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Abstract: The emergence of graphene-based polymer composite fibers provides a new opportunity
to study the high-performance and functional chemical fibers. In this work, we have developed an
efficient and convenient method with polydopamine (PDA) to functionalize and reduce graphene
oxide (GO) simultaneously, and the modified graphene nanosheets can obtain uniform dispersion
and strong interfacial bonding in nylon 6 (PA6). Furthermore, the reinforced PA6 composite fibers
were prepared through mixing PDA-rGO into the PA6 polymer matrix and then melt spinning. The
functional modification was characterized by surface analysis and structural testing including SEM,
TEM, FTIR, and Raman. When the addition amount of the modified GO was 0.15 wt%, the tensile
strength and Young’s modulus of the composite fiber reached 310.4 MPa and 462.3 MPa, respectively.
The results showed a meaningful reinforcement with an effect compared to the pure nylon 6 fiber.
Moreover, the composite fiber also exhibited an improved crystallinity and thermal stability, as
measured by DSC and TGA.

Keywords: graphene oxide; polydopamine; PA6; composite fiber; reinforce; Young’s modulus

1. Introduction

It is an efficient and common route to prepare reinforced polymer nanocomposites by
adding nanofillers. Extensive research work has reported that nanomaterials were used as
reinforcing fillers such as Silica (SiO2), Montmorillonite (MMT), and Carbon Nanotubes
(CNTs), which obtained ideal results in the application of polymer reinforcement [1–3].
Graphene and its derivatives, as one of the widely concerned carbon nanofillers, are two-
dimensional materials composed of sp2-hybridized carbon atoms arranged in a honeycomb
shape [4,5]. Its two-dimensional, sheet-like wrinkled structure provides an ultra-high
specific surface area, and studies have confirmed it to be part of a promising new generation
of nanofillers due to its outstanding mechanical properties and chemical stability [6].
Graphene can improve the mechanical, thermal, and electrical properties of polymers as
a nanofiller, and it can also endow some polymer materials with flame retardant, anti-
ultraviolet, antibacterial, and self-healing performances, among others [6,7]. Compared
with traditional zero and one-dimensional fillers, graphene nanosheets exhibit significant
advantages among the reinforcing fillers. It has been found that graphene and its derivatives
can endow the polymer good reinforcing effect at a lower loading content [8]. This greatly
expands the application prospects of graphene in the reinforcement of polymer composites.

Graphene nanosheets are prone to agglomeration in the polymer matrix because of the
existence of van der Waals force [9,10]. Additionally, the poor interfacial characteristic be-
tween the graphene nanosheets and the polymer also leads to its restacking in the polymer
matrix [11]. The main challenge is to achieve the effective dispersion and strong interface
bonding of graphene nanosheet in polymer reinforced composites. In spite of that, never-
theless, the surface of graphene nanosheets is smooth without reactive functional groups.
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As one of the representative graphene derivatives, the surface of GO owns carboxyl, epoxy,
and other active reaction functional groups onto the surface [4,6]. Surface modification of
GO can effectively solve the dispersibility of graphene and its derivatives in polymers and
the interfacial compatibility with polymers. Various surface modified ways of GO have
been used in graphene/polymer composites through covalent bonds and non-covalent
bonds [12–14].

