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To mitigate dictionary attacks or similar undesirable automated attacks to information systems, developers mostly prefer using
CAPTCHA challenges as Human Interactive Proofs (HIPs) to distinguish between human users and scripts. Appropriate use of
CAPTCHA requires a setup that balances between robustness and usability during the design of a challenge.)e previous research
reveals that most usability studies have used accuracy and response time as measurement criteria for quantitative analysis. )e
present study aims at applying optical neuroimaging techniques for the analysis of CAPTCHA design. )e functional Near-
Infrared Spectroscopy technique was used to explore the hemodynamic responses in the prefrontal cortex elicited by CAPTCHA
stimulus of varying types. )e findings suggest that regions in the left and right dorsolateral and right dorsomedial prefrontal
cortex respond to the degrees of line occlusion, rotation, and wave distortions present in a CAPTCHA.)e systematic addition of
the visual effects introduced nonlinear effects on the behavioral and prefrontal oxygenation measures, indicative of the emergence
of Gestalt effects that might have influenced the perception of the overall CAPTCHA figure.

1. Introduction

CAPTCHA challenges have a vital role as a countermeasure
of automated web application attacks. According to
OWASP’s (Open Web Application Security Project) list of
top 10 web application security risks, brute force and dic-
tionary attacks are reported as the secondmost critical attack
by cybersecurity experts in 2017 [1]. To mitigate dictionary
attacks, more specifically script-automated dictionary at-
tacks, software developers usually prefer using CAPTCHA
challenges. CAPTCHA challenges comprise a specific family
of Human Interactive Proofs (HIPs), which aim at dis-
tinguishing genuine human users from automated scripts.
CAPTCHA is an acronym for “Completely Automated
Public Turing Test To Tell Computers and Humans Apart.”
)e term was first coined two decades ago [2]. A CAPTCHA
enforces users to solve a given challenge to prove that they
are, indeed, human. )e challenges come in a variety of
forms. For instance, in text-based form, the challenge is

usually to enter a set of alphanumeric characters from a
keyboard, displayed in a distorted image on display. Simi-
larly, in image-based form, the challenge may consist of
choosing images that contain a specific object from a set of
images.

Chew and Tygar [3] outlined three properties that must
be satisfied by a CAPTCHA challenge: “1) easy for humans
to solve, (2) hard for scripts to solve, and (3) easy for tester
software to generate and grade” (p. 268). )e first two
properties address a balance between usability and ro-
bustness in design. Accordingly, a CAPTCHA must be
usable by humans, and at the same time, it must be robust
against automated scripts. To assess the robustness, re-
searchers have developed various attack methodologies and
tested them against available challenge designs. )e meth-
odologies have been subject to interdisciplinary develop-
ment on various fronts, including image processing and
computer vision and pattern recognition, and machine
learning [4].
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As in other domains subject to intrusion by artificial
intelligence, CAPTCHA is a challenge between human users
and computers and a continuous game of cops and robbers
between software developers and criminal hackers that
perform dictionary attacks against authentication systems.
So, for the last two decades, once a new challenge design
became solvable by programming or compromised by any
automated means, researchers developed more robust se-
curity features within the same type or novel type of the
challenge [4]. In this article, we aim to contribute to the
study of the CAPTCHA concept by presenting a report of an
experimental study that investigated users’ brain activity
during their CAPTCHA solving processes.

)e findings of the present study have an impact on
usability since difficult challenges make users less satisfied
due to reduced usability, i.e., a higher probability of failure or
low familiarity. From the software developer’s perspective,
performance results, such as response time and accuracy,
give valuable information about user experience during
authentication utilizing CAPTCHA interfaces. However, the
recent advances in neuroscience allow us to go beyond
performance measures [5]. Within the context of end-user
authentication, neuroimaging is a promising method for
developing more direct cognitive workload measures on the
user side than behavioral performance. In the present study,
we employ optical neuroimaging to study cognitive work-
load during CAPTCHA solving tasks.

Optical neuroimaging techniques have been used for the
study of cognitive processes under various contextual en-
vironments, including driving [6], subject classification in
memory tasks [7], comparison of brain activity in motor
imagery and motor movement [8], and usability and mental
workload analysis in order to understand hemodynamic
responses in the brain [9]. Recently, optical neuroimaging,
and more generally neuroimaging, has limited applications
in cybersecurity research. In particular, to the best of our
knowledge, no research has been conducted that focuses on
using neuroimaging techniques during CAPTCHA solving.

In the present study, we used Functional Near-Infrared
Spectroscopy (fNIRS) to monitor brain responses at the
prefrontal cortex during CAPTCHA solving. fNIRS is a
neuroimaging modality that enables continuous, noninva-
sive, and portable monitoring of blood oxygenation changes
and blood volume related to human brain function [10].
Neuronal activity is determined concerning oxygenation
changes since variation in cerebral hemodynamics is related
to functional brain activity through a mechanism known as
neurovascular coupling [11]. Despite its limitations in spatial
resolution and the depth of the cortical tissue that can be
monitored, the portability, ease of use, and higher temporal
resolution make fNIRS advantageous compared to other
modalities such as fMRI and PET, and fNIRS can also
monitor hemodynamic responses. In contrast to electro-
physiological modalities such as EEG/MEG, fNIRS cannot
provide comparable temporal resolution due to the slow
accumulation of hemodynamic response as a consequence of
neural activity. However, fNIRS provides better spatial
resolution, especially in contrast to EEG, since the propa-
gation of optical signals is less influenced by the brain tissue

than local field potentials. In short, fNIRS provides a good
balance in terms of spatial/temporal resolution, portability,
and cost for conducting applied cognitive neuroscience
studies in human-computer interaction and cybersecurity
settings. )erefore, this study aims to explore the plausibility
of using a portable fNIRS system for monitoring brain re-
sponses elicited by a cybersecurity application, namely,
CAPTCHA solving.

