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Abstract Estimating the functional interactions and connections between brain regions to corre-

sponding process in cognitive, behavioral and psychiatric domains is a central pursuit for under-

standing the human connectome. Few studies have examined the effects of dynamic evolution on

cognitive processing and brain activation using brain network model in scalp electroencephalogra-

phy (EEG) data. Aim of this study was to investigate the brain functional connectivity and con-

struct dynamic programing model from EEG data and to evaluate a possible correlation between

topological characteristics of the brain connectivity and cognitive evolution processing. Here, func-

tional connectivity between brain regions is defined as the statistical dependence between EEG sig-

nals in different brain areas and is typically determined by calculating the relationship between

regional time series using wavelet coherence. We present an accelerated dynamic programing algo-

rithm to construct dynamic cognitive model that we found that spatially distributed regions coher-

ence connection difference, the topologic characteristics with which they can transfer information,

producing temporary network states. Our findings suggest that brain dynamics give rise to varia-

tions in complex network properties over time after variation audio stimulation, dynamic program-

ing model gives the dynamic evolution processing at different time and frequency. In this paper, by

applying a new construct approach to understand whole brain network dynamics, firstly, brain net-

work is constructed by wavelet coherence, secondly, different time active brain regions are selected

by network topological characteristics and minimum spanning tree. Finally, dynamic evolution

model is constructed to understand cognitive process by dynamic programing algorithm, this model

is applied to the auditory experiment, results showed that, quantitatively, more correlation was
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observed after variation audio stimulation, the EEG function connection dynamic evolution model

on cognitive processing is feasible with wavelet coherence EEG recording.

� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Brain functional connectivity has played a variety of roles in

the study of human cognition and behavior over the past four
decades. Functional connectivity has revealed the reorganiza-
tion of brain networks during cognitive tasks (Sporns, 2011).
Thus, in this paper, dynamic evolution model is constructed

to understand cognitive process by dynamic programing algo-
rithm based on brain network. Initially, computed tomogra-
phy (CT) and then magnetic resonance imaging (MRI) were

used to probe the large-scale organization of the brain which
is estimated by correlation of BOLD activity, identifies coher-
ent brain activity in distributed and reproducible networks

(Vincent et al., 2006). More recently, a variety of imaging
modalities—including structural and functional MRI and
positron emission tomography (PET) studies have shown char-
acteristic changes in the brains, but thus far has been limited in

its capacity to study their temporal evolution. Therefore, the
purpose of this paper is to present a data-driven dynamic con-
struction of the state space for the one-pass dynamic program-

ing algorithm so that only the actually active hypotheses are
explicitly generated during the process of cognition.

A fair amount of investigation has been directed at linking

spiking activity to the fMRI blood oxygenation level-
dependent (BOLD) response (Nagai et al., 2004), but far less
research has sought to relate spiking activity and EEG. The

EEG is thought to reflect the postsynaptic potentials in the api-
cal dendrites of pyramidal cells resulting from their mutual
alignment, which allows summation of electric fields (Kopal
and Burian, 2014). The strength of the signal is related to both

the magnitude of the postsynaptic activity and its coherence:
postsynaptic currents with low spatiotemporal coherence tend
to destructively interfere at the level of the scalp (Lachaux

et al., 2002; Onnela et al., 2005). The common synaptic activity
that drives variability in the EEG signal likely also generates
spike count correlation across neurons. Their cortical genera-

tor was calculated using wavelet coherence for each group.
Coherence analysis has been extensively applied to the study
of neural activity. To overcome the problems due to non-

stationary raised in the previous section, it has recently been
proposed to apply wavelet analysis for the estimation of coher-
ence among non-stationary signals (Milligen et al., 1995;
Santoso et al., 1997). In contrast to Fourier analysis, wavelet

analysis has been devised to analyze signals with rapidly
changing spectra (Torrence and Compo, 1998). It performs
what is called a time–frequency analysis of the signal, which

means the estimation of the spectral characteristics of the sig-
nal as a function of time. In some sense, wavelet analysis is
close to the windowed short-term Fourier transform, especially

when using the Morlet wavelet (Osofsky, 2000), but the major
difference is that the size of the window is fixed for the short-
term Fourier, and it is adapted to the frequency of the signal in
wavelet analysis. Because of this difference, wavelet analysis

has a more accurate time–frequency resolution (Lachaux
et al., 2000; Bonato et al., 1996). However, the utility of wave-
let analysis is that it provides not only the time-varying power-
spectrum, but also the phase spectrum, which is needed to

compute the coherence. This makes wavelet analysis a natural
choice for the estimation of coherence between non-stationary
signals (Lachaux et al., 1999).