In recent years, dopamine (DA) has received much attention because it can engage
in self-polymerization to generate polydopamine (PDA) [15,16]. The strong interfacial
adhesion property was demonstrated between the PDA layer and the matrix, including
many substrates with low surface energy such as glass, ceramics, teflon, etc., which were
attributed to the presence of reactive functional groups onto its surface [17,18]. The formed
PDA surface possesses highly reactive functional groups, and it can be used to enhance
the compatibility of nanofillers and polymers. Thus, DA has emerged as a functional
modifier of nanofillers in the field of polymer reinforced nanocomposites [19–22]. Y.L. Lu
et al. incorporated PDA-modified, multi-walled carbon nanotubes (MWCNTs) into natural
rubber (NR) via latex compounding. The modified carbon nanotubes showed excellent
dispersion in the matrix, increasing the tensile strength of the composite by 42% [20]. Y.
Fang et al. prepared polyimide (PI) with polydopamine functionalization boron nitride
nanosheets composite fiber by in situ polymerization, and the results indicated that the
tensile strength and modulus of the composite fiber were a significant improvement with
the addition of modified boron nitride nanosheets (0.5 wt% content) [21]. K.P. Chen et al.
prepared TPU/PDA-GNP nanocomposite via in situ polymerization and discovered the
strong interfacial interaction between PDA and TPU via covalent bonding, which led to a
remarkable enhancement of the mechanical properties of the nanocomposite [22].

We attempted to modify the GO by dopamine self-polymerization on its surface,
and GO can be reduced to PDA-rGO at the same time. Furthermore, the reinforced
PA6 composite fibers were prepared by simple melt mixing and spinning. It is a simple,
efficient, and low-cost method for the industrial production of polymer nanocomposite
fibers. Herein, PA6 was selected as the polymer matrix of the fiber, while PA6 fiber was
generally used for weaving various kinds of clothing materials and knitting, owing to
excellent wear resistance and good resilience. As one of the widely used chemical fibers,
it is also widely used in industrial textiles such as tire cords, fishing nets, and parachutes,
which require high physical and mechanical properties [23,24]. Therefore, the PDA-rGO
reinforced PA6 composite fiber provides a new path for its application in the field of
high-performance industrial textile materials.

2. Experiment
2.1. Materials

PA6 slices (spinning grade, ρ = 1.13 g/cm3, MFR = 5.2 g/min at 250 ◦C) were sup-
plied by Yiwu Huading Nylon Co., Ltd. (Jinhua, China); Graphite powder with particle
size less than 20 µm was purchased from Doucheng chemical products trading Co., Ltd.
(Tianjin, China); 98% Sulfuric acid (H2SO4), 37%Hydrochloric acid (HCl, L-Ascorbic acid
(AR, 99%), Dopamine (DA), and Tris-HCl were provided from Aladdin Reagent Co., Ltd.
(Shanghai, China); Sodium hydroxide (NaOH), 20% Hydrogen peroxide (H2O2), and 37%
Hydrochloric acid (HCl) were purchased from Jiuding Reagent Co., Ltd. (Shanghai, China).

2.2. Synthesis of Functionalized GO, rGO, and PDA-rGO

Graphene oxide (GO) was prepared using a modified hummers method, as reported in
our previous work [25]. The preparation of rGO (reduced Graphene Oxide) was followed
by previous studies. The reduction reaction of GO was performed for 24 h at 80 ◦C, using L-
ascorbic acid as the reducing agent. The process of synthesizing PDA-rGO (Polydopamine
modified and reduced graphene oxide) is shown in Figure 1. First, 0.5 g GO was added to
500 mL deionized water and sonicated for half an hour to obtain a GO dispersion. Then,
0.64 g Tris-HCl was added to the GO dispersion and adjust the PH of solution to 8.5.
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Next, 20 mL (0.5 mg/mL) DA was added dropwise and reacted at 50 ◦C for 24 h. Finally,
the resulting reactants were dialyzed and freeze-dried to obtain the powders of GO and
PDA-rGO, respectively.
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Figure 1. Schematic diagram of the synthesis process of PDA-rGO and PDA-rGO/PA6 composites.

2.3. Preparation of PA6/-rGO and PA6/PDA-rGO Composite Fibers

PA6 slices were dried in a vacuum oven at 100 ◦C for 24 h. The preparation process of
the composite fibers was depicted in Figure1. PA6 composite fiber containing 0.05 wt%,
0.15 wt%, 0.3 wt% PDA-rGO was prepared using the twin screw extruder (MinLab) via
melt blending method, as shown in Figure 1. The temperature of twin screw extrusion
was 250 ◦C, and the speed was 50 rpm. The prepared primary fibers were then thermal
drawn at 120 ◦C with a drawing ratio of 3.5. As a comparison sample, the composite
fiber incorporated with 0.15 wt% unmodified rGO/PA6 was prepared under the same
processing conditions.