1.1. CAPTCHASolving as a Cognitive Process. Various visual
features are employed for designing text-based CAPTCHAs
that present distorted alphanumerical characters, such as
color, font, character type, length, and text content (e.g.,
word or nonword) [12, 13]. )e development of the visual
features of CAPTCHA design has been accomplished by the
development of the methodologies that perform automated
solutions.

A review of the previous studies reveals that most of the
usability studies on CAPTCHAs have used accuracy and
response time (of solving) as measurement criteria for a
quantitative evaluation of CAPTCHA design’s effectiveness.
For instance, Bursztein et al. [14] developed a single-step
approach that used machine learning algorithms to solve a
CAPTCHA automatically. Since then, application devel-
opers have started to use more challenging CAPTCHA types
to bypass automated systems, such as image-based
CAPTCHAs, in addition to text-based ones. However, due
to their deployment complexity for implementation and the
dependency of third-party cloud services for API (Appli-
cation Programming Interface) implementation, text-based
CAPTCHAs are still widely used today. As a mitigation
method against cybersecurity attacks, CAPTCHAs provide
an additional defense-in-depth mechanism besides tradi-
tional challenges that accompany other countermeasures,
such as rate-limiting or interaction detection that provides
secure authentication in information-sensitive applications.

A further investigation of the visual features employed in
CAPTCHA design reveals a set of studies investigating
CAPTCHA design from the perspective of usability. For
instance, Chellapilla et al. [15] analyzed a set of visual
features, including scaling, rotation, global and local
warping, and arcs, using accuracy as a usability metric.
Bursztein et al. [16] investigated 13 different popular text-
based and eight different audio-based types of challenges,
including the CAPTCHAs used by Baidu, Google, eBay, and
Slash. )ey employed the solution time and accuracy as the
usability metrics. Others employed the number of attempts
to solve the challenge, in addition to response time and
accuracy, to analyze the role of length, size, language and
distortion level [13], letter case, and orthographic properties
of lowercase letters on usability [17, 18].

)e investigation of behavioral performance (response
time and accuracy) in CAPTCHA solving has been subject to
large-scale studies, in addition to small-scale laboratory
experiments. For instance, an experiment was conducted on
Amazon’s Mechanical Turk with over 27,000 respondents
[14]. )ey asked the respondents to solve nearly a total of a
million CAPTCHAs. )e main purpose of the study was to
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redesign Google’s reCaptcha v1.)e focus was to analyze the
interaction of a set of visual features and analyze anti-
segmentation and antirecognition features in isolation
(approximately 20 features including content types), which
eventually led to large stimuli set. In particular, they mainly
used 6–8 digits, overlapping (with a line for backup), up to
20-degree random rotation, length and font size randomi-
zation, and sinusoidal waving with a specific configuration,
as the visual features.

In the present study, we focused on investigating three
major visual features (line, wave, and rotation) and their
interaction, which were also used by [14]. To limit the size of
the stimuli, we used 6-digit, numerical CAPTCHAs. In
addition to measuring behavioral performance, we
employed the fNIRS optical neuroimaging method to
measure blood oxygenation changes due to neuronal activity
in the prefrontal cortex while participants were solving
CAPTCHAs of various difficulty levels.

Briefly, fNIRS uses specific wavelengths of light in the red
and infrared wavelengths to monitor the relative changes in
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) con-
centrations in the capillary beds within cortical tissue.
Neuronal activity is determined with respect to changes in
oxygenation since variation in cerebral hemodynamics is
related to functional brain activity through a mechanism
known as neurovascular coupling [19, 20]. Neural activity is
an energy-intensive process that requires oxygen supplied by
the vascular system to facilitate glucose metabolization.
When a neural population becomes active, it first consumes
the oxygen available in the vicinity. It then triggers a rush of
oxygenated blood towards that region; a phenomenon called
the hemodynamic response [11]. fNIRS systems typically
feature LED or laser-based light sources to illuminate the
tissue with photons of specific wavelengths and detectors
positioned at specific distances from the light sources to
monitor the intensity of returning light. Photons that travel
through tissue are mainly subjected to absorption and
scattering [21]. Within the 700–900 nm range, oxy- and
deoxyhemoglobin molecules are the strongest absorbers,
whereas the skin, tissue, and bone structures are mainly
transparent. Moreover, the absorption spectra of oxy- and
deoxyhemoglobin are sufficiently different from each other
in this optical window, making it possible to estimate their
relative concentrations as a function of light intensity
changes across two wavelengths by using the modified Beer-
Lambert law [22].