Functional networks have largely been identified in task-
based data by graph theory methods, where synchronized
activity across different regions is thought to reflect intrinsic

connectivity (Shafto and Tyler, 2014). Networks are formed
from the wavelet coherence of multiple head electrode points
and are thought to be functionally specialized by virtue of their
interregional connectivity. Much of our understanding of

brain connectivity rests on the way that it is measured and
modeled. We consider a functional connective model
approach: it has its basis in graph theory that aims to describe

the network topology of (undirected) connections of the sort
measured by noninvasive functional connectivity between
remote sites. After brain network is constructed based on

wavelet coherence, different time stages are divided during
the stimuli process, the module is got by minimum spanning
tree in every stage, and these are applied in dynamic program-
ing in different states to construct the dynamic evolution

model. The aim of the present study was to evaluate a possible
correlation between the brain connectivity architecture and
dynamic evolution processing as extracted from EEG record-

ings by dynamic model. EEG recording in the brain functional
connectivity via wavelet coherence can be technically challeng-
ing. We aimed to assess the feasibility and the efficacy of audi-

tory stimuli EEG (Lachaux et al., 2002).

2. Brain network construct and analysis

We discuss the cross wavelet transform and wavelet coherence
for examining relationships in time–frequency space between
two time series, brain network is constructed and analyzed

based the wavelet coherence and graph theory, and minimum
spanning tree method is used to module the brain regions, pre-
pared to construct the dynamic model by dynamic programing
algorithm.

Functional connectivity between brain regions is defined as
the statistical dependence between neurophysiological signals
in different brain areas and is typically determined by calculat-

ing the relationship between regional times series using wavelet
coherence, The nodes of the network are EEG channels, and
the edges of the network are weighed by the wavelet coherence

values, a weighted graph is a mathematical representation of a
set of elements (vertices) that may be linked through connec-
tions of variable weights (edges). In the present study,

weighted and undirected networks were built. The vertices of
the networks are the estimated cortical sources in the EEG,
and the edges are weighted by the wavelet coherence within
each pair of vertices. The undirected networks are constructed

based on the threshold by the weighted Clustering coefficient C
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Figure 1 Schema of the brain network construction based on

wavelet coherence.
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and Weighted Characteristic Path length L, and module is got

by minimum spanning tree. The process is as shown in Fig. 1.

2.1. Morlet wavelet transform and coherence

The wavelet transform can be launched with efficient fre-
quency and time parameters. A wavelet theory, then, can be
defined by Eqs. (1) and (2). Eq. (3) yields, then, W. Given a
time series fðtÞ:
Wwfða; bÞ ¼ 1ffiffiffiffiffijajp

Z þ1

�1
fðtÞw � t� b

a

� �
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where a2R, a– 0. The parameter a controls the width of the
wavelet and indicates the position of wavelet in frequency
domain, and b controls the location of the wavelet and repre-

sents the position of wavelet in time domain. When using
wavelets for feature extraction purposes, the Morlet wavelet
(with x0 = 6) is a good choice, since it provides a good bal-

ance between time and frequency localization (Faust et al.,
2015; Samant et al., 2000; Ghorbanian et al., 2015).

w0ðgÞ ¼ peix0ge�g2=2 ð4Þ
where x0 is dimensionless frequency and g is dimensionless
time. This expression shows that Morlet wavelet is a complex
sine wave within a Gaussian envelope, which has the form of a
Gaussian function centered at f0, where f0 determines the wave

numbers within the envelope. Here f0 = 0.8125, this gives a
real part where the peaks next to the central peak are half
the amplitude of the central peak.

