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Fatty acids are essential for cell survival as they serve 
as key structural components of cell membranes and 
important signalling molecules. Fatty acids are also the  
most calorically dense form of energy storage with  
the conversion of excess glucose into fatty acids protect-
ing against glucotoxicity and providing a much larger 
energy reserve than glycogen for times of nutrient scar-
city. Given the vital roles of fatty acids, cells have evolved 
mechanisms to maintain them at adequate levels. This 
includes mechanisms to take up exogenous fatty acids 
but also to generate fatty acids from alternative carbon 
sources through a series of enzymatic reactions, a pro-
cess highly conserved across phyla known as de novo 
lipogenesis (DNL)1.

DNL is initiated when excess substrate availability, 
relative to cellular energy demands, leads to increases 
in mitochondrial citrate, which is exported from mito-
chondria into the cytosol by the mitochondrial citrate/ 
isocitrate carrier (CIC; also known as CTP and SLC25A1) 
(Fig. 1). This cytosolic citrate is then converted into fatty 
acids by a series of biosynthetic reactions catalysed by 
ATP- citrate lyase (ACLY), acetyl- CoA carboxylase 
(ACC; also known as ACACA) and fatty acid synthase 
(FAS; also known as FASN). The expression of these 
enzymes differs across tissues and stages of development 
(for example, proliferation or quiescence). Expression 
and activity are also acutely and chronically regulated 
through transcriptional control and post- translational 
modifications that are linked to nutritional status (for 
example, fasting and feeding) and substrate availability 
(for example, fatty acids suppress DNL) (Box 1).

Although DNL is vital to maintain whole- body and 
cellular homeostasis, chronic elevations are associated 
with the development of a broad spectrum of diseases 
and disorders including cardiovascular disease (CVD)2,3, 

nonalcoholic fatty liver disease (NAFLD)4,5, type 2 dia-
betes (T2D)5,6, numerous cancers7,8, viral infections9,10, 
autoimmune diseases11,12, acne vulgaris13, neurodegen-
eration14 and ageing15. This suggests that pharmacolog-
ical inhibition may be beneficial across multiple disease 
areas (Box 2; Supplementary Fig. 1). Several natural 
products have been identified as inhibitors of DNL and 
these have been adopted as a cornerstone for the devel-
opment of synthetic inhibitors that display improved 
bioavailability, efficacy and specificity. Recently, some 
of these compounds have reached clinical stage devel-
opment and have been approved for the treatment of 
hyperlipidaemia16 or are in late- stage development for 
NAFLD and oncology.

However, there are still many important questions 
that remain to be answered as it is currently unclear 
whether systemic or organ- specific inhibition of DNL 
should be targeted and what degree of inhibition is 
necessary to avoid potential side effects such as defects 
in fetal development17, platelet production18 or muscle 
dysfunction19. It is also unclear under what conditions 
inhibition of the classical DNL pathway may be bypassed 
by the scavenging of alternative carbon sources, through 
acetyl- CoA synthetase20,21, ketoacid dehydrogenase22 or 
isocitrate dehydrogenases23–25, and therefore whether 
combination therapies or changes in diet may be 
required. Although there are several important targets 
that indirectly influence lipogenesis (for example, fruc-
tokinase, glucokinase or the glucagon receptor, sterol 
regulatory element- binding protein 1 (SREBP1) and 
liver X receptor (LXR))26,27 or are involved in down-
stream lipid processing (for example, SCD1, DGAT1 
and DGAT2)28,29, here, we specifically review recent 
advances in the development of inhibitors that directly 
target core components within the lipogenic pathway, 
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namely, citrate/isocitrate carrier (CIC), ATP- citrate lyase 
(ACLY), ACC and fatty acid synthase (FAS).

Physiological and pathological roles of DNL 
enzymes
The physiological regulation of DNL is complex, dif-
fering widely between cell types and with nutritional 
status. As discussed in this Review, studies from mice 
genetically lacking Slc25a1, Acly, Acaca and Fas have 
confirmed the importance of DNL in lipogenic tissues 
such as liver and adipose tissue, but also revealed unex-
pected biological consequences in cell types thought to 
have limited capacity for DNL. These findings indicate a 
much broader role for DNL in regulating the production 

of lipids under a wider array of physiological functions 
than initially appreciated (Fig. 2). Although a detailed 
description of the complex physiology that regulates 
lipogenesis (reviewed in reFs30,31) is not within the scope 
of this Review, an overview of the key physiological and 
pathological roles of DNL enzymes is provided below. 
Importantly, the information obtained from genetic stud-
ies provides crucial insight into both the opportunities  
and challenges of developing DNL inhibitors.

Energy intake and expenditure
Activity of the DNL pathway appears to regulate energy 
intake and expenditure. For example, mice that lack 
Fas have reduced food intake32, whereas food intake is 
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Fig. 1 | Overview of DNL. A series of coordinated enzymatic reactions takes place during fatty acid biosynthesis.  
Typically, pyruvate produced by glycolysis is converted in the mitochondrion into acetyl- CoA, which enters the 
tricarboxylic acid (TCA) cycle to produce citrate. In conditions of carbohydrate excess, citrate is exported to the cytosol  
by the citrate/isocitrate carrier (CIC) and is broken down to acetyl- CoA and oxaloacetate (OAA) by ATP- citrate lyase 
(ACLY). Acetyl- CoA is subsequently carboxylated by acetyl- CoA carboxylase (ACC) to generate malonyl- CoA, which is 
considered the first committed metabolic intermediate in fatty acid synthesis. Utilizing seven malonyl- CoA molecules  
and one acetyl- CoA primer, the synthesis of palmitate (16:0 fatty acid) is completed by repeating a cycle of condensation, 
reduction, condensation and dehydration catalysed by fatty acid synthase (FAS). An alternative carbon source of de novo 
lipogenesis (DNL) is acetate, which can be produced de novo from glucose through non- enzymatic and enzymatic 
reactions. Acetyl- CoA synthetase 2 (ACSS2) catalyses the reaction of acetate and CoA to form acetyl- CoA, which is 
subsequently used for fatty acid biosynthesis. With hypoxia or CIC deficiency another alternative pathway for DNL  
is reductive carboxylation of glutamine via cytosolic isocitrate dehydrogenase 1 (IDH1) and mitochondrial IDH2.  
αKG, α- ketoglutarate; ACP, acyl carrier protein; mKDH, mitochondrial ketoacid dehydrogenase; nKDH, nuclear ketoacid 
dehydrogenase; ROS, reactive oxygen species.
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increased in mice that lack Acc33. Mechanistically, the 
divergent effects of FAS and ACC on food intake can 
potentially be explained through differential effects on 
malonyl- CoA, which has been shown to suppress food 
intake: FAS inhibition increases malonyl- CoA, whereas 
ACC inhibition reduces it. Consistent with changes in 
malonyl- CoA, stereotactic delivery of malonyl- CoA 
decarboxylase (MCD) into the hypothalamus increases 
food intake34, whereas food intake is reduced in mice 
with constitutively active ACC1 and ACC2 isoforms35. 
These data suggest that inhibition of FAS suppresses 
food intake whereas inhibition of ACC stimulates food 
intake.

In both mice and humans, brown adipose tissue 
(BAT) is switched on in response to increases in nutri-
ents (diet- induced thermogenesis) or cold (adaptive 
thermogenesis)36,37. The activation of BAT in rodents 
and humans increases glucose uptake; however, recent 
studies have found that surprisingly, the primary func-
tion of this glucose is not to support glycolysis but 
instead to fuel DNL38. Consistent with this concept, 
both cold exposure and high carbohydrate availability 
increase DNL within BAT39, suggesting that BAT pri-
marily utilizes endogenous triglycerides to fuel ther-
mogenesis. Paradoxically, reductions in adipose tissue 
Fas leads to reductions in body mass40 due to enhanced 
local sympathetic nervous system activity, which 
causes the browning of the white fat41. These data sug-
gest that counterintuitively inhibiting DNL in adipose 
tissue may increase whole- body energy expenditure. 
Future studies are required to selectively inhibit ACLY, 
ACC and FAS within BAT and white adipose tissue 
(WAT) to directly quantify the importance of the 
DNL pathway for regulating futile cycling and energy  
expenditure.

Lipid deposition: NAFLD–NASH
Individuals with nonalcoholic fatty liver disease 
(NAFLD) have increased rates of DNL and this is a 
major factor contributing to increased lipid deposition4,5. 
Consistent with these observations, the expression  
of CIC, ACLY, ACC and FAS are increased in the liver of  
patients with NAFLD or nonalcoholic steatohepatitis 
(NAsH)42. In mice fed a high- fat diet (HFD), liver- specific 
deletion of the Slc25a1 gene reduces liver steatosis43. 
In ob/ob mice fed a high- carbohydrate diet, transient 
genetic inhibition of ACLY using small interfering RNA 
(siRNA) reduces liver lipid content44. Similarly, when 
Acly is selectively removed from hepatocytes of adult 
mice with NASH induced by a high- fat and high- fructose 
diet, there are reductions in liver steatosis (G.R.S., 
unpublished observations). By contrast, lifelong inhibi-
tion of liver Acly in mice fed high levels of fructose does 
not lower liver fat, potentially because of upregulation of 
acetate production by the gut microbiome and compen-
satory upregulation of acetate- CoA synthetase 2 (ACSS2) 
(reF.45). However, it should be noted that the high levels 
of fructose used in this study did not promote obesity, 
NAFLD or NASH45; thus, the therapeutic relevance of 
the findings is currently unclear.

Genetic inhibition of liver Acc1 (reF.46) or both Acc1  
and Acc2 (reFs47,48) lowers liver fat in mice fed a high-  
carbohydrate diet independently of changes in adipos-
ity. Conversely, mice with constitutively active ACC1 and 
ACC2 isoforms, owing to lack of AMP- activated protein 
kinase (AMPK) inhibitory phosphorylation, develop 
greater steatosis and fibrosis than controls when fed a 
high- carbohydrate diet49. These data indicate that inhibi-
tion of ACC can exert positive effects on lowering steato-
sis and fibrosis. However, an important consequence of 
inhibiting liver ACC is the development of hypertriglyc-
eridaemia owing to reductions in liver polyunsaturated 
fatty acids, which increase SREBP1c and the expres-
sion of glycerol-3- phosphate acyltransferase (GPAT), 
the rate- limiting enzyme for triglyceride synthesis48. 
Although most studies have indicated positive effects of 
ACC inhibition on liver steatosis, in one study genetic 
inhibition led to increases in liver lipids attributed to 
hyperacetylation of mitochondrial proteins, potentially 
due to accumulation of acetyl- CoA and lower fatty acid 
oxidation50. The phenotype of these liver- specific ACC 
null mice was similar to that of mice lacking FAS, which 
also have increased steatosis owing to reductions in 
fatty acid oxidation51. These studies in ACC- null and 
FAS- null mice highlight complex interactions that may  
limit therapeutic application in NAFLD and NASH.