Several fNIRS and fMRI studies have investigated cor-
tical hemodynamics changes during tasks that can be as-
sociated with CAPTCHA solving, such as letter recognition,
letter/number copying, mental rotation, and anagram
solving tasks. In an fMRI study on the orthographic
encoding of letters, symbols, and digits, Carrieras et al. [23]
employed a string comparison task where participants de-
cided whether two four-character long strings displayed in
succession were the same or different, where the different
cases required a further distinction based on whether a pair
of characters were transposed or replaced in the successive
string. )ey reported increased activity in the left inferior
frontal gyrus, particularly for processing letters as opposed

to digits/symbols, especially when the stimuli were harder to
process (i.e., stimuli that elicited higher error rate or longer
response time), suggesting the possible involvement of the
left-lateralized language network for letter processing and
the top-down attentional mechanism for the resolution of
more complex cases. Similarly, an fNIRS study on a letter
copying task, including retyping of a given number of letters
or numbers on the screen, reported that both types of stimuli
recruited increased activity across the bilateral middle and
inferior frontal gyri along with regions at the superior pa-
rietal lobule and superior temporal gyrus [24]. Mental ro-
tation is another related task where participants are given
two shapes and asked to decide if the second image could be
obtained by rotating the first one or not. Several variants of
the task have been investigated in the neuroimaging liter-
ature, including 3D blocks, letters, and abstract symbols
[25]. )e meta-analysis findings suggest that it typically took
subjects more time to respond to the task with increasing
angular separation between the two images. )e task ro-
bustly recruits bilateral inferior parietal sulcus and middle
and dorsolateral prefrontal cortex with increasing task
difficulty [25, 26]. Finally, anagram solving is another task
that can be considered relevant.)e participants try to find a
word using the letters presented to them inmixed order (e.g.,
atbel to table). An fNIRS study including anagram tasks of
varying difficulty reported increased activity in the left
dorsolateral and medial prefrontal cortex with further in-
crease in maximum HbO amplitudes in the case of more
difficult anagrams [27]. Overall, based on these results, it can
be hypothesized that CAPTCHA solving related processes
for recognizing letters/digits within distorted images will
likely recruit regions in the prefrontal cortex, especially with
increasing difficulty. To the best of our knowledge,
CAPTCHA solving processes have not been investigated in a
neuroimaging study.

Accordingly, the specific purpose of the present study is
to investigate the relationship between text-based
CAPTCHA solving tasks and the hemodynamic responses in
the brain. )is investigation aims at evaluating hemody-
namic responses as a complementary methodology to the
analysis of behavioral variables (accuracy and response time)
for the selected visual features. Our further goal is to ex-
amine the effects of the selected visual features (line, wave,
and rotation) with respect to the prefrontal cortex (PFC)
regions. In the present study, the visual features are the
independent variables. Response time, accuracy, and
changes in oxyhemoglobin and deoxyhemoglobin are the
dependent variables. )e following section presents the
experimental investigation.

2. Experiment

2.1.(eParticipants. )e experiment was conducted with 25
participants, who were university students. All the partici-
pants were right-handed. )e mean age of the participants
was 25.0 (SD� 2.37, 13 female). Nine participants had
eyeglasses, and one of them had contact lens during the
experiment. )ere was no color-blind participant as re-
ported in the demographic data forms. Eight participants
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were undergraduate students, ten had a Bachelor’s degree,
and the rest had a Master’s degree. All participants were
familiar with CAPTCHAs as frequent computer users in
their daily lives.

2.2. Material Design and Stimuli. Numerous visual features
have been used in text-based CAPTCHA design, such as the
addition of visual clutter as noise, collapsing alphanumerical
characters, and skewing the characters around an axis.
Following up the literature review, we selected three visual
features as design parameters for developing the stimuli. In
particular, we selected line, wave, and rotation, which were
also the main visual features of the final design of Google’s
reCaptcha v1 [14]. We used the three visual features for
generating CAPTCHAs with three levels of difficulty. For all
three visual features, the easiest level meant no application of
the features onto the CAPTCHA. )e second level of dif-
ficulty meant a simple application of the feature onto the
CAPTCHA. )e third level included the application of the
visual feature onto the CAPTCHA vigorously (see Figure 1
for sample stimuli). We expected that the level of difficulty
would correlate with the usability negatively.

As for the visual features, we applied the line feature by
adding a thin line (Level-2 difficulty) or a thick line (Level-3
difficulty) in the middle of a CAPTCHA passing through all
the characters. )e second feature was the wave feature with
three levels. We relocated the orientation of CAPTCHAs on
a sinusoidal line at the second level of difficulty for applying
the wave effect. On the third level and the second level, more
wave effect was applied on each CAPTCHA character. )e
last feature was the rotation feature with two levels of dif-
ficulty. At the second level of difficulty, we rotated each
character independently with the angle randomly selected
from an array including {-20, 15, 15, 20} degrees. )e ro-
tation feature has no more levels since rotated characters
with more degrees start overlapping by dramatically de-
creasing accuracy. All the three visual features and their
difficulty levels are summarized in Table 1.

To analyze the effect of each feature and the difficulty
level, all the combinations of these different features were
analyzed. A total of (3× 3× 2) 18 types of text-based
CAPTCHA were generated (a complete list of CAPTCHA
types is presented in Table 2). )e CAPTCHA with no visual
feature was chosen as the baseline in the analyses. We used a
black foreground, a grey background, and Arial regular true-
type font family with 22 font sizes to generate each character
of the CAPTCHAs. Six-digit numeric character sets were
randomly generated for each participant, so the participants
solved CAPTCHAs of random digit combinations. We used
an open-source tool, namely, cool-php-captcha (https://
github.com/josecl/cool-php-captcha, last retrieved on July
31, 2020.), to generate the stimuli, with code adjustments to
match the exact visual features expected in our design.