In order to study the relationship between two non-
stationary processes, definitions of cross spectrum and coher-
ence are required. Given two processes x and y with their

time–frequency representations wavelet power spectrum
Wxða; bÞ and Wyða; bÞ, the time–frequency cross spectrum

between them is defined as wavelet power spectrum for WCS
(Wavelet Cross Spectrum), and cross wavelet power spectrum
are denoted by Eqs. (5),

WCSx;yða; bÞ ¼ Wxða; bÞ �W�
yða; bÞ ð5Þ
It can be seen that the WCSxyða; bÞ represents the time–fre-

quency similarity of two signals x and y. Schwartz inequality
guaranteed WCxy(a,b) is between 0 and 1. 0 indicates that
the corresponding time position of the two signals is indepen-

dent, and the 1 represents the complete correlation.
Cross wavelet power reveals areas with high common

power. Another useful measure is how coherent the cross

wavelet transform is in time–frequency space. We define the
wavelet coherence of two time series as,

WCxyða; bÞ ¼ SðWCSxyða; bÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S jWxða; bÞj2
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S jWyða; bÞj2
� �r ð6Þ

The wavelet power, then, yields the squared absolute value
of wavelet coefficients of x and y. The wavelet power spectrum
and cross wavelet power spectrum, thus, represent the local
variance of x (or y) and local covariance between x and y,

respectively, through time and frequency. Therefore, one
may depict complex wavelet coherency by Eq. (6).

Where scale denotes smoothing along the wavelet scale axis

and S time smoothing in time. It is natural to design the
smoothing operator so that it has a similar footprint as the
wavelet used. Smoothing is achieved by removing high fre-

quencies and retaining low frequencies. Notice that this defini-
tion closely resembles that of a traditional correlation
coefficient, and it is useful to think of the wavelet coherence

as a localized correlation coefficient in time–frequency space.
For the Morlet wavelet a suitable smoothing operator is given
by Torrence and Webster.

StðWxða; bÞÞ ¼ Wxða; bÞ � c
� t2

2a2

1 ð7Þ

SaðWxða; bÞÞ ¼ Wxða; bÞ � c2Pð0:6aÞ ð8Þ
where c1 and c2 are normalization constants and P is the rect-

angle function. The factor of 0.6 is the empirically determined
scale decorrelation length for the Morlet wavelet .In practice
both convolutions are done discretely and therefore the nor-

malization coefficients are determined numerically.
The smoothing function S by Eqs. (6), (7) and (8).

SðWÞ ¼ Sa½StðWÞ� ð9Þ
According to the above algorithm, the 1 s long EEG signals

is respectively analyzed, as shown in the figure below (Fig. 2),
firstly, the two signal segments of continuous wavelet coeffi-
cients is obtained (the horizontal axis is time, the unit is ms,
the vertical axis for the wavelet coefficients can also be con-

verted into the corresponding scale) and the second row is
smoothing (the horizontal axis is time and the vertical axis is
the smoothed spectrum value), finally, a two signal wavelet

coherence value (the horizontal axis is time, Y-axis is the
coherent value).

2.2. Topological character analysis and expression

2.2.1. Experiment

Auditory Stimuli were recorded by two adult (male and

female, for eliminating the gender difference) native Chinese
speakers. The congruent stimuli consisted of the word/Da/
(means loud voice) spoken loudly and the word/Xiao/(means

low voice) spoken lowly. The incongruent stimuli consisted
of the word /Da/spoken lowly and the word/Xiao/spoken



Figure 2 Wavelet coherence process.
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loudly. Loudness difference between the low stimuli and the
loud stimuli were adjusted at 30 dB. These two words have
similar vowel and consonant duration (both of them are

two-syllable words, and the cues of both words were located
in the same character of the words), as well as similar appear-
ance frequency in Chinese daily language. In the task, partici-
pants were instructed to identify the volume of the words and

press the upper button (") for a loud volume or the lower but-
ton (;) for a low volume, regardless of the meaning of the
words. The task consisted of 320 trials. The four kinds of stim-

uli were randomly presented with equal probability (0.25) by
the audio amplifier, which is limited to less than 60 db. The
duration of every auditory stimulus was 400 ms, and the inter-

val between every two stimuli was 2000, 2100, 2200, 2300 or
2400 ms.
2.2.2. Topologic character analysis