Insulin sensitivity: type 2 diabetes
insulin resistance is a hallmark of type 2 diabetes (T2D). 
Rates of DNL in the liver are inversely correlated with 
hepatic and whole- body insulin sensitivity in humans5,52. 
Liver- specific deletion of Slc25a1 improves glucose tol-
erance in mice fed a control carbohydrate diet or HFD43. 
siRNA- mediated suppression of ACLY expression 
reduces fasting glucose and improves glucose tolerance in 
ob/ob mice fed a high- carbohydrate diet44. Similar obser-
vations are made when ACLY is selectively deleted from 
hepatocytes of mice fed a high- fat and high- fructose 
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Box 1 | Transcriptional control of DNL enzymes

De novo lipogenesis (DNL) is fundamental for the survival of multicellular organisms. 
However, it is also an energy- intensive process that requires 7 ATP and 14 NADPH 
molecules to convert acetyl- CoA into palmitate. As such, numerous overlapping 
biological pathways have been developed to tightly match pathway flux with nutrient 
availability.

Transcriptional regulation of the citrate/isocitrate carrier (CIC), ATP- citrate lyase 
(ACLY), acetyl- CoA carboxylase (ACC) and fatty acid synthase (FAS) is governed by  
a set of three transcription factors called sterol regulatory element- binding proteins 
(SREBPs), carbohydrate- responsive element- binding proteins (ChREBPs) and liver X 
receptors (LXRs)29,281 (Fig. 3). Although cholesterol and fatty acids are both synthesized 
from acetyl- CoA, their biosynthetic pathways are largely regulated by distinct SREBPs 
with DNL being dependent on SREBP1a and SREBP1c whereas cholesterol synthesis is 
primarily regulated by SREBP2 (reF.282). In the liver, the expression of CIC, ACLY, ACC 
and FAS are increased by SREBP1c in response to glucose and insulin, while being 
repressed by fatty acids283. The expression of DNL genes is also altered by ChREBP, 
which exists as two isoforms, ChREBPα and ChREBPβ, that have differential tissue 
expression profiles.

Upon ingestion of carbohydrates, ChREBPα is activated causing nuclear import  
and binding to carbohydrate- responsive elements in promoters of lipogenic genes, 
promoting transcription; a response that is further amplified by ChREBPβ, which is 
constitutively active281. LXRs have a central role in the transcriptional control of 
SREBP1c by insulin283, and although ChREBP was originally suggested to be a target 
gene of LXRs284, this has not been observed in all studies285. The activity of all three 
transcription factors is altered by a multitude of adaptor proteins, ubiquitin ligases, 
transcriptional activators and repressors as well as epigenetic and post- translational 
modifications29,281.
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diet for 16 weeks (G.R.S., unpublished observations). 
Genetic inhibition of ACC2 in the muscle53 or ACC1 and  
ACC2 in the liver47 leads to improvements in muscle 
and liver insulin sensitivity, respectively, whereas mice 
with constitutively active ACC1 and ACC2 isoforms 
have worse insulin resistance49,54. These data indicate 
that inhibition of DNL and/or upregulation of fatty acid 
oxidation within muscle and liver of mice can improve 
insulin sensitivity.

In addition to muscle and liver, adipose tissue is 
also crucial for regulation of insulin sensitivity55,56. In 
rodents, WAT has rates of DNL comparable to those of 
liver during the postprandial period57. However, with 
obesity, rates of adipose tissue DNL decline in both 
rodents58 and humans59, despite only modest reductions 
in insulin- simulated glucose uptake60. Recent stud-
ies indicate that this reduction in adipose tissue DNL 
occurs rapidly and continues to decline with worsen-
ing obesity and insulin resistance and is associated with 
reductions in the expression of ACLY, ACC, FAS61 and 
carbohydrate- responsive element- binding protein- β 
(ChREBPβ)62, suggesting that inhibition of adipose tis-
sue DNL may be detrimental to whole- body insulin 
sensitivity. Consistent with this concept, when ACLY 
fat- specific null mice are challenged with a high- sucrose 
diet, female mice develop a lipodystrophy- like pheno-
type that is associated with hepatic lipid accumulation 
and insulin resistance63. Similar observations are also 
observed in ACC1 fat- specific null mice64. These data 

indicate an important role for adipose tissue DNL in 
maintaining whole- body insulin sensitivity, poten-
tially by protecting the liver from developing steatosis. 
Additional studies characterizing transient knock- down 
of ACLY and ACC in fully differentiated adipocytes of 
obese adult mice, rather than lifelong deletion20,63,64, 
could better inform the potential protective role of  
adipose tissue DNL in insulin resistance.

The inability of pancreatic β- cells to secrete sufficient 
amounts of insulin to maintain euglycaemia is a hall-
mark of T2D. Available evidence suggests that ACC may 
be important for pancreatic β- cell function, as deletion 
of ACC impairs glucose- stimulated insulin secretion 
ex vivo and insulin tolerance in vivo65. Mechanistically, 
ACC is abundant in β- cells, whereas FAS is expressed at 
low levels, leading to a rise in malonyl- CoA levels fol-
lowing glucose stimulation66. As a result, fatty acid oxi-
dation is inhibited by elevated malonyl- CoA, increasing 
the availability of cytosolic long- chain fatty acyl- CoA 
(LCFA- CoA) for lipid signalling to cellular processes 
involved in insulin secretion67. In addition, recent stud-
ies have found that ACC is important for promoting 
β- cell mass in mice65. These data suggest that inhibition 
of ACC in pancreatic islets may lead to impaired insulin 
secretion and reduced β- cell mass that could contribute 
to T2D.

Cardiovascular disease
Elevations in liver DNL lead to increases in plasma 
VLDL and LDL, major risk factors of cardiovascular 
disease (CVD) mortality68,69. Recent studies have found 
that incident heart failure and CVD mortality2,70 are pos-
itively associated with increases in fatty acids derived 
from DNL. Consistent with this concept, genetic vari-
ants in ACLY are associated with reduced plasma LDL 
and decreased cardiovascular events3. Similarly, poly-
morphisms of ACLY and ACC are associated with lower 
triglycerides following dietary fish oil supplementation71. 
Surprisingly, to the best of our knowledge, no studies 
have examined the effects of genetic inhibition of liver 
Acly, Acc or Fas on established models of atherosclerotic 
development. However, given the effects of ACC inhibi-
tion in promoting hypertriglyceridaemia48, it might 
be anticipated to enhance atherosclerosis. By contrast,  
a deficiency in liver ACLY lowers triglycerides in mice 
(G.R.S., unpublished observations). The reasons for 
the opposing effects of ACLY and ACC inhibition on 
circulating triglycerides is unclear; however, it could be 
linked to the concomitant suppression of cholesterol 
synthesis unique to ACLY inhibition and/or the recip-
rocal effect that ACLY and ACC inhibition has on lev-
els of acetyl- CoA, which may be important to support 
protein acetylation. These data indicate that while ACC 
inhibition may be effective at reducing liver steatosis, it 
has detrimental effects on CVD risk profile that would 
need to be managed with other lipid- lowering therapies 
such as fish oil71, DGAT inhibition72 or PPARα agonists 
such as fenofibrate73.

Macrophages are also crucial for the development 
of atherosclerotic CVD as they take up and store lipid, 
triggering inflammation within the atherosclerotic 
lesion. The activity of ACLY74 and FAS75 is increased in 

Box 2 | Emerging applications of lipogenesis inhibitors

In addition to the widely studied therapeutic application of inhibitors of de novo 
liopogenesis (DNL) enzymes in metabolic diseases and cancer, emerging evidence 
indicates that lipogenesis inhibitors may also be beneficial in several other disorders.

During viral infections, lipogenesis is upregulated to meet the high demand for 
membrane synthesis required for viral replication. As such, blocking lipogenesis has 
emerged as a potential antiviral therapeutic option. For instance, lipogenesis inhibitors 
have been demonstrated to block the infection of hepatitis C virus286, HIV287, West Nile 
virus288, rotavirus289, Epstein–Barr virus290, dengue virus291, Japanese encephalitis virus291 
and chikungunya virus291. Lipogenesis inhibitors could also potentially be beneficial 
against the COVID-19 pandemic, as like all viruses, SARS- CoV-2 relies on newly 
synthesized phospholipids for its replication292. Consistent with this concept, orlistat 
and TVB-2640 inhibit the replication of SARS- CoV-2 variants293.

Another emerging area for lipogenesis inhibitors involves the treatment of acne 
vulgaris. Excess sebum production is an important cause of acne vulgaris, and studies 
using isotope labelling have revealed that ~80% of the sebum lipid in humans is derived 
from DNL13. In early- stage clinical trials, topical applications of acetyl- CoA carboxylase 
(ACC) inhibitors olumacostat glasaretil294 and PF-05175157 (reF.13) showed beneficial 
effects for treating acne vulgaris; however, it appears that neither agent has proceeded 
further with clinical development.

Multiple studies of early inhibitors soraphen A and TOFA suggest a potential benefit 
of ACC inhibition on several other pathological conditions. Soraphen A attenuates  
T helper 17 (TH17) cell- mediated autoimmune disease98, inhibiting effector T cell 
expansion in graft- versus- host disease295, and improves neurological outcomes after 
ischaemic stroke by preserving the regulatory T cell and TH17 cell balance296. More 
recently, it was demonstrated that soraphen A blocks autophagy in ageing yeast297 and 
attenuates undirected endothelial cell migration, which is a process implicated in many 
severe diseases298. Recent studies suggest that TOFA is involved in survival of memory 
T cells during chronic infections299 and in reduction of pro- inflammatory signalling  
in cystic fibrosis300. Although these findings are intriguing, owing to the potential 
off- target effects of these compounds, conclusions about the therapeutic benefit of 
ACC inhibition derived from these studies should be interpreted with caution until  
they are replicated using more- specific inhibitors.
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atherosclerotic plaques of mice and humans, suggest-
ing that inhibition may be beneficial. Consistent with 
this concept, genetic inhibition of Acly74 or Fas76 within 
macrophages of ApoE mice reduces atherosclerosis. 
Surprisingly, there have been no studies examining 
the effects of genetic deletion of macrophage ACC on 
atherosclerosis.

Cancer
DNL is constitutively active in many cancer cells and 
contributes most of the intracellular lipid mass77. It is 
now well recognized that common genetic mutations 
(for example, in the gene encoding p53 (reF.78) or the gene 
encoding PTEN79) and growth factor signalling (epi-
dermal growth factor80, HER2 (reF.81) and keratinocyte 
growth factor82, ERK1/ERK2 MAPKs82,83) enhance the 
activity of SREBP1 leading to upregulation of lipogenic 
genes. In addition to transcriptional control, enhanced 
glucose uptake — common in glycolytic tumours — 
increases citrate availability, which allosterically acti-
vates ACLY and ACC. Mutations in PTEN, which lead to 
constitutive activation of AKT, also increase the activity 
of ACLY through phosphorylation at Ser454, while at 
the same time enhancing ACC activity by suppressing 
AMPK84. Similarly, mutations in LKB1 reduce activat-
ing AMPK phosphorylation, thereby increasing ACC  
activity and cell proliferation85. Thus, tumours use  
multiple overlapping mechanisms to enhance DNL.