)e findings in the previous studies show that solving a
typical text-based CAPTCHA takes 3–7 seconds. A block
design was employed where five CAPTCHA challenges in
the same type were presented to the participant to detect
hemodynamic responses in the prefrontal cortex to each
specific combination of CAPTCHA features, as shown in

Figure 2. Between each CAPTCHA in the block, a two-
second rest was given. At the beginning of each block,
CAPTCHAs without any visual distortions were given as a
baseline task. Participants were asked to enter the
CAPTCHA text as quickly as possible, but no time-out
mechanism was employed. On average, participants com-
pleted a block in 47.9 seconds (SD� 12.2).

A total of 18 blocks were designed and displayed to each
participant in random order. Between each block, there were
10-second long rest periods. At the beginning of each ex-
periment, a test run block was run to familiarize the par-
ticipants with the experiment. After the test run and before
the main experiment session, a 20-second rest was intro-
duced. So, a total of 19 blocks were displayed during the
experiment. )e overall block design is presented in
Figure 3.

In order to display the stimuli, a web application was
developed by the PHP programming language. )e appli-
cation included a user interface that can record all the data
needed for response time and accuracy measurements and
demographic data of the participants. In addition to typed
answers and their correctness, the displayed stimuli were
recorded in base64 form for troubleshooting purposes if
needed. )e web application communicated with the fNIRS
device by sending a marker for synchronization. )e
markers were used to identify the start of a block, the end of
baseline CAPTCHAs, and the end of a block.

2.3. Procedure. Before the experiment, each participant
signed informed consent forms as part of ethical compliance
in experimental studies at the host university. Participants
filled in a translated version of the Edinburgh Handedness
Inventory questionnaire for handedness and a demographic
data form [28]. )e participants were informed about pri-
vacy, the equipment, and the interface. In the experiment
session, each participant attempted to solve a total of 133
CAPTCHAs in approximately 20–30 minutes.

Accuracy and response time data were recorded by the
native software that displayed the CAPTCHAs to the par-
ticipants. Hemodynamic activity in each participant’s pre-
frontal cortex was monitored with a continuous wave fNIRS
system developed at Drexel University and manufactured
and supplied by fNIR Devices LLC (Potomac, MD; http://
www.fNIRdevices.com). )e system is composed of a

No features Line thin Wave light

Line thick Wave highRotation (–20, –15,
15, 20) 

Figure 1: Example images generated for each single CAPTCHA
feature.
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flexible headpiece, which holds four light sources and ten
detectors to obtain oxygenation measures at 16 optodes over
the prefrontal cortex; a control box for hardware manage-
ment; a computer that runs COBI Studio software (Ayaz
et al., 2011) for data acquisition (Figure 4). )e system
records raw light intensity measurements at two wave-
lengths, namely, 730 nm and 850 nm, and in the ambient
mode to detect possible leakages due to poor skin contact.
)e sensor has a source-detector separation of 2.5 cm, which
allows for approximately 1.25 cm penetration depth. )is
system can monitor changes in relative concentrations of
HbO and HbR at a temporal resolution of 2Hz. )e 16
optodes correspond to regions in the Broadmann areas 9, 10,
44, and 45 over the prefrontal cortex [29].

)e experiment was conducted in a laboratory setting.
)e participants used a numpad keyboard for entering
numeric CAPTCHA values. )e experiment setup is illus-
trated in Figure 5.

3. Results

Twenty-five participants solved 3,325 numeric text-based
CAPTCHAs in total during the experiment, including the
test run blocks. Test run and baseline CAPTCHA tests were
always the two initial stimuli in each block. Accordingly,
they were excluded from the analysis reported in this section.
Due to a technical problem in one CAPTCHA type shown
for one of the participants, the related data were excluded.
Finally, we analyzed the remaining 2,160 CAPTCHA results

for twenty-four participants. IBM SPSS v25 and fNIRSoft
v4.11 [30] were used for the processing and statistical
analysis of the collected data.

3.1. Behavioral Results (Accuracy and Response Time).
)e overall mean accuracy was 78.7% (SD� 28.2%), and the
overall mean response time was 5.50 seconds (SD� 2.94).
)e response time of each solved CAPTCHA was recorded
by a JavaScript function called performance.now, which
measured the duration between stimuli display (web page
loading) and the click action on the submit button. )e logs
indicated that all participants attempted all presented
CAPTCHAs.

)ree-way repeated-measures ANOVAs were conducted
to compare the effect of the difficulty levels of the visual
features (line, wave, and rotation) on accuracy (Figure 6) and
response time (Figure 7). )e analysis on accuracy levels
revealed a significant main effect of line (F(1.41, 32.4)�

225.6, p< 0.01, partial η2 � .91), wave (F (2, 46)� 39.66,
p< 0.01, partial η2 � .63), and rotation (F (1, 23)� 177.4,
p< 0.01, partial η2 � .89). )e interactions of wave and line
(F (2.83, 65.00)� 11.82, p< 0.01, partial η2 � .34), wave and
rotation (F (2, 46)� 8.02, p< 0.01, partial η2 � .26), and line
and rotation (F (2, 46)� 32.27, p< 0.01, partial η2 � .58) were
also significant. )e three-way interaction was not signifi-
cant, F (4, 92)� 1.50, p> 0.05.