The following figure (Fig. 3 right) is the normalization of the

average shortest path length and clustering coefficient in the
word /Da/ (means loud voice) spoken loudly. Brain networks
have small world properties of high clustering coefficient and
a short average shortest path length. So the wavelet coherence

threshold is 0.64 in Fig. 3 (right, The X axis represents the nor-
malization path length and clustering coefficient, the Y axis
represents the wavelet coherence threshold, generating binary

network.) EEG recordings are into distinct frequency bands,
namely delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz) and gamma (30–90 Hz). Furthermore, each fre-

quency band is associated with distinct cognitive functions.
So the thick lines represent alpha band is significantly different
in Fig. 3 (left, The Y axis represents the path length and the X



Figure 3 The characteristic path length in difference frequency

(left), the normalization of the alpha average shortest path length

and clustering coefficient in/Da/spoken loudly (right).

igure 4 Brain module partition based on minimum spanning

ee method.
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axis represents the wavelet coherence threshold), so the alpha
frequency analysis is choice firstly (Deco and Kringelbach,

2014; Vecchio et al., 2016).

2.2.3. The minimum spanning tree

The minimum spanning tree (MST) of a weighted graph con-

nects all the given data points at the lowest possible cost, so
the reciprocal of wavelet coherence is used to compute the min-
imum spanning tree by Kruskal algorithm. If the weights of

the edges represent the distances between the data points,
removing edges from the MST leads to a collection of con-
nected components which can be defined to be clusters. The
data must have well-separable clusters in order that they can

be recognized with the MST clustering. On the other hand,
the method does not need any parameters like the number of
clusters or some other a priori information about the underly-

ing data. Highly connected vertices can be thought to be ‘‘clus-
ter centers”, in this paper, the maximum degree is used to
choose the cluster and centers, for example, the different clus-

ter is in different colors as shown in Fig. 4 (Päivinen, 2005;
Onnela et al., 2005).

2.3. The dynamic model construct

We used functional EEG and dynamic evolution modeling to
firstly investigate the cortical dynamics among the region.
The brain activation of the intelligibility effect and the effective

connectivity among the brain regions were analyzed for both
language groups under identical procedures and then put
together for comparison. Deciding on the most appropriate

connectivity measure can be arduous, as several issues should
be considered. This includes the consideration of linear or non-
linear relations, analysis in time or frequency domain, using an
F

tr
amplitude or phase-based measure, obtaining directed or undi-
rected information, wavelet coherence is to investigate connec-
tivity of the brain, which has been used for several decades and

are relatively straightforward in terms of computation and
interpretation in Fig. 5. Functional networks are based on
the strength or consistency of functional interactions between

the network nodes. So the degree is chosen to represent the
dynamic evolution parameter.

The brain network construction is based on wavelet coher-

ence analysis, as shown quantitatively in Fig. 2. The time hori-
zon is sampled into T discrete stages that are equally spaced
along the length of the driving cycle. Sliding-window is
30 ms from �100 ms to 600 ms. The vertical axis is quantized

into S different states (64 channel in this paper). There are
many clusters in a stage. In graph theory, the degree of a vertex
is the number of edges incident to the vertex, every vertex pre-

sents the degree value in every stage and every channel.
The state vector u is composed of degree levels that range in

equal steps. The paper deals with degree of node and battery to

maximize the cost function. For this reason, the node and the
degree can be considered as the state vector. By fixing one, the
other can be derived from the degree balance equation, hence
the degree is natural to program. In this case, Fig. 6, reveals a

model of the network along with all interconnected nodes. The
total number of nodes is ST which depends on the number of
selected states and time samples. Each of these nodes (N) is

indexed according to its current stage location and correspond-
ing state. For example node Niuj corresponds to the node at

stage i and state uj. At the first stage each node is characterized

with a cost function Diuj symbol as nodal cost. This is a dis-

crete closed form function that defines a certain objective.
The nodal cost represents the cost of being in the associated

state. Starting the second stage until ¼ T, each node has two
associated costs which are the nodal cost and the transition
cost. The transition cost Ruk ;iuj is the cost of moving from



Figure 5 Functional connectivity dynamics analysis model.
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the previous states uk to the current state uj at i. The total cost

Fiuj associated with each node at a certain stage is the sum of

its nodal cost and the maximum value of all transition costs to
the node from previous stage as shown in Eq. (10) and this
processing is in algorithm 1 (Fares et al., 2015), Ciuj is the clus-

ter which is cognition brain areas according to the Diuj . There-

fore, the dynamic evolution is expressed during the stimuli.