Genetic evidence that supports a crucial role for 
DNL enzymes in regulating tumorigenesis has been 

obtained from multiple studies involving knock- down 
of ACLY7,86,87, ACC88 and FAS89,90 in a wide variety of 
distinct tumour types (reviewed in reFs91,92). Inhibition 
of DNL also increases sensitivity to standards of care 
such as radiation93, androgen deprivation94 chemother-
apies or tyrosine kinase inhibitors such as sorafenib95. 
Survival analysis examining the relationship between 
DNL- expressing genes also supports an important rela-
tionship across different tumour types96. These data sug-
gest that inhibiting DNL may exert favourable effects in 
multiple types of cancer.

Infection and immunity
Inflammation and metabolism are intimately linked, 
as the maintenance of cellular defence systems and 
removal of pathogens is an energetically demanding 
process. Upon activation, immune cells undergo meta-
bolic reprogramming to meet the energy demand for cell 
proliferation, differentiation and cytokine production97. 
One of the metabolic switches that occurs during these 
processes is the induction of DNL98,99. It is known that 
immune cells that subsume a pro- inflammatory role 
(M1- like) use aerobic glycolysis and have high rates 
of DNL, whereas anti- inflammatory immune cells 
(M2- like) use predominantly oxidative metabolism and 
have low rates of DNL. Although this is an oversimplifi-
cation of an extremely complicated non- binary relation-
ship, it does provide a general context for understanding 
the link between inflammation and metabolism100. The 
triggers for immune activation vary, but findings in 
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chronic metabolic diseases such as obesity, NASH and 
CVD have found an important role for microbial prod-
ucts such as lipopolysaccharide (LPS) and ectopic lipid 
accumulation (cholesterol and fatty acids)101.

Both ACC and ACLY regulate immune func-
tion. The inhibition of ACLY inhibits LPS- induced 
inflammation102 in some but not all studies74 and is 
important for mediating the anti- inflammatory effects 
of IL-4 (reF.103) and IL-2 (reF.104). In human and mouse 
naive T cells, deletion of ACC1 restrains the develop-
ment of pro- inflammatory T helper 17 (TH17) cells and 
promotes the formation of anti- inflammatory regu-
latory T cells; a finding that translates in vivo into the 
attenuation of TH17- mediated autoimmune disease98 
and infection- associated intestinal inflammation105. 
ACC1 is also crucial in obesity- induced TH17 cell 
differentiation in humans12. Deletion of ACC1 also 
reduces antigen- specific clonal expansion of cytotoxic 
CD8+ T cell populations during Listeria infection106. 
Interestingly, this increase in DNL is exploited by many 
viruses for the formation of their replication complex, 
and as a result, inhibition of SREBP, ACLY, ACC1 and 
FAS reduces viral replication9,10,107. These studies sug-
gest that inhibiting DNL may be effective at reducing 
inflammation in chronic disease settings such as obesity 
and NASH and may exert positive effects to reduce viral 
replication. However, whether this may be exploited 
therapeutically without suppressing host immunity, 
which requires activation of DNL to promote an M1  
phenotype, remains to be determined.

Neurogenesis
Neural differentiation occurs throughout life108 and is 
strongly associated with upregulation of DNL in neural 
stem and progenitor cells14. The inactivation of FAS and 
ACC reduces neurodifferentiation14, and this has been 
linked to neurodegenerative diseases, including mul-
tiple sclerosis109, Parkinson disease110 and Alzheimer 
disease111. Interestingly, individuals with a variant of 
FAS (FAS- R1819W) have cognitive disorders112, a find-
ing that has been shown to be consistent in rodents 
overexpressing this variant113. In addition to neural stem 
and progenitor cells, DNL is central for the proper mor-
phological formation and function of neurons. FAS is 
highly expressed in neurons and is crucial for dendrite 
branching and function114. DNL is also essential for mye-
lination, as lipids comprise a large portion of the myelin 
membrane115. Recent studies have demonstrated that 
FAS is necessary for the correct onset of myelination and 
proper myelin growth by Schwann cells in the peripheral 
nervous system116 and oligodendrocytes in the central 
nervous system109. These data suggest that inhibition of 
DNL in the nervous system, not only in fetal develop-
ment but also in adulthood, could potentially promote 
the progression of neurodegenerative disease.

CIC
Regulation and structure
CIC is encoded by the SLC25A1 gene and is ubiq-
uitously expressed, with highest expression in liver, 
reproductive organs, gastrointestinal tract and adipose 
tissue (see Related links). It is located within the inner 

mitochondrial membrane, and primarily catalyses the 
efflux of tricarboxylates such as citrate and isocitrate in 
exchange for tricarboxylates, dicarboxylates and phos-
phoenolpyruvate117. LCFA- CoAs inhibit CIC in a revers-
ible manner, competitive with citrate118, while acetylation 
can increase allosteric activation by citrate119 (Fig. 3).

Little is known about how the structural compo-
nents of CIC are implicated in physiological regulation 
of activity. Structurally, eukaryote CIC is composed of 
three homologous domains, each of which form two 
hydrophobic membrane- spanning α- helices that are 
connected by hydrophilic loops that span from the 
intermembrane space to the mitochondrial matrix117 
(Fig. 4). There are at least two citrate binding sites, resid-
ing at different depths within the membrane bilayer and 
serving as the binding site of CIC inhibitors. Residues 
within sites 1 and 2 form six and eight hydrogen bonds 
with citrate, respectively120. CIC site 1 is kinetically acces-
sible to anions from the inner surface and determines 
specificity to internal substrate as it moves through the 
CIC121. After binding to site 1, citrate is transferred to  
site 2, before being released into the intermembrane 
space where it then diffuses through a voltage- dependent 
anion transport channel within the mitochondrial outer 
membrane, into the cytoplasm.

Pharmacological inhibitors
The first- generation CIC inhibitor to have a higher affin-
ity for the transporter than any substrate was benzenetri-
carboxylate (BTC)117 (TABLe 1; Supplementary Table 1),  
which inhibits the CIC in a mixed competitive and 
uncompetitive manner117,122. BTC is structurally similar 
to citrate and primarily interacts with citrate binding 
site 2 (reF.122) (Fig. 4). Although this inhibitor has been 
widely used for structural and functional characteri-
zation of the CIC, potential binding of the inhibitor to 
other citrate binding proteins has limited its therapeutic 
development.

CTPI-1, also known as compound 792949, is a 
next- generation competitive CIC inhibitor identified 
via in silico screening of commercially available small 
molecules. It has a slightly higher affinity for CIC than 
BTC does and binds to residues from both citrate bind-
ing sites simultaneously122. This inhibitor was identified 
in yeast CIC and later it was found to exhibit subopti-
mal binding for human CIC, potentially owing to a key 
amino acid difference in the citrate binding sites between 
the species123.

Attempts to optimize compounds specific for human 
CIC led to the identification of CTPI-2, which exhib-
ited a 20-fold improvement in binding affinity rela-
tive to CTPI-1 and inhibited citrate transport at lower 
concentrations123. Furthermore, it has shown several 
favourable effects in preclinical models as discussed 
below, indicating the potential of the inhibitor for 
development.

Therapeutic indications
Metabolic diseases. Lowering cytosolic citrate would 
be expected to inhibit DNL by reducing both sub-
strate availability and allosteric activation of ACLY 
and ACC124,125. Consistent with this concept, BTC 

Metabolic diseases
A group of diseases 
characterized by disrupted 
metabolism that adversely 
affect normal cellular function 
and structure.

www.nature.com/nrd

R e v i e w s

288 | April 2022 | volume 21 

https://www.proteinatlas.org/ENSG00000100075-SLC25A1/tissue


0123456789();: 

lowers triglyceride content in primary hepatocytes126 
(Supplementary Fig. 1). CIC expression is increased in 
the liver of people with NASH, and CTPI-2 treatment of 
HFD- fed mice reversed steatohepatitis and liver injury, 
with a concomitant reduction in serum cholesterol and 

triglycerides43. In addition, CTPI-2 reduced fasting glu-
cose and normalized glucose tolerance and insulin sen-
sitivity, potentially through targeting gluconeogenesis. 
However, as CTPI-2 also lowered body mass through 
mechanisms that are not understood, this may have 
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contributed to improvements in glucose homeostasis. 
BTC acutely inhibits glucose- stimulated insulin secre-
tion in INS1 cells and islets127; however, in vivo effects 
on pancreatic islets have not been evaluated. These data 
suggest that inhibition of CIC may exert favourable 
effects on obesity, NAFLD and T2D. Future studies are 
needed to determine the mechanisms that contribute to 
weight loss and whether this is required for the beneficial 
effects on liver steatosis and glucose homeostasis.

One potential mechanism by which CIC inhibitors 
may exert positive effects in metabolic disease inde-
pendently of reductions in body mass, may involve 
inhibition of inflammation. Inflammatory stimuli such 
as LPS, TNFα and IFNγ, elicit metabolic reprogram-
ming in macrophages and natural killer cells that leads 
to increases in CIC expression, suggesting that inhibition 
may exert anti- inflammatory effects128,129. In cultured 
macrophages, CTPI-1 inhibits inflammatory responses 
induced by TNFα and IFNγ128. Similarly, in obese mice 
CTPI-2 blocks inflammatory macrophage infiltration 
into the liver and adipose tissue and this is accompa-
nied by a decrease in circulating pro- inflammatory 

cytokines43. These data suggest that inhibiting CIC may 
reduce inflammation and this may exert a positive effect 
on metabolic diseases.

Cancer. As CIC expression is increased in several dif-
ferent cancer cells130 and inhibition of CIC blunts cell 
growth131, CIC has emerged as an attractive target for 
anticancer drug development. All three CIC inhibitors 
have been found to exert anticancer activity in cultured 
cancer cell lines123,132,133 and reduce tumour growth 
in vivo132,133. Future studies are needed to evaluate the 
effects of these inhibitors in clinical settings.

ACLY
Regulation and structure
ACLY expression is highest in adipose and liver and 
lowest in skeletal muscle (see Related links). Although 
ACLY is predominantly a cytosolic enzyme, it is also 
found within the nucleus (see Related links). The activa-
tion of ACLY involves four steps: first, Mg–ATP binding, 
and phosphorylation of His760, which catalyses the for-
mation of an enzyme- bound citryl- phosphate, followed 
by a CoA attack and formation of a citryl- CoA inter-
mediate and finally, citryl- CoA cleavage into final prod-
ucts acetyl- CoA and oxaloacetate (OAA). This reaction 
is allosterically activated by the glycolytic intermediates 
glucose 6- phosphate (G6P) and fructose 6- phosphate 
(F6P), with the latter being more potent134 (Fig. 3). Citrate 
also allosterically activates ACLY while the products 
of the reaction, acetyl- CoA and OAA, inhibit enzyme 
activity124.