2.4. Characterization

The morphologies of GO, PDA-rGO, and PA6 composite fibers were observed using
field emission scanning electron microscopy (SEM, vltra55). Transmission electron mi-
croscopy (TEM, JEM-2100) was used to record the microstructure of GO and PDA-rGO.
In transmission mode, Fourier transform infrared spectroscopy (FTIR, Nicolet 5700) of
GO, rGO, and PDA-rGO were tested with the scanning frequency 500~4000 cm−1. Raman
spectroscopy (Raman, ThinVia) was used to evaluate structural changes before and after
GO modification. The sedimentation experiments were provided a qualitative character-
ization of the dispersion properties. Next, 1 mg/mL nano-powder aqueous dispersion
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was prepared, and the settlement of the solution was observed after standing for 72 h.
Thermal stability of GO, rGO, PDA-rGO, and the composite fibers were conducted on
thermogravimetric analyzer (TGA, TG209F3). The heating rate of TGA test was 5 ◦C/min
under nitrogen atmosphere. Mechanical properties of composite fibers were measured by a
universal material stretching machine (6639, INSTRON), and the composite fibers (length,
25 mm) were measured at a tensile rate of 20 mm/min. Differential Scanning Calorimeter
(DSC, Emerkin8000) was used to analyze the crystallization behavior of composite fibers.
The heating and cooling rates were both 10 ◦C/min under nitrogen atmosphere.

3. Results and Discussion
3.1. The Morphology, Composition and Thermal Properties of PDA-rGO

SEM and TEM images of the surface morphology and microstructure of GO and
PDA-rGO are presented in Figure 2; GO has quite a multilayer sheet-like structure with
a smooth surface and wrinkled edges, as shown in Figure 2a,a′. However, the surface of
PDA-rGO is covered with a thin film after modification, as presented in Figure 2b,b′. This
is the in situ polymerization of DA on the surface of GO under an alkaline environment,
resulting in the formation of a uniformly wrapped PDA layer on the surface of GO [26]. It
can also be seen that the PDA only wraps around the GO surface and does not change the
multilayer sheet-like structure of GO.
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Figure 3 shows the FTIR spectra of GO, rGO, and PDA-rGO. The C=O stretch-
ing vibration peak at 1725 cm−1, the C-O stretching vibration peak of the hydroxyl
group at 1056 cm−1, the C=C vibration peak of the aromatic ring at 1625 cm−1, and
the stretching vibration peak of hydroxyl group O-H at 3420 cm−1 are the characteris-
tic peaks of GO [19,25,27]. The C=O stretching vibration peaks of rGO and PDA-rGO at
1725 cm−1 decreased greatly, indicating that the carboxyl groups were mainly involved in
the self-polymerization of dopamine onto the surface of GO. The newly generated peak at
1577 cm−1 is attributed to the N-H vibrational of PDA-rGO. The peaks of 2926 cm−1 and
2853 cm−1 can be ascribed to the symmetric stretching vibration and asymmetric stretching
vibration of -CH2 in the molecular of PDA, respectively [22]. It can be confirmed that PDA
was effectively coated onto the surface of GO through self-polymerization.
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Figure 3. FTIR spectra of GO, rGO and PDA-rGO.

The structures of GO, rGO, and PDA-rGO were further investigated using Raman
spectra. As shown in Figure 4, all samples revealed two distinct absorption peaks around
1350 cm−1 and 1580 cm−1, namely the D band peak formed by the vibration of SP3 carbon
atoms and the G band peak generated from the sp2 carbon atoms [27,28]. In most cases,
the intensity ratio of the peaks (ID/IG, D band to G band) may be utilized to determine
the degree of defects in the graphene structure [19,29]. The ID/IG ratio of PDA-rGO was
raised to 1.12, as compared to that of GO of 0.89. It demonstrated that PDA grafted on the
surface of GO through the covalent bond, and thus its intensity ratio was higher than that
of GO [27].