Index

State Vector : u ¼ ½u1 u2 . . . uj . . . us� j ¼ 1 : S

Stage Vector : Stage ¼ ½1 2 . . . i . . .T� i ¼ 1 : T

Node Representation : Niuj

Node Cost : Diuj

Cluster : Ciuj

Transition Cost : Ruk ;iuj k ¼ 1 : S

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ
Algorithm 1 dynamic evolution Algorithm
1:
 for such that i= 1:T do
2:
 for such that j = 1:S do
3:
 for such that k = 1:S do
4:
 Compute Diuj
5:
 Compute Ruk ;iuj8k
Compute Ciuj
6:
 Locate maximum of Ruk ;iuj , Locate Ciuj
7:
 Save index of Max ¼ ½i; kmax� for max of Ruk ;iuj
8:
 Compute Fiuj ¼ Diuj þ Ruk ;iuj þDði�1Þuk

9:
 end for
10:
 end for
11:
 end for
2.4. Result
Figure 6 Dynamic evolution sketch.
The dynamic evolution processing mapping is presented in

Fig. 7 based on node degrees in binary network in incongruent
minus congruent in alpha frequency. Moreover, our further
research is to study brain oscillation mechanisms of auditory
cognitive control processing based on the dynamic evolution

model. We found that the different auditory stimuli arouse dif-
ferent brain areas. This finding provides evidence for an audi-
tory conflict processing signal. More specifically, we proposed

a new model to investigate the different cognition processing in
Fig. 7 that corresponds to Fig. 8 in 30 ms time windows. High
wavelet coherence represents high synchronization of neurons,

the dynamic evolution processing mapping (incongruent minus
congruent) is that the bigger node degree the greater the color
is depth. It can be seen that the degree of synchronization in



Figure 7 The dynamic evolution processing mapping (incongruent minus congruent).
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the former stage, the front right brain area synchronization is
higher than other areas. At the later stage, the middle frontal

brain area in incongruent is higher than other areas. The
results are consistent with auditory cognitive control.

Moreover, the stronger forward connections between the

anterior temporal poles and Broca’s area may be due to further
semantic processing that is included in word identification
through phonological information in Chinese in Fig. 8 (left:

word/da/spoken loudly and right: word/Xiao/spoken loudly).
It can be seen in the process of auditory cognitive control,
the high synchronization brain areas change in time and area.
This preliminary result for auditory Stroop suggests an inte-

grated forward processing of mapping the phonological infor-
mation to the semantic-related representation from both
hemispheres in this tonal language. In an auditory Stroop task,

participants are typically required to respond to the acoustic
properties of speech stimuli, and ignore the word meanings
(Yu et al., 2015). Results: All subjects showed that most of

the activation areas were on the Dorsal lateral prefrontal cor-
tex (DLPFC) as shown in Fig. 8 in accordance with human’s
cognition (Zhang et al., 2013).

3. Conclusion

The model indicates that a complete cognitive control process

is perceptual detection, identification detection, and conflict
resolution during the auditory Stroop task. Understanding
the role EEG oscillations is important for comprehending
mechanisms of cognitive decline in the network dynamics of

auditory stimuli and could serve as a model for understanding
large-scale brain network dynamics and their relation to other
cognitive phenomena or structural modulations. This study

opens interesting avenues into future researches investigating
eventual modifications of brain connectivity in the evolution
of neurodegenerative processes beginning at the very early,

pre-clinical stages. Node degree is used to construct the model
in this paper, in the future, more topological parameters are
considered to build the model. There are still a few details that

need ironing out, for example, the length of the time window,
dynamic programing algorithm optimization (Fares et al.,
2015), etc. In brief, such methodologies will be suitable for cap-
turing the dynamic evolution of the time varying connectivity

patterns that reflect certain cognitive tasks or brain patholo-
gies.
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Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K., 2005. Intensity and

coherence of motifs in weighted complex networks. Phys. Rev. E:

Stat., Nonlin. Soft Matter Phys. 71 (2), 531–536.

Osofsky, S.S., 2000. Calculation of transient sinusoidal signal ampli-

tudes using the morlet wavelet. IEEE Trans. Signal Process. 47

(12), 3426–3428.
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