In addition to allosteric activation, early studies iden-
tified that insulin135 and glucagon136 increase Ser/Thr 
phosphorylation on ACLY (Fig. 3), with subsequent stud-
ies establishing that Thr446 and Ser450 are phosphoryl-
ated by glycogen synthase kinase 3 (GSK3)137, and Ser454 
is phosphorylated by protein kinase A (PKA)136 and the 
‘insulin- stimulated kinase’138 that was subsequently iden-
tified as AKT (also known as PKB)139. mTORC2 was also 
suggested to phosphorylate ACLY Ser454 (reF.8), an effect 
shown to require AKT140. More recently, branched- chain 
ketoacid dehydrogenase kinase was also found to phos-
phorylate Ser454, thus linking ACLY activity with amino 
acid availability and insulin resistance141. Although ini-
tial studies found that Ser454 phosphorylation had min-
imal effects on ACLY activity142, further work established 
that phosphorylation of this residue decreased sensitivity 
to allosteric activation by F6P and G6P134. Subsequent 
studies in various cell lines have confirmed the impor-
tant effects of this phosphorylation event in enhancing 
ACLY activity8,104,143. In addition, ACLY is regulated by 
cleavage of the enzyme at a post- transcriptional level144.

The structural underpinnings of the chemical 
reactions mediated by ACLY are still not fully under-
stood124,145. ACLY consists of two modules, ACLY- A and 
ACLY- B, which are present as separate domains (hetero-
meric) in prokaryotes, but are linked (homomeric) in 
animals146 to form a functional tetrameric structure124 
(Fig.  4). Each monomer consists of an N- terminal 
citryl- CoA synthetase (CCS) module, containing CCSβ 
and CCSα regions, and a C- terminal citryl- CoA lyase 
(CCL) domain145. The ACLY- A module forms the CCSβ 

Fig. 4 | Structural domains and binding sites of DNL inhibitors with chemical 
structures of the most advanced inhibitors. Lipogenesis inhibitors interact with one  
or more druggable sites of the enzyme to exhibit an inhibitory effect. Linear organization 
and model representation of each enzyme are shown with known inhibitor binding sites 
in colours. Inhibitors with known enzyme binding sites are colour coded with their 
respective interaction sites. a | Citrate/isocitrate carrier (CIC) inhibitors: compounds that 
bind to citrate binding site 1 are shown in light blue and those that bind to citrate binding 
site 2 in orange. The chemical structure of CTPI-2 is shown. b | ATP- citrate lyase (ACLY) 
inhibitors: compounds that interact with the CoA binding site are highlighted in red  
and those that interact with citrate binding site in dark blue. The chemical structure of 
bempedoic acid is shown. c | Acetyl- CoA carboxylase (ACC) inhibitors: compounds that 
target the biotin carboxylase (BC) domain are highlighted in green and those that target 
the carboxyl transferase (CT) domain are highlighted in violet. Chemical structures of 
clinical stage inhibitors are shown. d | Fatty acid synthase (FAS) inhibitors: inhibitors that 
bind to the β- ketoacyl synthase (KS) domain are highlighted in purple, inhibitors that bind 
to malonyl- acetyl transferase (MAT) are in blue, inhibitors that bind to enoyl reductase 
(ER) are in green, inhibitors that bind to β- ketoreductase (KR) in yellow and those that 
bind to thioesterase (TE) in orange. The chemical structure of TVB-2640 is shown.  
BCCP, biotin carboxyl carrier protein; BTC, benzenetricarboxylate; CCL, citryl- CoA lyase; 
CCS, citryl- CoA synthetase; DH, dehydratase; HCA, (−)- hydroxycitric acid; TMD, trans-
membrane domain. Part a CIC structure adapted from P53007 , CC BY 4.0; part b ACLY 
structure adapted from PDB ID 6POF, CC BY 1.0; part c ACC structure adapted from  
PDB ID 5CSK, CC BY 1.0; part d FAS structure adapted from PDB ID 2VZ8, CC BY 1.0.

◀

Table 1 | CIC inhibitors

Compound 
(developer)

Potency in 
biochemical 
assays

Indication and/or preclinical 
effects

Refs

Preclinical stage inhibitors

Benzenetricarboxylate Ki: 0.07–0.16 mM Decreased triglyceride 
synthesis, reduced glucose-  
stimulated insulin secretion and 
inhibited cancer cell growth

126, 

127,132

CPTI-1 (Rosalind Franklin 
University of Medicine 
and Science, USA)

Ki: 
0.048–0.07 mM

Reduced inflammation and 
inhibited cancer cell growth

43,128

CPTI-2 (Lombardi 
Comprehensive Cancer 
Center, USA)

Kd: 3.5 μM Decreased hepatic steatosis, 
improved lipid and glucose 
homeostasis, and inhibited 
cancer cell growth

43,129

CIC, citrate/isocitrate carrier; Kd, dissociation constant; Ki, inhibition constant.
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region, while ACLY- B forms the remaining domains of 
the monomer, with Ser/Thr phosphorylation occurring 
within a linker region between the modules145. Recent 
studies have provided a detailed structural basis for 
the multistep catalytic mechanism of ACLY, showing 
that citrate binds to the CCSβ region, while the CCSα 
region serves as a CoA binding site124. An additional 
CoA binding site is in the CCL domain124,145; however, it 
is controversial whether binding at this site is required 
for acetyl- CoA formation.

Pharmacological inhibitors
ACLY is an attractive drug target owing to its strategic 
position at the nexus of fatty acid, cholesterol and carbo-
hydrate metabolism. As such, several ACLY inhibitors 
have been identified on the basis of their ability to medi-
ate concomitant inhibition of fatty acid and cholesterol 
synthesis, while activating fatty acid β- oxidation.

The first identified and extensively studied inhibitor  
of ACLY was (−)- hydroxycitric acid (HCA), a derivative of  
citric acid found in tropical plants Garcinia cambogia 
and Hibiscus subdariffa147. HCA inhibits ACLY by com-
peting with citrate147, which results in concomitant sup-
pression of DNL and cholesterol biosynthesis148 (TABLe 2; 
Supplementary Table 2). However, HCA possesses 
poor physicochemical properties and was later found 
to allosterically activate ACC149. Although numerous 
attempts were made to improve on the HCA scaffold, 
these efforts were unsuccessful as off- target effects  
continued to be observed150.

Additional screening of natural products identified 
several other ACLY inhibitors, including purpurone151, 
a series of anthrones and anthraquinones derived from 
Penicillium sp.152, radicicol, a 14- membered macrolide 
originally isolated from Monosporium bonorden153, and 
cucurbitacin B, a natural bioactive compound abundant 
in cucumber154. Another series of inhibitors was devel-
oped on the chemical scaffold of the natural product 
emodin155. Although many of these compounds sup-
pressed ACLY activity in biochemical assays, their spec-
ificity for ACLY and mechanisms of action remained 
unresolved156.

Several inhibitors were designed on the basis of an 
alternative targeting strategy aimed to disrupt the for-
mation of a stable citryl- CoA intermediate bound to the 
active site. SB-201076 was a promising compound that 
demonstrated activity against purified rat ACLY, but 
was inactive in cell- based DNL assays owing to poor cell 
permeability157. Improved cell permeability was achieved 
by generating the lactone prodrug analogue, SB-204990, 
which undergoes hydrolysis and activation once inside 
the cell to yield the active metabolite, SB-201076 (reF.158). 
However, development of this series was halted before 
clinical development. More recently, in silico screen-
ing identified four subtypes of furans and benzofurans 
that inhibit ACLY by also binding to the citrate binding 
domain159.

A novel chemical scaffold discovered by high-  
throughput screening (HTS) led to the identification of 
BMS-303141, a 2- hydroxy- N- arylbenzenesulfonamide160. 

Table 2 | ACLY inhibitors

Compound (developer) Potency in 
biochemical assays

Indication and/or preclinical 
effects

Clinical trial ID 
or refs

Clinical stage inhibitors

Bempedoic acid (Esperion 
Therapeutics, USA)

Ki: 2 μM Primary hypercholesterolaemia 
and established atherosclerotic 
cardiovascular disease

Approved

Hydroxycitrate Ki: 0.15 μM Obesity and type 2 diabetes NCT01238887 
and NCT00699413 
(terminated, 
phases I and IV)

Urine chemistries NCT03348228  
(in progress)

Preclinical stage inhibitors

BMS-303141 (Bristol- Myers Squibb 
Pharmaceutical Research Institute, 
USA)

IC50: 0.13 μM Reduced weight gain, plasma lipids 
and glycaemia, and inhibited cancer 
cell growth

94,160

Emodin derivates (Harvard 
Medical School, USA)

IC50: 3–30 μM Inhibited cancer cell growth 155

Furan carboxylate derivates 
(Harvard Medical School, USA)

IC50: 4.1–11.9 μM Inhibited cancer cell growth 159

MEDICA 16 (Hadassah Medical 
School, Israel)

Ki: 16 μM Reduced weight gain, hepatic 
steatosis, plasma lipids and 
atherosclerosis

162,177,178

SB-204990 (SmithKline Beecham 
Pharmaceuticals, UK)

Ki: 1 μM Lowered plasma lipids and inhibited 
tumour growth

86,158

Discovery stage inhibitor

NDI-091143 (Nimbus Therapeutics, 
USA)

Ki: 0.07 μM No functional studies reported 161

ACLY, ATP- citrate lyase; IC50, half- maximal inhibitory concentration; Ki, inhibition constant.
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This compound inhibits ACLY, but also ACC1 and 
ACC2, although nearly 100- fold less potently160. 
Building on the BMS-303141 chemical scaffold, 
Nimbus Therapeutics used rational computer- aided 
design to develop a new series of ACLY inhibitors. The 
most potent compound, NDI-091143, inhibited human 
ACLY competitively with respect to citrate. The use 
of cryo- electron microscopy revealed an unexpected 
allosteric mechanism of inhibition whereby NDI-091143 
bound next to the citrate binding site in a hydrophobic 
cavity, resulting in an extensive conformational change 
that prevented citrate binding to the enzyme. Although 
no cell- based or in vivo data were reported, the identi-
fication of this novel allosteric mechanism provides a 
new approach to discover novel ACLY inhibitors with 
improved drug- like properties161.

One of the first synthetic fatty acid- like ACLY inhib-
itors was MEDICA 16. This compound was designed 
by modifying long- chain dicarboxylic fatty acids to 
generate ββ′- methyl- substituted α,ω- dicarboxylic acids, 
with the aim of maintaining the lipid- regulating prop-
erties of natural long- chain fatty acids while improv-
ing drug- like properties by preventing β- oxidation 
and enzymatic esterification162. MEDICA 16 inhibited 
ACLY competitively with citrate163 and ACC competi-
tively with acetyl- CoA and ATP164. A similar dicarbox-
ylic acid, 3- thiadicarboxylic acid, was synthesized by 
replacing the dimethyl substitution in the β- position 
with a sulfur atom. This molecule inhibited ACLY and 
FAS, resulting in reduced levels of plasma triglycerides 
and cholesterol165. However, neither molecule advanced 
beyond preclinical studies.