Sidak-corrected post hoc tests found that participants
scored significantly lower in the line-3 condition (M� 93.33,
SD� 0.94) than in line-2 (M� 89.17, SD� 1.32) and line-1
(M� 53.61, SD� 2.64). Similarly, average accuracy was
significantly low for wave-3 (M� 70.56, SD� 1.90) and was
significantly high for wave-2 (M� 78.33, SD� 1.69) and
wave-1 (M� 87.22, SD� 1.55), respectively.

)e ANOVA results on response times revealed a sig-
nificant main effect of line (F (1.13, 26.1)� 87.8, p< 0.01,
partial η2 � .79), wave (F (2, 46)� 29.95, p< 0.01, partial
η2 � .57), and rotation (F (1, 23)� 77.5, p< 0.01, partial
η2 � .77). )e interactions of wave and line (F (2.63, 60.59)�

12.22, p< 0.01, partial η2 � .35), wave and rotation (F (2,
46)� 9.57, p< 0.01, partial η2 � .29), and line and rotation (F
(2, 46)� 26.16, p< 0.01, partial η2 � .53) were also significant.
)e three-way interaction was also significant, F (2.52,
57.96)� 3.25, p< 0.05, partial η2 � .12.

Sidak-corrected post hoc tests found that participants
took significantly longer time while responding to line-3
condition (M� 7046.48, SD� 397.27) than that while
responding to line-2 (M� 4806.28, SD� 252.64) and line-1
(M� 4697.67, SD� 237.69). Similarly, the average response
times observed for wave-3 (M� 5956.96, SD� 354.99) were
significantly higher than wave-2 (M� 5776.86, SD� 298.76)
and wave-1 (M� 4816.61, SD� 218.93), respectively.

Table 1: Selected features to be analyzed with difficulty levels.

Features # of difficulties Security features defined for each level
Line 3 levels No line Line thin Line thick
Waving 3 levels No wave Wave light Wave high
Rotation 2 levels No rotation Rotation {−20, −15, 15, 20} —

Table 2: Final security features of eighteen types of text-based
CAPTCHA used in our experiment.

Type# Line features Waving features Rotation features
1 No line No wave No rotation
2 Line thin
3 Line thick
4 Max rotation 20
5 Wave light
6 Wave high
7 Line thin Max rotation 20
8 Line thick Max rotation 20
9 Line thin Wave light
10 Line thin Wave high
11 Line thick Wave light
12 Line thick Wave high
13 Wave light Max rotation 20
14 Wave high Max rotation 20
15 Line thin Wave light Max rotation 20
16 Line thin Wave high Max rotation 20
17 Line thick Wave light Max rotation 20
18 Line thick Wave high Max rotation 20
Max rotation 20� rotation (−20, −15, 15, 20).
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To sum up, the behavioral results were mainly com-
patible with the behavioral findings reported in previous
research. When no distortions are presented, the accuracy is
at the ceiling and the response time average is at the lowest
level. When line features are turned on, the most remarkable
difference occurs in the case of thick lines. A similar situ-
ation applies to the wave distortion, making the most sig-
nificant impact with its last level when all other features are
disabled. )e rotation effect also reduces accuracy, increases
response time, and amplifies the effects of line occlusion and
wave distortion. )e decrease in accuracy and the corre-
sponding increase in response time followed a nonlinear
trend as participants attempted CAPTCHAs with increasing
levels of line, wave, and rotation distortions.

3.2. Neuroimaging Results (fNIRS). )e preprocessing of
collected fNIRS data was performed with the fNIRSoft
Professional software [30]. Raw fNIRS data (16 optodes × 2
wavelengths) were low-pass filtered with a finite impulse
response, linear phase filter with order 20, and cut-off
frequency 0.1 Hz to attenuate the high-frequency noise due
to respiration and cardiac cycle effects [31]. Saturated
channels (if any) in which light intensity at the detector was
higher than the analog-to-digital converter limit were
excluded. Such cases typically occur when there is poor
skin-detector contact or hair caught between the skin and
the detector. Artifacts because of motion were detected and
excluded by applying the sliding windows motion artifact
filter [32].
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fNIRS data epochs for the rest and task periods were
extracted from the continuous data based on time syn-
chronization markers. )e markers were recorded by COBI
Studio during the experiment. During the split operation,
technical problems have been detected related to markers on
13 out of 450 main blocks, possibly due to the RS232 buffer
limitations. )ese problematic markers were corrected with

the help of the behavioral data logged by the web application.
Blood oxygenation changes within each optode were cal-
culated using the modified Beer-Lambert law with reference
to rest periods at the beginning of each trial with fNIRSoft.
)is process provided four different measures for each block,
namely, relative changes in oxyhemoglobin (HbO), deox-
yhemoglobin (HbR), total hemoglobin (i.e., HbO+HbR,

PHP web serverCobi studio
RS232 serial communication for markers
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for numpad
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fNIRS measurement
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Figure 5: Experiment setup.
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Figure 6: Average accuracy percentages observed for the levels of line and wave when rotation was in off (a) and on (b) conditions. Error
bars indicate %95 CI.
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abbreviated HbT), and oxygenation (i.e., HbO–HbR, ab-
breviated as Oxy), which were used as features for our
subsequent investigation of the participants’ brain responses
to different CAPTCHAs. )e block averages for each
measure were then computed and consolidated into a single
file along with CAPTCHA types and participant informa-
tion. Finally, checks for parametric assumptions and outliers
resulted in eliminating three more participants from the

sample. )e final data set included block averages of 22
participants over 18 CAPTCHA combinations.