Materials 2022, 15, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 4. Raman spectra of GO, rGO and PDA−rGO. 

The dispersion of carbon nanomaterials in aqueous solution can be investigated by 
sedimentation experiments. Figure 5 showed the optical photos of 1 mg/mL GO, rGO, and 
PDA-rGO after standing in aqueous solution for 72 h. GO exhibited good hydrophilicity 
due to the abundant oxygen-containing functional groups on the surface, therefore it can 
be uniformly dispersed in aqueous solution for a long time. The rGO produced a sedi-
mentation phenomenon in the solution, while the PDA-rGO could still be stably dispersed 
in the aqueous solution because of the hydrophilic functional groups such as hydroxyl 
groups on its surface. In addition, the color of the aqueous solution in Figure 5 changed 
from brown to black, which was attributed to the removal of oxygen-containing functional 
groups and the recovery of aromatic ring π–π bonds [26]. It was further confirmed that 
graphene oxide was reduced by ascorbic acid and PDA. 

 
Figure 5. The optical photos of 1 mg/mL GO, rGO, and PDA-rGO solution after standing for 72 h. 

Figure 6 presents the TGA plots of GO, rGO, PDA-rGO, and PDA. The weight loss of 
GO is substantially greater than that of rGO and PDA-rGO, below 120 °C, owing to the 
water and oxygen-containing groups on the surface of GO [30,31]. A major loss platform 
appears at around 200 °C~350 °C, and the weight loss rate of rGO and PDA-rGO is far less 
than that of GO. This result was attributed to the restore of the carbon skeleton structure 
of rGO and PDA-rGO resulting in the improved thermal stability [19]. The weight loss of 
GO, rGO, and PDA-rGO is 59.6%, 15.2%, and 40.2%, respectively, when the temperature 
reaches 600 °C. PDA exhibits better thermal stability compared to GO when the tempera-
ture is less than 400 degrees, while its maximum thermal decomposition temperature is 
203.8 °C. After GO was modified by PDA through the covalent bond, the organic groups 

Figure 4. Raman spectra of GO, rGO and PDA−rGO.



Materials 2022, 15, 5095 6 of 13

The dispersion of carbon nanomaterials in aqueous solution can be investigated
by sedimentation experiments. Figure 5 showed the optical photos of 1 mg/mL GO,
rGO, and PDA-rGO after standing in aqueous solution for 72 h. GO exhibited good
hydrophilicity due to the abundant oxygen-containing functional groups on the surface,
therefore it can be uniformly dispersed in aqueous solution for a long time. The rGO
produced a sedimentation phenomenon in the solution, while the PDA-rGO could still
be stably dispersed in the aqueous solution because of the hydrophilic functional groups
such as hydroxyl groups on its surface. In addition, the color of the aqueous solution in
Figure 5 changed from brown to black, which was attributed to the removal of oxygen-
containing functional groups and the recovery of aromatic ring π–π bonds [26]. It was
further confirmed that graphene oxide was reduced by ascorbic acid and PDA.
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Figure 6 presents the TGA plots of GO, rGO, PDA-rGO, and PDA. The weight loss of
GO is substantially greater than that of rGO and PDA-rGO, below 120 ◦C, owing to the
water and oxygen-containing groups on the surface of GO [30,31]. A major loss platform
appears at around 200 ◦C~350 ◦C, and the weight loss rate of rGO and PDA-rGO is far less
than that of GO. This result was attributed to the restore of the carbon skeleton structure of
rGO and PDA-rGO resulting in the improved thermal stability [19]. The weight loss of GO,
rGO, and PDA-rGO is 59.6%, 15.2%, and 40.2%, respectively, when the temperature reaches
600 ◦C. PDA exhibits better thermal stability compared to GO when the temperature is less
than 400 degrees, while its maximum thermal decomposition temperature is 203.8 ◦C. After
GO was modified by PDA through the covalent bond, the organic groups on the surface of
PDA-rGO affected its thermal stability. In comparison with GO, the thermal stability of
PDA-rGO was still effectively improved because the oxygen-containing functional groups
on its surface are almost removed as a result of modification and reduction by PDA [22,26].
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3.2. The Morphology of Composite Fibers