Using a phenotypic screen based on inhibiting fatty 
acid and sterol synthesis in primary rat liver cells, Esperion 
Therapeutics discovered a liver- specific inhibitor, ETC-
1002, 8- hydroxy-2,2,14,14- tetramethylpentadecanedioic 
acid, also known as bempedoic acid and ESP-55016 
(reF.166). Studies have established that bempedoyl- CoA 
potently inhibits recombinant human ACLY com-
petitively with CoA and that the prodrug (bempe-
doic acid) is inactive167. Importantly, conversion into 
the CoA con jugate is dependent on very long- chain 
acyl- CoA synthetase (ACSVL1/FATP2/SCL27A2), an 
enzyme highly expressed in the liver, but not in most 
other tissues including skeletal muscle, thus enabling 
the liver- specific actions of bempedoic acid167. And 
while bempedoyl- CoA also inhibits ACC166 and activates 
AMPKβ1- containing heterotrimers167, the relevance 
of these activities has not been demonstrated, since 
potency towards ACC is relatively weak and bempedoic 
acid continues to suppress liver DNL even in the absence 
of the AMPKβ1 isoform167.

Therapeutic indications
Obesity. Preclinical studies in rodents found that HCA 
reduces body mass through a mechanism related to 
caloric restriction168,169, but this effect is not observed in 
humans170,171 (Supplementary Fig. 1). Bempedoic acid 
and BMS-303141, two of the better- characterized ACLY 
inhibitors, have strengthened a potential connection 
between weight loss and ACLY, with both reducing body 
weight gain and adiposity independently of changes in 

food intake in preclinical models160,166,167,172. Importantly, 
recent evidence has emerged from pooled analyses of 
clinical trials that bempedoic acid elicits modest weight 
loss in humans173. Studies examining the potential mech-
anisms by which ACLY inhibitors exert weight loss are 
warranted.

NAFLD–NASH and type 2 diabetes. Liver lipids and 
insulin sensitivity are directly linked; as such there is 
a very close connection between NAFLD and T2D. 
MEDICA 16 reduced liver lipid content162, hepatic 
glucose production, and improved peripheral insu-
lin sensitivity174,175 in several distinct rodent models of 
obesity- induced insulin resistance. Bempedoic acid also 
reduced hepatic triglycerides and markers of inflamma-
tion in Ldlr−/− mice fed a diet high in fat and cholesterol. 
Importantly, the liver lipid- lowering effects of bempe-
doic acid are independent of liver AMPK activation167. 
In multiple mouse models, bempedoic acid also reduced 
fasting glucose, fasting insulin and glucose intoler-
ance, suggesting improvements in insulin sensitivity172. 
Importantly, these effects appear to be translated to 
humans, as a meta- analysis of randomized trials suggests 
that bempedoic acid reduces new incidence or worsen-
ing of diabetes176. Whether bempedoic acid is effective at 
reversing NASH and fibrosis remains to be determined.

Cardiovascular disease. Given its dual impact on choles-
terol and fatty acid biosynthesis, pharmacological ACLY 
inhibition has been studied for CVD. Early studies in 
animal models demonstrated the broad lipid- lowering 
effects of MEDICA 16 (reFs177,178) on circulating levels 
of cholesterol and triglycerides and associated beneficial 
effects on vascular and myocardial lesions178. Studies of 
BMS-303141 and SB-204990 further support ACLY as 
a target for hyperlipidaemia, as both compounds effec-
tively lowered circulating triglycerides and cholesterol 
in animal models of hyperlipidaemia158,160. Bempedoic 
acid also suppresses hepatic cholesterol and fatty acid 
biosynthesis172 and its hypolipidaemic actions have been 
demonstrated in hyperlipidaemic hamsters172, obese 
Zucker rats166 and in mice deficient for ApoE167 or the 
LDL receptor179 in which atherosclerosis is also reduced. 
In humans, bempedoic acid promotes dose- dependent 
LDL- cholesterol lowering effects as monotherapy, and 
when combined with a statin or ezetimibe180. Unlike 
rodents, in which bempedoic acid has a profound 
effect in reducing both plasma triglycerides and choles-
terol, the primary effect of bempedoic acid in humans 
appears to be a reduction in plasma LDL- cholesterol180. 
The lack of effect on plasma triglycerides may poten-
tially be due to lower liver DNL in humans compared 
with rodents. In addition to lowering LDL- cholesterol, 
bempedoic acid also reduces several plasma markers 
associated with atherosclerotic CVD such as total cho-
lesterol, non- HDL cholesterol, plasma apoB, LDL par-
ticle numbers and high- sensitivity C- reactive protein180. 
More recently, bempedoic acid has been demonstrated 
to be a safe and effective therapeutic option for patients 
on maximally tolerated statin therapy181 or patients 
intolerant of statins182. Bempedoic acid was recently 
approved for patients with heterozygous familial 
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hypercholesterolaemia (HeFH) (USA and Switzerland), 
established atherosclerotic CVD (ASCVD) (USA and 
Switzerland) who need additional LDL- cholesterol 
lowering, as an adjunct to diet and maximally tolerated 
statins (USA, EU, Switzerland and UK), and alone or 
with other lipid- lowering therapies in patients who are 
statin- intolerant or for whom a statin is contraindicated 
(EU and UK). The effect on cardiovascular morbidity 
and mortality has not been established.

Cancer. Substantial evidence supports the positive 
effects of pharmacological inhibition of ACLY using 
SB-204990 and BMS-303141 in cultured cancer cells94. 
However, despite the robust in vitro evidence, there is 
surprisingly few data supporting the concept that phar-
macological inhibition of ACLY may be effective in vivo. 
For example, although early studies of HCA showed 
antitumour effects183, target specificity and suppression 
of food consumption and body mass confounded inter-
pretation of the primary mechanism of action. Similarly, 
SB-204990 reduced tumour growth in several distinct 
xenograft models; however, weight loss was again a 
confounding variable and no direct effect on metabolic 
reprogramming within the tumour was reported86. More 
recently, bempedoic acid has been demonstrated to 
inhibit hepatocellular carcinoma in mice, but given the 
requirement for bempedoic acid to be converted into a 
CoA by ASCVL1, it is currently unclear whether this is 
due to direct tumour effects or is secondary to inhibition 
of ACLY in the liver87. Future studies in mouse models 
examining the effects of pharmacological ACLY inhib-
itors in conjunction with measures of target engage-
ment within the tumour (for example, suppression of 
DNL) are needed to evaluate whether pharmacological  
inhibition of ACLY may be effective in cancer.

ACC
Regulation and structure
In mammals, there are two isoforms of ACC, ACC1 
(also known as ACCα) and ACC2 (also known as 
ACCβ). ACC1 is ubiquitously expressed (see Related 
links), whereas ACC2 is predominantly found in skele-
tal muscle, breast, adipose and liver (see Related links). 
ACC isoforms exhibit amino acid sequence similarity 
of 82% and 76% in their biotin carboxylase (BC) and 
carboxyl transferase (CT) domains, respectively184, with 
the major difference being an N- terminal extension in 
ACC2 resulting in a higher molecular weight compared 
with ACC1 (reF.184). Although both ACC isoforms are 
expressed in the cytosol, it was hypothesized that the 
N- terminal extension in ACC2 might facilitate a pref-
erential role (compared with ACC1) in controlling 
fatty acid oxidation, because of proximity to carnitine 
palmitoyltransferase 1, which is allosterically inhibited 
by malonyl- CoA184. Genetic evidence supports signifi-
cant overlap between ACC isoforms in regulating fatty 
acid oxidation and DNL47,49, suggesting that the relative 
importance of each isoform in regulating DNL and fatty 
acid oxidation is related to tissue- specific expression 
profiles rather than cellular localization.

The mechanisms linking tricarboxylic acid (TCA) 
cycle intermediates with increases in DNL were first 

uncovered in 1962 when it was found that citrate stim-
ulated the activity of ACC125 (Fig. 3). Subsequent studies 
identified that activation was mediated by promoting 
polymerization of the enzyme, an effect inhibited by 
LCFA- CoAs185. In addition to allosteric control, ACC 
is inactivated by phosphorylation186, which is sufficient 
to overcome allosteric activation under physiologi-
cal concentrations of citrate187 (Fig. 3). This suggested 
that phosphorylation, not allosteric control, may be 
the predominant mechanism regulating ACC activity. 
ACC is phosphorylated and inhibited by the AMPK 
at Ser79 (reF.188). ACC2 activity is similarly inhibited 
by phosphorylation at a homologous site (Ser221). In 
hepatocytes, mutations in both ACC1 and ACC2 were 
necessary to exert maximal effects on DNL and fatty 
acid oxidation189. Interestingly, a recent study found 
that LCFA- CoAs directly activate AMPK190, thus enact-
ing a bimodal mechanism involving both allosteric and 
covalent inhibi tion of ACC activity, to inhibit DNL  
and increase fatty acid oxidation.

The ACC enzyme consists of three domains — BC, 
biotin- containing carboxyl carrier protein (BCCP) and 
CT — which are assembled in a single chain in most 
eukaryotes including mammals (Fig. 4). In eukaryotes, 
ACC functions as dimers and higher oligomers with the 
BC and CT domain dimers located at the top and bottom 
of the structure, respectively, while the BCCP is located 
within the CT active site191. The ACC reaction involves 
two steps: the first is ATP- dependent carboxylation of 
a biotin moiety by the BCCP, followed by transfer of a 
carboxyl group from biotin to acetyl- CoA to produce 
malonyl- CoA, within the CT192. Recent structural stud-
ies have detailed the dynamic interactions that occur 
between polymerization state and filament structures 
upon exposure to citrate and palmitoyl- CoA, effec-
tively locking the enzyme into catalytically competent 
or incompetent conformational states, respectively193. 
Phosphorylation at Ser79 in ACC1, and presumably 
also Ser221 in ACC2, also induces a large conforma-
tional change involving the BC dimer interface, which 
promotes dissociation of the dimer and inactivation194. 
Thus, both allosteric regulation of ACC by citrate and 
palmitoyl- CoA and phosphorylation by AMPK regulate 
enzyme activity through alterations in conformational 
state188,193.

Pharmacological inhibitors
Inhibition of ACC lowers malonyl- CoA, which is also an 
allosteric inhibitor of carnitine palmitoyl transferase 1,  
the rate- limiting enzyme that controls the flux of fatty 
acids into the mitochondria for β- oxidation. Thus, ACC 
inhibition represents an attractive approach to simulta-
neously suppress DNL and increase fatty acid oxidation. 
Given the embryonic lethality associated with ACC1 
inhibition, differential tissue- specific expression profiles 
and potential compensation by the alternative isozyme, 
isozyme- specific (ACC1 or ACC2) and nonspecific 
(ACC1 and ACC2) inhibitors, as well as tissue- selective 
inhibitors, have been pursued.

The first generation of ACC inhibitors to be stud-
ied were soraphen A and TOFA (5-(tetradecyloxy)- 
2- furancarboxylic acid). Soraphen A is a macrocyclic 
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polyketide, originally isolated from the soil myxobac-
terium Sorangium cellulosum for its potent antifungal 
activity. It was later identified as an inhibitor of yeast 
and rat ACC1 (reF.195). In eukaryotes soraphen A binds to 
the BC domain, allosterically inhibiting enzyme activity 
by disrupting oligomerization; however, this does not 
occur in prokaryotes owing to large structural differ-
ences within the BC domain196 (TABLe 3; Supplementary 
Table 3). TOFA is intracellularly converted into an ester, 
TOFyl- CoA, which acts as an ACC inhibitor but also 
reduces cholesterol synthesis197, suggesting that it may 
inhibit ACLY. Given limited bioavailability and lack of 
specificity, neither agent was commercially developed.