After the preprocessing, a repeated-measures ANOVA
was conducted to analyze the relationship between visual
features and fNIRS variables. Groups were created according
to optodes (o1–o16) and dependent variables (HbO, HbR,
HbT, and Oxy). )e full results of the analysis are presented
in Tables 3 and 4. )e temporal mean plots for the HbO and
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Figure 7: Average response times observed for the levels of line and wave when rotation was in off (a) and on (b) conditions. Error bars
indicate %95 CI.

Table 3: Detected significant changes in mean values (tests of within-subjects effects).

Method Type III SS df MS F p Partial η2

HbO

o1 Line ∗ wave ∗ rotation Sphericity assumed 1.657 4 0.414 3.892 0.006 0.170
o11 Line ∗ wave ∗ rotation Sphericity assumed 1.410 4 0.352 3.427 0.012 0.146
o12 Line ∗ wave ∗ rotation Sphericity assumed 1.044 4 0.261 2.587 0.044 0.126
o13 Line ∗ wave ∗ rotation Sphericity assumed 1.039 4 0.260 2.554 0.046 0.118

o16 Wave ∗ rotation Sphericity assumed 0.742 2 0.371 3.686 0.034 0.156
Line ∗ wave ∗ rotation Sphericity assumed 1.092 4 0.273 3.176 0.018 0.137

o2 Line ∗ wave ∗ rotation Sphericity assumed 1.203 4 0.301 2.736 0.034 0.120
o3 Line ∗ wave ∗ rotation Sphericity assumed 1.115 4 0.279 2.588 0.043 0.115
o4 Line ∗ wave ∗ rotation Sphericity assumed 1.603 4 0.401 3.730 0.008 0.172

HbR o6 Wave ∗ rotation Sphericity assumed 0.206 2 0.103 3.712 0.034 0.171

HbT

o1 Line ∗ wave ∗ rotation Sphericity assumed 1.665 4 0.416 4.024 0.005 0.175
o10 Line ∗ rotation Sphericity assumed 2.098 2 1.049 4.180 0.023 0.180
o12 Line ∗ wave ∗ rotation Sphericity assumed 1.156 4 0.289 2.542 0.047 0.124
o14 Line ∗ wave ∗ rotation Sphericity assumed 1.172 4 0.293 2.664 0.040 0.143
o16 Line ∗ wave ∗ rotation Sphericity assumed 1.091 4 0.273 3.185 0.018 0.137
o2 Line ∗ wave ∗ rotation Sphericity assumed 1.150 4 0.287 2.624 0.041 0.116
o4 Line ∗ wave ∗ rotation Sphericity assumed 1.285 4 0.321 2.663 0.039 0.129
o8 Line ∗ rotation Sphericity assumed 2.027 2 1.013 3.586 0.038 0.166

Oxy

o1 Line ∗ wave ∗ rotation Sphericity assumed 1.827 4 0.457 3.425 0.013 0.153
o10 Line ∗ wave ∗ rotation Sphericity assumed 1.517 4 0.379 2.850 0.029 0.130
o11 Line ∗ wave ∗ rotation Sphericity assumed 2.120 4 0.530 3.554 0.010 0.151
o13 Line ∗ wave ∗ rotation Sphericity assumed 1.631 4 0.408 2.533 0.047 0.118
o3 Line ∗ wave ∗ rotation Sphericity assumed 2.029 4 0.507 3.022 0.022 0.131
o4 Line ∗ wave ∗ rotation Sphericity assumed 2.004 4 0.501 4.108 0.005 0.186
o9 Line ∗ wave ∗ rotation Sphericity assumed 1.884 4 0.471 3.464 0.012 0.148
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HbR responses observed at each optode for all stimuli types
are also presented in Appendix. Here, we present a summary
of the findings. )ere was no observed main effect that
returned a significant difference for any of the HbO, HbR,
HbT, or Oxy measurements. However, we obtained sig-
nificant interaction effects. We report the results for HbO
since they are expected to provide the largest modulation in
the fNIRS signals due to the way the vascular system re-
sponds to oxygen demands of active neural tissue. )e re-
sults showed a statistically significant three-way interaction
between line, wave, and rotation on optode1, optode2,
optode3, optode4, optode11, optode12, optode13, optode16.
Figure 8 shows the projection of F-ratios corresponding to
the three-way interaction effects observed at each optode
over the prefrontal cortex. )e visualization is produced
with a B-spline interpolation in fNIR Soft [30] to show the
regions where we observed significant three-way interaction
at the α level of .05. )e most significant interaction in
average HbO values is clustered around bilateral dorsolateral
PFC and regions in right dorsomedial PFC, consistent with
implicated regions in related neuroimaging studies focusing
on neural correlates of visuospatial and orthographic pro-
cessing tasks with varying difficulty levels [33]. Planned

contrasts following the three-way ANOVA found significant
trends that linearly and quadratically differ across levels of
visual features employed. )e results are summarized in
Table 4 together with mean plots. )e trends suggest that the
interaction effect is mainly due to the drop in oxygenation

Table 4: Significant contrast results following the three-way interaction between line, wave, and rotation for HbO measurements.