Figure 7 depicts the surface and cross-section morphology of the pure PA6 fiber and
composite fibers. The surface of the pure PA6 fiber is relatively smooth and the fiber diame-
ter is quite uniform, with an average value of 20 µm, as shown in Figure 7a. The surface
roughness of the composite fiber increases with the addition of PDA-rGO, as shown in
Figure 7b; however, the surface remains smooth and free of cracks and defects, demonstrat-
ing that the PDA-rGO/PA6 composite fiber can be spun and hot drawn continuously. The
cross-sectional morphologies of the pure PA6 fiber, 0.15 wt% rGO/PA6 composite fibers,
and various PDA-rGO/PA6 composite fibers are shown in Figure 7c–h. It can be seen from
Figure 7f that the unmodified rGO clearly aggregates in the PA6 matrix because of the
poor compatibility. When the PDA content reached 0.3 wt%, larger aggregates appeared
in the composite fiber. On the other hand, 0.15 wt% PDA-rGO is nicely embedded and
uniformly dispersed in the PA6 matrix, as shown in Figure 7g,h. Furthermore, neither
holes or cracks are observed in the cross-section of the composite fiber, implying that the
0.15 wt% PDA-rGO and PA6 matrix has a robust interface interaction [32,33].
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3.3. The Mechanical Properties of Composite Fibers

The mechanical characteristics of the pure PA6 fiber, the PA6 composite fiber with
0.15% unmodified rGO, and the PDA-rGO/PA6 composite fibers with 0.05 wt%, 0.15 wt%,
and 0.3 wt% PDA-rGO loading content are exhibited in Figure 8 and Table 1. The tensile
strength and Young’s modulus (E) of 0.15 wt% rGO/PA6 composite fiber increases slightly
compared with that of the pure PA6 fiber. The mechanical performance of the composite
fiber is found to be significantly improved once PDA-rGO is added. The tensile strength
and Young’s modulus of the PDA-rGO/PA6 composite fiber reaches a maximum value
at 310.4 MPa and 462.3 MPa, respectively, when the PDA-rGO loading content is raised
to 0.15 wt%. However, as the loading content further increases, the composite fiber’s
tensile strength and Young’s modulus begin to decline owing to the excessive addition of
PDA-rGO, which resulted in the production of flaws and weak joints on the composite
fiber [32]. Comparing PDA-rGO/PA6 and rGO/PA6 composite fibers, it is found that
the mechanical strength of the PDA-rGO/PA6 composite fiber increased by 45% over the
rGO/PA6 composite fiber when the content is the same at 0.15 wt%.

Table 1. Tensile properties of PA6 fiber, 0.15 rGO/PA6 composite fiber and composite fibers containing
different PDA-rGO content.

Loading Content
(wt%)

Tensile Strength
(MPa)

Elongation at Break
(%)

Young’s Modulus
(MPa)

0 204.3 75.2 386.4
0.05 PDA-rGO 247.8 67.3 412.3
0.15 PDA-rGO 310.4 58.4 462.3
0.3 PDA-rGO 229.1 54.1 405.8

0.15 rGO 213.5 46.5 394.6
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The Halpin–Tsai model is one of the widely used polymer reinforcement mechanism
models [19,34,35]. Herein, it is utilized to explore the reinforcement mechanism of PDA-
rGO/PA6 composite fibers. In general, PDA-rGO may present ether an oriented or a
random distribution state in the composite fibers. The theoretical Young’s modulus of the
composite fibers is calculated by the following modified Halpin–Tsai equations:

Er(random) = EN·
[

3
8

(
1 + ηL·ξ·νG

1− ηL·υG

)
+

5
8

(
1 + 2ηT·υG

1− ηT·νG

)]
(1)

EP(parallel) = EN·
(

1 + ηL·ξ·υG

1− ηL·υG

)
(2)

ηL =
EG/EN − 1
EG/EN + ξ

(3)

ηG =
EG/EN − 1
EG/EN + 2

(4)

ξ =
l +ω

d
(5)

where Er and Ep denote Young’s modulus of PDA-rGO/PA6 composite fibers with random
and parallel oriented PDA-rGO nanosheets. EN represents the Young’s modulus of pure
PA6 fiber (386.4 MPa), while EG refers to the modulus of PDA-rGO (250 GPa) [19,34]. In
this model, the modified graphene nanosheets are regarded as strip solid fibers, with l, ω,
and d representing the length, width, and thickness of PDA-rGO (l = 3 µm, ω = d 2 µm,
d = 2.4 nm), respectively [35]. The mass fraction of PDA-rGO used in the experimental
section is converted into volume fraction VG (%) from the following equations:

VG(%) =
WG/ρG

WG/ρG + (1−WG)/ρN
(6)

where WG is the mass fraction of PDA-rGO in the PA6 matrix, ρG (1.8 g/cm3) and ρN
(1.13 g/cm3) denote the density of PDA-rGO and pure PA6 fiber, respectively [19,35].

Figure 9 shows the experimental modulus and the Halpin–Tsai theoretical modulus
of the PDA-rGO/PA6 composite fiber. When the volume fraction of PDA-rGO is less
than 0.1%, the experimentally measured Young’s modulus data are pretty much close to
theoretical calculated value by the random distribution model of PDA-rGO in PA6 matrix,
and they both show an upward trend with an increase in filler content. This indicates, on
the one hand, that PDA-rGO is randomly distributed in the matrix, and, on the other hand,
that at, low contents, the experimental and theoretical values basically coincide because
PDA-rGO can be uniformly dispersed in the matrix without causing stress concentration
due to agglomeration in the matrix. Similar findings were reported by Liu Haihui, Jia
Hongbing, etc., [19,35,36]. When the volume fraction of PDA-rGO exceeds 0.09%, however,
the experimental modulus deviates from the value of theoretical model and shows a
downward trend. This is primarily due to the agglomerates of PDA-rGO in the matrix,
which may introduce defects and thus become a mechanical weak point.

At this point, we can rule out the contribution of PDA-rGO orientation to the mechani-
cal properties, and the reason directed at the non-orientation is probably related to the fact
that the tensile stress field applied by our processing equipment is not that strong. The
following aspects are accountable for the substantial improvement in the mechanical prop-
erties: (i) the PDA-modified graphene nanosheets can be uniformly dispersed in the PA6
matrix, which not only greatly avoids the stress concentration caused by agglomeration,
but also brings out the laminar fold structure of rGO as much as possible, playing a much
better role in stress dispersion and transfer [37]; (ii) there is a good interfacial compatibility
and strong interfacial bonding between the PDA-rGO and PA6 matrix, which, on the one
hand, can prevent the slip of the matrix molecular chain on the PDA-rGO surface, and can
also effectively transfer the stress to the PDA-rGO; (iii) the molecules on the surface of PDA-
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rGO and the PA6 macromolecular chain may form a certain degree of three-dimensional
network structures through hydrogen bond interaction and entanglement during the melt
mixing and spinning process. It restricts the movement of macromolecular chains, which
also explains the gradual decrease in the elongation at break of the composite fibers [11,32].
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3.4. The Thermal Properties of Composite Fibers

The crystallization behavior of PA6 fiber and composite fibers can be measured by
DSC. Here, Tm (the melting temperature) and Tc (the crystallization temperature) were
tested as the peak points. Xc (crystallinity) was measured by the following formula:

Xc =
∆H f

(1− α)∆H f ∗
× 100% (7)

where α represents the proportion of PDA-rGO filler in the PA6 matrix, ∆Hf refers to the
melting enthalpy of the prepared composite fibers, and ∆Hf* is the melting enthalpy of
100% crystallization of PA6 corresponding to190 J/g.

