported by our findings. At the neuroanatomical level, CogAGE seems
to be associated with a distributed pattern of increased GM volume
particularly in the temporal and frontal areas of both hemispheres. The
sequence of cortical GM loss that normally occurs earliest in the pri-
mary sensorimotor areas and latest in the dorsolateral prefrontal cortex
is disrupted in psychosis along with the intra-cortical myelination
processes (Peters and Sethares, 2004). Most studies suggest that the
brain changes in psychosis may represent a dysregulation of the tem-
poral course of neurodevelopmental trajectory (Lieberman, 1999;
Woods, 1998). Our results on delayed GM loss in frontal brain regions
support the notion about the active disease process occurring early in
the course of illness and changing the temporal course of neural de-
velopment. Additionally, it could be interpreted as a compensatory
neural process taking place in the brains of CHR patients as a result of
cortical reorganization.

The positive associations between CogAGE and GM and their in-
teractions with psychosis proximity and chronological age may point to
a delay of the neuroanatomical maturation sequence described above
conditional on the time of symptom onset between adolescence and
adulthood. This interpretation is supported by our finding on WM re-
ductions in the right middle cerebellar peduncle. This result on volume
decrease in the cerebellar WM pathways supports our hypothesis of
delayed brain structural and neurocognitive development in CHR pa-
tients as compared to cerebellar maturation in healthy peers (Tiemeier
et al., 2010; Sussman et al., 2016). Importantly, in contrast to an
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Fig. 2. The multiple regression models showing relationship between CogAGE scores and neuroanatomical data across the sample in a) increased GM volume regions
(blue) that are positively correlated with CogAGE scores and decreased WM volume (red) regions that are negatively correlated with CogAGE; b) the first eigenvariate
(left cingulate gyrus) extracted from the multiple regression model in GM (adjusted CogAGE scores); c) in the second eigenvariate extracted (right middle cerebellar
peduncule) from the multiple regression model in WM (adjusted CogAGE scores).
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inverted U-shaped pattern of development in GM with age, WM volume
linearly increases throughout development until approximately young
adulthood (Barnea-Goraly et al., 2005). Previous cross-sectional and
longitudinal analyses revealed continuous age-related changes pre-
dominantly in the posterior parts of CC along with internal capsule
(anterior corona radiata and frontal regions) (Giedd et al., 1999; Sowell
et al., 1999). However, our results showing reduction in corpus cal-
losum and superior longitudinal fasciculus have to be cautiously con-
sidered as the correlation between CogAGE and WM decrease in ei-
genvariates of those two clusters did not yield significant results. Taken
together, our attempt to map cognitive development in CHR group onto
neural substrates suggests that the interplay of strengthening and fine-
tuning of relevant inter- and intra-hemispheric connections with elim-
ination of GM occurs with delay in CHR patients relative to the healthy
population. Speculatively, our results may point to a delay of oligo-
dendrocyte-dependent axonal myelination (Peters and Sethares, 2004).
Further research using advanced white matter imaging is needed to
shed further light on this hypothesis.

The findings of this study should be considered in light of some
limitations. First, our CogAGE model is cross-sectional and based on a
limited age range of participants. Most participants were in their
twenties at the time of their first scan and neurocognitive testing.
Moreover, though we controlled for the age difference between the HC
and CHR sample, the subsample of CHR-L that shows larger age range is
limited in its number. Second, the number of CHR individuals from our
sample that transited to psychosis was rather small (N=15) and
therefore comparisons between transition and non-transition groups
need to be replicated in larger samples. While authors could not exclude
the possibility that the study lacks sufficient power to detect differences
in cognitive development between converters and non-converters the
cognitive impairment is suggested to share a common ground in CHR
individuals and psychosis patients. Our findings on significant negative
relationship between CogAGE in CHR patients with more pronounced
attenuated psychotic symptoms are pointing into this direction. Third, a
patient group that has developed clinical symptoms to the level of
psychosis would be helpful to determine the dynamic trajectory of
cognitive development/maturation across the whole spectrum of psy-
chosis.

Future studies will need to focus on using more sophisticated brain
mapping methods and preferably longitudinal cohorts to determine
dynamic trajectory of cognitive maturation in the whole spectrum of
psychosis, early and late. However, our cross-sectional findings provide
further evidence for aberrant brain structure-cognition associations in

CHR state which supports the neurodevelopmental hypothesis of psy-
chosis.
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