Optode Source Line Wave Rotation Type III SS df MS F p Partial η2

1
Line ∗ wave ∗ rotation Linear Linear Linear 0.568 1 0.568 5.428 0.031 0.222

Quadratic Linear Linear 0.833 1 0.833 6.149 0.023 0.245

Error Linear Linear Linear 1.989 19 0.105
Quadratic Linear Linear 2.573 19 0.135

2 Line ∗ wave ∗ rotation Linear Linear Linear 0.568 1 0.568 4.293 0.051 0.177
Error Linear Linear Linear 2.646 20 0.132

3 Line ∗ wave ∗ rotation Linear Linear Linear 0.466 1 0.466 5.909 0.025 0.228
Error Linear Linear Linear 1.576 20 0.079

4
Line ∗ wave ∗ rotation Linear Linear Linear 0.584 1 0.584 4.374 0.051 0.196

Quadratic Linear Linear 0.688 1 0.688 5.139 0.036 0.222

Error Linear Linear Linear 2.404 18 0.134
Quadratic Linear Linear 2.411 18 0.134

9 Line ∗ wave ∗ rotation Quadratic Linear Linear 0.711 1 0.711 6.563 0.019 0.247
Error Quadratic Linear Linear 2.167 20 0.108

10 Line ∗ wave ∗ rotation Quadratic Linear Linear 0.763 1 0.763 4.607 0.045 0.195
Error Quadratic Linear Linear 3.145 19 0.166

11
Line ∗ wave ∗ rotation Linear Linear Linear 0.534 1 0.534 5.34 0.032 0.211

Quadratic Linear Linear 0.627 1 0.627 4.794 0.041 0.193

Error Linear Linear Linear 1.999 20 0.1
Quadratic Linear Linear 2.617 20 0.131

12 Line ∗ wave ∗ rotation Linear Linear Linear 0.543 1 0.543 6.202 0.023 0.256
Error Linear Linear Linear 1.576 18 0.088

13 Line ∗ wave ∗ rotation Linear Linear Linear 0.621 1 0.621 5.366 0.032 0.22
Error Linear Linear Linear 2.198 19 0.116

14 Line ∗ wave ∗ rotation Linear Linear Linear 0.965 1 0.965 8.218 0.011 0.339
Error Linear Linear Linear 1.878 16 0.117

15 Line ∗ wave ∗ rotation Linear Linear Linear 0.676 1 0.676 8.225 0.012 0.354
Error Linear Linear Linear 1.232 15 0.082

16
Line ∗ wave ∗ rotation Linear Linear Linear 0.825 1 0.825 8.038 0.010 0.287

Quadratic Linear Linear 0.23 1 0.23 3.652 0.070 0.154

Error Linear Linear Linear 2.052 20 0.103
Quadratic Linear Linear 1.26 20 0.063

Figure 8: A B-spline interpolated projection of F-ratios corre-
sponding to the three-way interaction effects observed for the HbO
changes observed over the PFC.
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Figure 9: Pearson correlation coefficients between average accuracy and average HbO changes observed at 16 different optodes for each
CAPTCHA block type.
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Figure 10: Pearson correlation coefficients between average accuracy and average HbR changes observed at 16 different optodes for each
CAPTCHA block type.
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Figure 11: Pearson correlation coefficients between average response times and average HbO changes observed at 16 different optodes for
each CAPTCHA block type.
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Figure 12: Pearson correlation coefficients between average response times and average HbR changes observed at 16 different optodes for
each CAPTCHA block type.
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during the transition from thin to thick lines when the
rotation and the last level of wave distortion were in effect.
When viewed together with the sudden decrease in accuracy
measures, this may suggest that the CAPTCHAs turned out

to be too difficult to resolve when all distortions were applied
together, so the participants may have switched to a guessing
strategy, relieving the attentional resources associated with
the frontoparietal networks.
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Figure 13: Mean HbO change observed for line and wave conditions at optode 1 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 14: Mean HbO change observed for line and wave conditions at optode 2 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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3.3. Relationship between Behavioral and Neuroimaging
Results. To explore the relationship between optical imaging
and behavioral performance measures, Pearson r correlation
coefficients were computed among block averages for HbO

and HbR changes observed at each optode and the average
accuracy and the average response time for each CAPTCHA
block. )e accuracy and response time results are sum-
marized by the heatmaps in Figures 9–12, respectively. )e
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Figure 15: Mean HbO change observed for line and wave conditions at optode 3 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 16: Mean HbO change observed for line and wave conditions at optode 4 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 17: Mean HbO change observed for line and wave conditions at optode 9 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 18: Mean HbO change observed for line and wave conditions at optode 10 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 19: Mean HbO change observed for line and wave conditions at optode 11 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 20: Mean HbO change observed for line and wave conditions at optode 12 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 21: Mean HbO change observed for line and wave conditions at optode 13 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 22: Mean HbO change observed for line and wave conditions at optode 14 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 23: Mean HbO change observed for line and wave conditions at optode 15 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.
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Figure 24: Mean HbO change observed for line and wave conditions at optode 16 for rotation 1 (a) and rotation 2 (b) cases. Error bars
indicate %95 CI.