Tm of the PDA-rRG/PA6 composite fibers does not change much with the incorpo-
ration of PDA-rGO, as shown in Figure 10 and Table 2, while Tc moves toward higher
temperature. In addition, the crystallinity increases slightly up to 33.3% when the PDA-rGO
content is 0.15%. Because of its homogeneous dispersion in the PA6 matrix, PDA-rGO
may act as a heterogeneous nucleating agent, promoting crystallization of PA6 [38]. The
crystallinity of the composite fibers starts to decline inversely after the addition of 0.3%
PDA-rGO. This is due to the reduced nucleation efficiency, since the excess graphene
nanosheets may agglomerate and accumulate in PA6. As can be observed, the effect of
PDA-rGO on the crystallization behavior of the composite fibers is not significant. This
may be due to the thermal stretching field experienced in the fiber preparation, where
the stresses ordered the PA6 molecular chains and promoted the crystallization, thus the
effect of PDA-rGO on the crystallization of the matrix is weakened and not to be man-
ifested [37]. It also suggests that crystallinity should have little to do with the above
mechanical properties.

The TGA results of pure PA6 and composite fibers are shown in Figure 11, meanwhile,
the specific data of T5 (the decomposition temperature at 5% weight loss) and Tmax (the
decomposition temperature at maximum weight loss) are listed in Table 3. Compared with
pure PA6 fiber, T5 of the composite fiber increases by 13 ◦C to 364.3 ◦C when the PDA-rGO
loading content is 0.15 wt%, and the Tmax decomposition occurs at 445.7 ◦C. The addition
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of PDA-rGO significantly improves the thermal stability of composite fibers. The improved
thermal stability of the composite fiber is assisted by the uniform dispersion of modified
graphite nanosheets in the matrix, which can form a three-dimensional network structure
that will restrict the molecular movement of the PA6 matrix as well as a certain physical
barrier effect that suppresses the thermal decomposition of the composite fibers [32,39].
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Table 2. DSC data of PA6 fiber and composite fibers containing different PDA-rGO content.

Loading
Content (wt%)

Tm
(◦C)

∆Hf
(J/g)

Tc
(◦C)

Xc
(%)

0 223.6 54.3 187.4 28.6
0.05 PDA-rGO 223.0 58.6 187.5 31
0.15 PDA-rGO 223.8 63.2 189.2 33.3
0.3 PDA-rGO 223.4 59.8 188.6 31.6
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Table 3. TGA data of PA6 fiber and composite fibers containing different PDA-rGO content.

Loading Content (wt%) T5 (◦C) Tmax (◦C)

0 351.3 440.5
0.05 PDA-rGO 355.8 443.8
0.15 PDA-rGO 364.3 445.7
0.3 PDA-rGO 363.9 442.1

4. Conclusions

In summary, the reinforced PDA-rGO/PA6 composite fibers with 3D network structure
were prepared by simple melt mixing. PDA was successfully grafted on the surface of
GO through covalent bond, and the modification and reduction of GO were completed
simultaneously. At a loading content of 0.15 wt% PDA-rGO, the PDA-rGO/PA6 composite
fiber displayed significantly improved tensile strength (310.4 MPa) and Young’s modulus
(462.3 MPa). The DSC results revealed that the crystallinity increased from 30% to 33% due
to the heterogeneous nucleation of PDA-rGO, and the thermal stability was also improved.
The good dispersibility and enhanced interfacial interaction endowed the composite fibers
with remarkable mechanical properties. Therefore, modified graphene composite fibers
provide a new and improved way to prepare reinforcing fibers.
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