Pfizer identified a series of isozyme- nonspecific 
ACC inhibitors through HTS which, following a series 

of optimizations, led to CP-640186 (reF.198). The crys-
tal structure of the yeast CT domain of ACC in com-
plex with CP-640186 indicates that the compound has 
tight associations with the active site of the enzyme, 
blocking biotin binding to the CT domain199. Taisho 
Pharmaceutical200 and Takeda Pharmaceuticals201 sub-
sequently developed derivatives of CP-640186; however, 
these compounds had relatively poor metabolic stability 
and, while subsequent reductions in lipophilicity led to 
more favourable pharmacokinetics202, and the introduc-
tion of a 7- methoxy group led to greater potency and 
metabolic stability203, none of these compounds entered 
clinical testing. Also binding to the CT domain is WZ66, 
a compound identified via structure- based drug design 
studies by China Pharmaceutical University, which 

Table 3 | ACC inhibitors

Compound (developer) Potency in biochemical 
assays

Indication and/or preclinical 
effects

Clinical trial ID or 
refs

Clinical stage inhibitors

Firsocostat (Nimbus 
Therapeutics, USA)

IC50: 2.1 nM (hACC1),  
6.1 nM (hACC2)

NASH NCT02856555 
(completed, phase II)

PF-05221304 (Pfizer Inc., 
USA)

IC50: 13 nM (hACC1),  
9 nM (hACC2)

NAFLD–NASH NCT03248882 
(completed, phase II)

PF-05175157 (Pfizer Inc., 
USA)

IC50: 27 nM (hACC1),  
33 nM (hACC2)

Type 2 diabetes NCT01792635 
(terminated, phase II)

Acne vulgaris NCT02100527 
(withdrawn)

MK-4074 (Merck &Co., USA) IC50: ~3 nM (hACC1),  
~3 nM (hACC2)

NAFLD NCT01431521 
(completed, phase I)

Preclinical stage inhibitors

A-908292 (Abbott 
Laboratories, USA)

IC50: >30 μM (hACC1), 
0.023 μM (hACC2)

Reduced plasma lipids  
and glycaemia

226

Carboxamide derivative-1k 
(Takeda, Japan)

IC50: 170 nM (hACC1),  
2 µM (hACC2)

Decreased malonyl- CoA  
in xenograft tumour

209

CP-640186 (Pfizer Inc., USA) IC50: 53 nM (rACC1),  
61 nM (rACC2)

Reduced weight gain, hepatic 
steatosis, plasma lipids and 
glycaemia, and inhibited cancer 
growth

216,230

Monocyclic derivate-1q 
(Takeda, Japan)

IC50: 0.58 nM(hACC1), 
>10 μM (hACC2)

Decreased malonyl- CoA in 
xenograft tumour

208

ND-654 (Nimbus 
Therapeutics, USA)

IC50: 3 nM (hACC1),  
8 nM (hACC2)

Inhibited hepatocellular 
carcinoma growth, reduced 
hepatic steatosis and plasma 
lipids

189

ND-646 (Nimbus 
Therapeutics, USA)

IC50: 3.5 nM (hACC1),  
4.1 nM (hACC2)

Inhibited tumour growth 207

Olefin derivate-2e (Shionogi 
& Co., Japan)

IC50: 1,950 nM (hACC1), 
1.9 nM (hACC2)

Improved glucose homeostasis 213

(S)-9c (Boehringer Ingelheim 
Pharma GmbH & Co., USA)

IC50: >30 μM (hACC1),  
0.07 μM (hACC2)

Improved glucose and lipid 
homeostasis

212

Soraphen A Ki: 2.1 nM (yACC) Reduced weight gain, improved 
insulin sensitivity and inhibited 
cancer cell growth

214,228

TOFA IC50: 2.5 μM (rACC) Reduced lipid synthesis, 
inflammation and cancer cell 
growth

229

WZ66 (China Pharmaceutical 
University, China)

IC50: 435.9 nM (hACC1), 
141.3 nM (hACC2)

Reduced hepatic steatosis and 
hepatic stellate cell activation

204

ACC, acetyl- CoA carboxylase; hACC, human ACC; IC50, half- maximal inhibitory concentration; Kd, dissociation constant; Ki, 
inhibition constant; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; rACC, rat ACC; yACC, yeast ACC.
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inhibits recombinant human ACC1 and ACC2 in cells 
and in rodents204.

Several pan- ACC inhibitors have recently entered 
clinical testing in humans. Studies by Merck revealed 
MK-4074 as a liver- selective ACC inhibitor that 
dose- dependently inhibited DNL and lowered liver lipids 
in both rodent and humans48 (TABLe 3; Supplementary 
Table 3). Although the exact binding site of the com-
pound has not been published, it does not appear that 
clinical development is continuing, potentially owing 
to the observed induction of hypertriglyceridaemia48. 
Following on from studies with CP-640186, Pfizer devel-
oped PF-05221304, as a selective, orally bioavailable and 
reversible ACC inhibitor that is preferentially distributed 
to the liver205, thereby avoiding potential toxicity related to  
the inhibition of platelet formation18 and developmental 
defects17. Phase II clinical studies with PF-05221304 alone 
or in combination with a DGAT inhibitor, PF-06865571, 
in NAFLD–NASH have been completed72.

In contrast to PF-05221304, which binds to the CT 
domain, Nimbus Therapeutics developed several potent 
ACC inhibitors by focusing on compounds that bind to 
the BC domain, blocking dimerization. Briefly, using 
crystal structure of the human ACC2 BC domain in 
complex with soraphen A and subsequent optimization 
of noncovalent interactions with the dimerization site, 
they developed a reversible ACC1 and ACC2 inhibitor, 
ND-630 (reF.206). In contrast to previous ACC inhib-
itors, this compound disrupted subunit dimerization 
by mimicking the effects of AMPK phosphorylation206. 
A second compound of this series, ND-646, exhibited 
similar potency and mode of inhibition to ND-630, but 
was developed to be more broadly distributed among 
peripheral tissues207. The third compound, ND-654, 
was modified to allow for enhanced hepatic uptake189. 
ND-630, also known as GS-0976 (Firsocostat), entered 
clinical development and is currently in phase II clinical 
trials for NASH.

In addition to the pan- ACC inhibitors described 
above, isozyme- specific ACC inhibitors have been devel-
oped. Takeda identified novel monocyclic derivatives208 
and carboxamide derivatives209 that demonstrated 
specificity for ACC1 over ACC2. Abbott Laboratories 
developed a series of ACC2- specific inhibitors, one 
of the most potent and selective being A-908292, 
which exhibited more than 1,000- fold selectivity 
against ACC2 compared with ACC1. This compound 
dose- dependently lowered malonyl- CoA in muscle but 
not liver of rodents210. However, a preliminary safety 
assessment showed neurological and cardiovascular side 
effects that were resolved by replacement of the alkyne 
moiety with a heteroaryl linker211. Building on this series, 
Boehringer Ingelheim Pharma and Shionogi research 
laboratory also identified a series of new molecules that 
selectively inhibited ACC2 compared with ACC1 with-
out toxicity212,213. To the best of our knowledge, none of 
these agents has entered clinical testing.

Therapeutic indications
NAFLD–NASH and type 2 diabetes. Significant preclin-
ical evidence supports the benefits of ACC inhibition 
on liver steatosis, but they have also revealed potential 

on- target liabilities. In rodents, soraphen A lowered 
steatosis and this was associated with improved insu-
lin sensitivity214 (Supplementary Fig. 1). However, these 
improvements in insulin sensitivity did not translate to 
reductions in blood glucose, as consistent with studies in 
ACC null mice, ACC inhibition reduced insulin secre-
tion from pancreatic β- cells215. To avoid this problem, 
TOFA derivatives such as WZ66 were developed that 
have a preferential liver distribution, reducing hepatic 
steatosis and hepatic stellate cell activation in mice with 
diet- induced obesity204. CP-640186 also lowers hepatic 
steatosis and insulin resistance in mice fed a HFD; how-
ever, this may be secondary to reductions in adiposity216. 
Lastly, short- term treatment of db/db mice with a selec-
tive ACC2 inhibitor, (S)-9c, reduced muscle malonyl- 
CoA levels and intramyocellular lipids while long- term 
treatment increased muscle glucose uptake and glucose 
tolerance while reducing HbA1c, postprandial glucose and 
plasma triacylglycerol levels212. These studies suggest 
that inhibition of ACC is associated with reductions in 
liver steatosis and modest improvements in glycaemic 
control.

Given the promising effect of studies evaluating the 
effects of genetic and pharmacological inhibition of 
ACC on liver steatosis, several new- generation ACC 
inhibitors have advanced to clinical trials in NAFLD–
NASH. In a phase I clinical study, PF-05175157 reduced  
DNL and increased whole- body fatty acid utiliza-
tion217. However, subsequent clinical trials were ter-
minated owing to extra- hepatic activity leading to 
reduced platelet count18,205. The liver- optimized inhib-
itor, PF-05221304, was subsequently shown to inhibit 
DNL, stimulate fatty acid oxidation and reduce triglyc-
eride accumulation in primary human hepatocytes, 
along with reducing DNL, hepatic steatosis, fibrosis 
and immune cell activation in preclinical models218. 
Preclinical studies designed to assess the level of liver 
targeting achieved with PF-05221304 showed a maximal 
reduction of 82% in hepatic DNL compared with up to 
33% reductions in lung and bone marrow219. In phase I  
clinical trials, PF-05221304 inhibited hepatic DNL in 
a dose- dependent manner without affecting platelet 
count, consistent with its more liver- targeted actions205. 
And in phase II clinical trials for NAFLD, PF-05221304 
dose- dependently reduced liver fat by up to 65% at the 
highest dose while also lowering HbA1c (reF.72).

Studies using the liver- specific inhibitor MK-4074 
in rodents and humans have supported the therapeutic 
potential of potent ACC inhibition, but they have also 
raised additional questions about on- target liabilities. In 
a phase I clinical trial, MK-4074 reduced hepatic steatosis 
by 36% after 4 weeks of treatment48. In a preclinical model 
of NASH, the compound decreased liver fibrosis by 19% 
in addition to reducing liver fat220. However, clinical  
development of MK-4074 has been discontinued.