Computational Intelligence and Neuroscience 17



Line 1 HbO
Line 1 HbR

0.2

0.16

0.11

0.07

0.03

–0.01

–0.06

–0.1
0.2

0.16

0.11

0.07

0.03

–0.01

–0.06

–0.1

Figure 25: Temporal HbO andHbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 1 for the line feature.
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Figure 26: Temporal HbO andHbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 2 for the line feature.
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Figure 27: Temporal HbO andHbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 3 for the line feature.
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Figure 28: Temporal HbO and HbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 1 for the wave
feature.
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Figure 29: Temporal HbO and HbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 2 for the wave
feature.
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Figure 30: Temporal HbO and HbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 3 for the wave
feature.

20 Computational Intelligence and Neuroscience



0.2

0.16

0.11

0.07

0.03

–0.01

–0.06

–0.1
0.2

0.16

0.11

0.07

0.03

–0.01

–0.06

–0.1

Rotation 1 HbO
Rotation 1 HbR

Figure 31: Temporal HbO and HbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 1 for the rotation
feature.

0.2

0.16

0.11

0.07

0.03

–0.01

–0.06

–0.1
0.2

0.16

0.11

0.07

0.03

–0.01

–0.06

–0.1

Rotation 2 HbO
Rotation 2 HbR

Figure 32: Temporal HbO and HbR averages observed for the first 30 seconds of CAPTCHA blocks with difficulty level 2 for the rotation
feature.
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maps highlight those conditions that exhibit a linear rela-
tionship between behavioral performance and HbO/HbR
changes. )e quadratic shifts in HbO trends observed as
distortions were combined in subsequent CAPTCHA types
seemed to break the linearity in the relationship between
behavioral and fNIRS results.

4. Conclusion

)e purpose of the present study was to investigate whether
a text-based CAPTCHA solving task would produce a dif-
ferentiable, hemodynamic response in the human prefrontal
cortex, as measured by a portable fNIRS device, as a function
of three visual features (line, wave, and rotation). )e fea-
tures were selected based on the previous research reported
by Google reCAPTCHA v1 final design [16]. Eighteen types
of CAPTCHA were presented to the participants as com-
binations of the selected features with different difficulty
levels. We expected that the resultx of the current study
might contribute methodologically to cybersecurity, neu-
roscience, and usability designers in CAPTCHA designs and
the design of similar challenges for authentication.

)e behavioral results were primarily compatible with
the previous findings in the literature. A specific contri-
bution of our study is that although all selected features, the
line, wave, and rotation, returned statistically significant
findings in performance, their combined effects had a
nonadditive impact on behavioral performance indicators,
given the significantly larger reduction in accuracy and
increase in response time when stimulus switched from thin
to thick line with some wave and rotation distortions. )e
fNIRS results revealed statistically significant interaction
effects, which showed that the selected features do not ex-
hibit linear, additive effects. When viewed together with the
sudden decrease in accuracy measures, this may suggest that
the CAPTCHAs became too challenging to resolve when all
distortions were applied together, so the participants may
have switched to a guessing strategy, relieving the attentional
resources associated with the frontoparietal networks. It is
also likely that the combination of the visual features might
have led to emergent Gestalt effects that influenced the
perception of the overall CAPTCHA figure, which were
partially observed in the behavioral data.

We believe that neuroimaging is a promising method-
ology that will be used for calibrating CAPTCHA config-
urations in the design of secure software development
performed by business units that demands usability and
cybersecurity units demanding robustness in the future.
)ese systems have the potential to be neuroadaptive in that
the design of a security mechanism may involve self-cali-
bration properties as a function of the user’s cognitive
workload. Moreover, systematic neuroimaging patterns in
CAPTCHA solving tasks may be used for biometric identity
verification systems [34–36].

Although the results show systematic data patterns, they
are not generalizable at this stage due to multiple factors that
need further investigation. In particular, a richer set of visual
features is needed to understand their effects on the solution
process in isolation and their combination. Nevertheless,

that is a challenging task since the combination of visual
features is far from being additive. Instead, novel perceptual
features emerge from those combinations (namely, emer-
gent features in Gestalt theory of perception), which violates
the independence assumptions made by statistical analyses
in terms of their calculation of factorial combinations.
Accordingly, further studies should address both expanded
data sets and novel statistical methods for data analysis.
Finally, replicating this study with a full-head fNIRS or fMRI
system could help explore the effects of different distortions
based on their implications over other related regions in the
parietal, occipital, and temporal lobes. Such insights could
also help calibrate CAPTCHAs for special populations such
as dyslexic users.

Appendix

Mean HbO and HbR Responses Observed for
Each Main Visual Feature

In each graph, the temporal averages observed for HbO and
HbR concentration changes (in μmolar/liter) during the first
30 seconds of each CAPTCHA solving block are shown for
all visual feature types. All temporal plots are baseline-
corrected and presented on the same scale to aid compar-
isons, shown in Figures 13–32.

Figures 25–27 comprise lines, Figures 28–30 comprise
waves, and Figures 31 and 32 comprise rotation.
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