ND-630 is preferentially distributed to liver206 and 
shows favourable effects in both preclinical and clini-
cal studies. ND-630 dose- dependently reduces hepatic 
steatosis and hyperinsulinaemia in rodents206. An inde-
pendent group has confirmed these effects on hepatic 
steatosis in animals fed a Western diet and also observed 
reductions in fibrosis221. In line with these studies, 

HbA1c

Haemoglobin A1c (HbA1c) is  
a glycated haemoglobin — a 
measurement used for the 
assessment of glycaemic 
control.
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ND-630 inhibits hepatic stellate cell activation to reduce 
fibrogenic activity222. In a phase I clinical study, ND-630/
GS-0976 was well tolerated and inhibited hepatic 
DNL in subjects with obesity and/or overweight223. 
In an open labelled, non- placebo- controlled study,  
patients with NASH treated with ND-630 had a median 
decrease of 22% in hepatic DNL and a significant reduc-
tion in hepatic fat and liver stiffness after 12 weeks  
of treatment4. In a subsequent larger randomized, 
placebo-controlled study, ND-630 treatment reduced 
hepatic steatosis by 21%224. ND-630 has recently been 
tested in combination with the apoptosis signal- 
regulating kinase 1 (ASK1) inhibitor selonsertib and  
farnesoid X receptor (FXR) agonist cilofexor in patients 
with bridging fibrosis or compensated cirrhosis, with 
combinations showing greater improvement in NASH 
activity than ND-630 alone225. Phase II studies with 
ND-630 and the GLP1R- agonist semaglutide are  
currently in progress.

Cardiovascular disease. Circulating triglycerides are an 
important risk factor for CVD, and in preclinical stud-
ies in mice, several ACC inhibitors, such as CP-640186 
(reF.216), A-908292 (reF.226), (S)-9c212, ND-630 (reF.206) 
and ND-654 (reF.189) lowered plasma triglyceride levels. 
However, in humans, ACC inhibitors dose- dependently 
increase plasma triglycerides and/or VLDL. As originally 
described for MK-4074 (reF.48), but also observed with 
PF‐05221304 (reF.72), this increase in circulating triglyc-
erides is likely mediated by the effects of decreased liver 
polyunsaturated fatty acids to stimulate SREBP1c activa-
tion, leading to increased GPAT and VLDL secretion48. 
ND-630 also increases plasma triglycerides224, an effect 
associated with reduced triglyceride clearance227. To 
avoid this adverse effect, preclinical studies have been 
undertaken that combine ACC inhibitors with agents 
that reduce plasma triglycerides such as omega-3 fatty 
acids48 and PPARα agonists such as fenofibrate227. 
Similarly, DGAT2 inhibition also blocked the effects of 
PF‐05221304, to increase liver SREBP1c and circulat-
ing triglycerides while exerting additive effects on liver 
fibrosis in rodent models72. Importantly, in phase II  
clinical trials, DGAT2 inhibition also mitigated 
PF‐05221304- induced increases in serum triglycerides 
and ApoaC3 (reF.72). These data suggest that combina-
tion strategies may be an effective means to improve the 
cardiovascular risk profile of ACC inhibitors in patients 
with NASH.

Cancer. Studies of early ACC inhibitors, soraphen A228 
and TOFA229 demonstrated inhibitory effects on multiple 
cancer types. Although the contribution of ACC inhib-
ition to the effects of these early inhibitors is unknown, 
the anti- tumorigenesic effect of ACC inhibition has 
been supported by more recent studies using inhibitors 
with improved potency and specificity. For example, 
CP-640186 reduced the growth of human lung cancer 
cells230, while ND-646 and ND-654 reduced tumour bur-
den in mouse models of non- small- cell lung cancer207 
and hepatocellular carcinoma189, respectively, when 
used alone and in combination with existing standards 
of care.

FAS
Regulation and structure
Human FAS is highly expressed in adipose tissues and 
reproductive organs (see Related links). In contrast to 
ACLY and ACC, few allosteric and covalent mecha-
nisms regulating the activity of FAS have been described 
(Fig. 3). In yeast, phosphorylation of Ser1140, Ser1640 
and Ser1827 are associated with increased 18:0- CoA 
production231, while in a breast cancer cell line, FAS is 
phosphorylated at Tyr66 when in complex with human 
epidermal growth factor receptor 2 (reF.232). In addition, 
FAS is degraded by E3 ubiquitin ligase COP1 in the pres-
ence of adaptor protein SHP2 and deubiquitinated by 
ubiquitin- specific protease 2a233 (Fig. 3). These data sug-
gest that under some conditions and cell types, FAS may 
be regulated by covalent and ubiquitylation mechanisms; 
however, it appears that the regulation of FAS primarily 
occurs through transcriptional control.

FAS has evolved structurally and functionally dif-
ferent variants that are generally divided into two types 
based on the organization of their catalytic units — type 1  
and type 2 FAS234,235. In eukaryotes, the multifunctional 
complex of type 1 FAS is expressed in the cytosol and 
regulated by only one gene234. Type 2 FAS is present in 
mitochondria and functions completely independently 
of the cytosolic type 1 FAS235. Type 1 FAS typically 
generates only palmitate, whereas type 2 FAS is able to 
produce diverse fatty acids, including unsaturated fatty 
acids236. Structurally, mammalian FAS is a homodimer 
protein that consists of two multifunctional polypep-
tides, containing seven functional domains and two 
non- enzymatic or pseudo domains in each chain237, all 
of which are required for fatty acid biosynthesis (Fig. 4).

Pharmacological inhibitors
Several natural products and their derivatives have been 
found to inhibit FAS. Cerulenin, an antifungal antib iotic 
originally isolated from Cephalosporium caerulens inhib-
its FAS in both mammals and bacteria238. And although 
cerulenin inhibits FAS by binding covalently to the 
active cysteine thiol in the β- ketoacyl synthase (KS) 
domain (Fig. 4), it also inhibits HMG- CoA synthetase 
activity238, blocking sterol synthesis. The reactivity and 
lack of specificity of cerulenin led to the development of 
the synthetic analogue C75, which binds to the KS239 and 
thioesterase (TE) domains of human FAS240.

Several novel small- molecule FAS inhibitors have 
been developed that inhibit the TE domain. Orlistat, also 
known as tetrahydrolipstatin, is a derivative of lipsta-
tin, a naturally occurring inhibitor of pancreatic lipase, 
and was found to also inhibit FAS through irreversible 
binding to the TE domain of the enzyme241. Owing to 
poor oral bioavailability and metabolic instability, sev-
eral reformulation efforts were initiated, including a 
hydrophilic nanoparticle delivery system242, poly(ethy-
lene glycol)- conjugated poly(lactic- co- glycolic acid) 
nanoparticles243 and folate receptor- targeted micellar 
nanoparticles244; however, none of these has moved 
into clinical development. Fasnall, a thiophenopyrim-
idine derivative also targets cofactor binding sites in 
multiple domains and in pharmacokinetic and toxicity 
studies shows no toxic effects245. More recently, triazole 

NAture reviews | DRug DISCOvERY

R e v i e w s

  volume 21 | April 2022 | 297

https://www.proteinatlas.org/ENSG00000169710-FASN/tissue


0123456789();: 

urea- based substitutions to Fasnall, led to the identifi-
cation of MP- ML-24- N1, which inhibits FAS through 
the TE domain and has good cellular permeability246. 
Lastly, IPI-9119 irreversibly inhibits the TE domain by 
promoting acetylation of the catalytic serine residue and 
has shown high potency and selectivity against FAS as 
well as good pharmacological properties247.

FAS inhibitors that target the β- ketoacyl reduc-
tase (KR) domain have also been developed with 
some recently entering clinical testing. GSK identified 
GSK2194069 using an HTS approach based on com-
pound competition with NADPH for binding in the 
KR domain248. Inhibitor- bound X- ray crystal structures 
showed that the compound forms hydrogen bonds with 
residues Ser2021 and Thyr2034, while studies in vari-
ous cell lines indicated good cellular activity towards 
inhibiting DNL248. Using a similar approach, Boehringer 
Ingelheim Pharma GmbH & Co identified BI-99179 as a 
potent and selective inhibitor for human FAS that is also 
assumed to bind to the KR domain249. BI-99179 showed 
high metabolic stability in rat and human microsomes 
and high oral bioavailability in rats249. Lastly, Sagimet 
Biosciences developed TVB-3166, an orally bioavail-
able, reversible, potent and selective inhibitor of FAS 
that also likely inhibits the KR domain250. A related but 
more advanced compound, TVB-2640, is under clinical 

development. Recently, Forma Therapeutics reported 
that FT-4101 inhibited human FAS by also targeting the 
KR domain251 (TABLe 4; Supplementary Table 4).

Therapeutic indications
Obesity. The link between FAS inhibition and reductions 
in body weight is not well understood. Initial observa-
tions that cerulenin induced weight loss in both lean252 
and obese253 mice suggested that effects may be pri-
marily related to toxicity rather than inhibition of FAS. 
However, subsequent studies showed that C75 also had 
a profound effect on body weight254,255 (Supplementary 
Fig. 1), suggested that effects may involve an increase 
in energy expenditure and suppression of appetite. 
Although the FAS inhibitor orlistat has been approved 
for weight management in obesity it is important to 
note that owing to poor bioavailability the inhibition of 
pancreatic lipase, not FAS, is the primary mechanism by 
which this agent induces weight loss. Importantly, data 
from selective FAS inhibitors such as TVB-2640 do not 
support a link with weight loss.

NAFLD–NASH and type 2 diabetes. Early studies 
demonstrated that treatment with C75 decreases hepatic 
steatosis256 and blood glucose in mouse models of 
obesity252,257. These findings supported the development 

Table 4 | FAS inhibitors

Compound (developer) Potency in 
biochemical assays

Indication and/or  
preclinical effects

Clinical trial ID or refs

Clinical stage inhibitors

Orlistat IC50: 100 nM Obesity Approved

TVB-2640 (Sagimet Biosciences, 
USA)

IC50 < 0.05 μM NASH NCT04906421  
(in progress, phase II)

Lung carcinoma, breast cancer, 
astrocytoma, colon cancer

NCT03808558, 
NCT03179904, 
NCT03032484, 
NCT02980029 (in 
progress, phase I/II)

FT-4101 (Forma Therapeutics, 
USA)

IC50: 40 nM NASH NCT04004325 
(terminated, phase I/II)

Preclinical stage inhibitors

BI-99179 (Boehringer Ingelheim 
Pharma GmbH & Co, Germany)

IC50: 79 nM Inhibited cancer cell growth 249

Cerulenin IC50: 4.5 μM Reduced weight gain and 
inhibited cancer cell growth

253,261

C75 (Johns Hopkins Medical 
Institutions, USA)

IC50: 15.5 μM Reduced body weight, hepatic 
steatosis and blood glucose,  
and inhibited cancer growth

255,257

Fasnall (Duke University School 
of Medicine, USA)

IC50: 3.71 μM Inhibited cancer cell growth 245

GSK2194069 (GlaxoSmithKline, 
USA)

IC50: 7.7 nM Inhibited cancer cell growth 246

IPI-9119 (Dana- Farber Cancer 
Institute, USA)

IC50: 0.3 nM Inhibited cancer cell growth 247

MP- ML-24- N1 (University 
Hospital Tübingen, Germany)

IC50: 1.6 µM Inhibited cancer cell growth 246

TVB-3166 (Sagimet Biosciences, 
USA)

IC50: 42 nM Inhibited cancer cell growth 250

FAS, fatty acid synthase; IC50, half- maximal inhibitory concentration; NASH, nonalcoholic steatohepatitis.
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of TVB-2640, which was found to lower DNL by up to 
90% in individuals with obesity and insulin resistance258. 
Phase II clinical studies are currently underway in patients 
with NASH. FT‐4101 has been tested in humans with 
obesity, where it suppressed DNL and lowered steatosis251. 
However, clinical development has ceased for reasons that 
have not been disclosed. Although these studies sup-
port a potential therapeutic benefit of inhibiting FAS in 
NASH, results from the ongoing phase II studies will be  
imperative to better understand safety and efficacy.

Cancer. Although cerulenin has beneficial effects in vari-
ous cancer cell lines and xenograft tumour models259–261, 
reactivity and the profound weight loss caused by this 
compound limited its potential. Antitumour effects of 
C75 were also demonstrated in various cancer cell lines 
and xenograft tumours alone261 and in combination with 
radiotherapy93. In addition, orlistat exhibits cytostatic 
and cytotoxic effects in tumour cells, and nanoparticle 
technology has been used to improve bioavailability and 
subsequent cytotoxicity in xenografts241,243,244. Studies 
have been conducted with more- specific inhibitors 
that strengthen FAS as an anticancer target. Fasnall was 
shown to inhibit breast cancer245 and prostate cancer cell 
growth262, and GSK2194069 inhibits the proliferation of 
non- small- cell lung cancer cell lines248. IPI-9119 (reF.247) 
and TVB-3166 (reF.250) also inhibit cancer cell prolifera-
tion in several distinct preclinical models. Interestingly, 
recent studies have found that owing to limited exog-
enous fatty acids within the brain, metastasis of breast 
cancer is highly sensitive to FAS inhibition by TVB-3166 
and BI-99179 (reF.263). Phase I clinical trials with TVB-
2640 have been completed in healthy subjects and in 
patients with solid malignant tumours264, and phase II 
studies in multiple cancers are underway. Results from 
these studies will be important to better understand the 
potential therapeutic effects of FAS inhibition in cancer.

Challenges
In the past 50 years tremendous progress has been 
made in understanding the biochemical mechanisms 
and physiological significance of DNL in regulating 
cellular metabolism and whole- body energy homeo-
stasis. Important steps along the way have included 
biochemical identification of the key metabolic inter-
mediates in the conversion of glucose to fatty acids, the  
molecular cloning of the key enzymes regulating  
the process and the discovery of crucial allosteric and 
covalent mechanisms that regulate flux through the 
pathway. Subsequent studies in genetically modified 
mice revealed the physiological role of DNL, broaden-
ing our understanding of the complex connections that 
exist between multiple cellular processes and tissues 
well beyond the simple storage of excess calories in adi-
pose tissue. Meanwhile, advances in structural biology 
laid the foundation for the molecular underpinnings 
by which natural products and new- generation small 
molecules inhibited enzyme activity. Collectively, this 
information led to an explosion in the number of novel 
small molecules that have been developed and tested in 
preclinical models for cardiometabolic disease, cancer 
and other indications. Although these compounds vary 

in their molecular target, chemical structure and phys-
icochemical properties, the common action in which 
DNL is inhibited supports the notion that it is beneficial 
for the prevention and treatment of a broad spectrum 
of diseases. However, the development and testing of 
this new generation of highly selective and efficacious 
small molecules has also revealed several surprising new 
biological insights that have important implications for 
safety, efficacy and the need for combination therapies 
as they progress into clinical trials.

Safety- related side effects
There are several safety concerns associated with inhib-
iting DNL. The first and most significant to be iden-
tified was related to embryonic development. Mice 
homozygous deficient for ACLY265, ACC1 (reF.266) or 
FAS267 die during embryonic development, and CIC 
deficiency is characterized by severe neurodevelop-
mental disorders268. The ACC inhibitor PF-05175157 
also induces developmental toxicity (growth retardation 
and dysmorphogenesis associated with disrupted mid-
line fusion) in rats and rabbits17. Thus, avoiding systemic 
inhibition of DNL is essential to safeguard embryonic 
development.

Another major concern with inhibiting DNL in lipo-
genic organs such as liver and adipose tissue is that this 
simply redirects carbon into other parts of the body where 
toxicity may be even greater. Experimental evidence of 
this effect was first established with the ACC inhibitor 
MK-4074, which dose- dependently increased SREBP1c 
and serum triglycerides; an effect that was shown to be 
‘on- target’ as mice genetically lacking ACC in the liver 
had a similar phenotype48. Subsequent studies with 
ND-630 (reF.224) and PF‐05221304 (reF.205) in humans with 
NASH revealed similar effects. Importantly, increases in 
serum triglycerides by PF‐05221304 can be inhibited by 
co- administration of a DGAT2 inhibitor72. Interestingly, 
inhibiting ACC by activating AMPK269,270 lowers serum 
triglycerides and cholesterol effects. Similar results  
are also observed with the inhibition of ACLY173,181,182.  
A greater understanding of the mechanism behind these 
differential responses to inhibiting liver DNL will be 
important for alleviating potential adverse events.

The upstream and downstream consequences associ-
ated with blockade at different steps in the DNL pathway, 
leading to the accumulation of metabolic intermediates, 
must also be considered. For example, inhibition of 
FAS leads to a build- up of malonyl- CoA. This increase 
in malonyl- CoA as a result of FAS inhibition impairs 
physiological and pathological angiogenesis via the 
malonylation of mTOR271. Malonylation has also been 
implicated in various metabolic pathways272, histone 
modifications273 and immune cell reprogramming274, 
suggesting that FAS inhibition may exhibit broader bio-
logical effects than the anticipated DNL inhibition. CIC 
inhibition may also pose safety concerns, as a deficiency 
of CIC increases mitochondrial citrate and isocitrate and 
this is associated with severe neurometabolic effects268. 
Lastly, ACLY inhibition, which lowers acetyl- CoA, may 
affect the acetylation profile of many different histones, 
potentially having a wide array of differential effects on 
gene expression profiles and epigenetic programming275. 
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Thus, it is pivotal to consider the effects of metabolic 
intermediates when developing DNL inhibitors as a 
therapeutic approach.

Bypassing DNL inhibition/compensatory pathways
The concept of cellular metabolic flexibility is another 
key concern for DNL inhibitors. Metabolism is fluid 
and interconnected: a block in one pathway enhances 
flux through alternative pathways. This has been studied 
most intensely in cancer in which plasticity is a hallmark 
of chemoresistance. For example, in response to reduced 
flux from glucose to acetyl- CoA under hypoxic condi-
tions, mutations in KRAS have been shown to provide 
cancer cells with increased ability to scavenge exogenous 
lipids, thereby diminishing dependence on DNL276. The 
reciprocal relationship is also observed whereby inhib-
iting exogenous fatty acid uptake by blocking CD36 
enhances the efficacy of the FAS inhibitor C75 (reF.277). 
Similarly, in breast cancer brain metastasis, where 
exogenous fatty acids are limited, inhibiting FAS exerts 
greater lethality compared with the liver where exog-
enous fatty acids are abundant263. Inhibition of ACLY 
can also be bypassed in some cancer cells278 and in the 
liver of mice fed a high- fructose diet45 through upregu-
lation of ACSS2. These data suggest that depending on 
the nutritional context and cell types involved, for DNL 
inhibitors to be highly effective it may be necessary to 
also target compensatory mechanisms. For example, 
might it be important for people being treated with an 
ACLY inhibitor to limit their alcohol and fructose intake 
to maximize effects? Alternatively, might an individual 
having their cancer treated with a FAS inhibitor need to 
limit fatty foods? Despite these compelling data in pre-
clinical models, data generated in clinical settings with 
respect to ACLY inhibition for LDL lowering173,181,182, 
ACC inhibitors for NASH48,72,205,224 and FAS inhibition for  
cancer264 suggest that the degree of DNL inhibition 
achieved may be sufficient to overcome any compen-
satory pathways. However, further studies investigating 
this will be important.

Systemic/organ- specific inhibition
A significant challenge with the clinical development 
of DNL inhibitors has been the discovery of differential 
responses of certain cells between rodents and humans. 
An example of this occurred with the clinical devel-
opment of the systemic ACC inhibitor PF-05175157, 
which was found to have no toxicity in rodents but dose 
escalation studies in people revealed reduced plate-
let count18,205. Subsequent studies established that the 
reduction in platelet count was due to ACC inhibition 
within bone marrow, which impaired megakaryocyte 
maturation18. This finding demonstrated a requirement 
for DNL in humans but not rodents, which was espe-
cially surprising given that DNL in tissues such as liver 
and adipose tissue is much higher in rodents than in 

humans279. Importantly, these effects have been avoided 
with new- generation liver- targeted ACC inhibitors 
ND-630 (reF.224) and PF‐05221304 (reF.205). Similarly, 
genetic inhibition of ACLY in muscle and adipose 
tissue results in muscle weakness and lipodystrophy, 
respectively, but has been avoided by the develop-
ment of the liver- targeted prodrug bempedoic acid167. 
Liver- specific inhibition of DNL may also be helpful to 
avoid the potential detrimental effect of adipose tissue 
DNL inhibition on whole- body insulin sensitivity, given 
that adipose tissue DNL directly correlates with insulin 
sensitivity61,280. Lastly, FAS inhibition is associated with 
alopecia, an effect that has been reduced with the new 
generation of liver- directed FAS inhibitors TVB-2640  
(reF.264) and FT-4101 (reF.251). Thus, data presented to 
date suggest that inhibition of FAS, ACC and ACLY 
can be safely achieved through liver targeting; however, 
whether chronically inhibiting DNL in other organs or 
cell types can be safely achieved requires further study.

Outlook
Over the past decade, many challenges have been 
addressed leading to DNL inhibitors entering clinical 
development for cancer, CVD, NASH and acne vulgaris. 
In the era of single- cell analysis of cellular metabolism, 
an especially exciting avenue of research will be to deter-
mine whether there may be specific cell types in which 
DNL is upregulated under different pathological condi-
tions. The identification of these potential cell types may 
lead to cell- specific DNL inhibitors that could be applied 
during certain windows of development for alleviating 
or potentially preventing disease. Another important 
consideration will be related to balancing efficacy and 
safety as enhanced potency may lead to greater compen-
satory upregulation and/or toxicity. An example of this 
is seen with the ACC inhibitors whereby inhibition of 
DNL closely parallels concomitant increases in circulat-
ing triglycerides and inhibition of platelets. As DNL is 
transiently upregulated after a meal, one way to poten-
tially avoid upregulation of compensatory pathways 
and/or toxicity may involve the use of inhibitors with a 
shorter half- life so that DNL is maintained at basal levels. 
Ultimately, whether DNL inhibitors are safe and effective 
enough to be used as a monotherapy or will be used in 
combination with other therapies to enhance efficacy or 
offset liabilities, as has been proposed for ACC inhib-
itors in NASH, will depend on clinical trial results. In this 
regard, findings with the ACLY inhibitor bempedoic acid 
are encouraging as they suggest that chronic inhibition 
of DNL in the liver is safe when used alone or with other 
standards of care. Whether DNL inhibitors that target 
other cell types and organ systems become widely adopted 
as a cornerstone for treating other disease indications  
beyond CVD and NASH remains to be determined.
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