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Actinidia arguta (Siebold et Zucc.) Planch. ex. Miq. is one of the most recently domesticated

fruit species with increasing commercial production worldwide. It is a well-known tradi-

tional Chinese medicine and is used to reduce blood glucose and treat atopic dermatitis. In

addition, it possesses antioxidant, anticancer, and antiallergic properties. In this study, we

investigated the physical antifatigue and exercise performance effects of A. arguta crude

alkaloids (AACA) extracted with 70% ethanol. Four groups of male Kunming mice (n ¼ 16)

were orally administered AACA at doses of 0 mg/kg/d (vehicle), 50 mg/kg/d (AACA-50),

100 mg/kg/d (AACA-100), or 200 mg/kg/d (AACA-200) for 28 days. The effect of AACA

treatment on exercise performance was studied using the forelimb grip strength experi-

ment and by the measurement of the weight-loaded swimming time. The antifatigue effect

is evaluated based on fatigue-associated biochemical parameters, hepatic and muscular

glycogen levels, and changes in the morphology of transverse and longitudinal sections of

skeletal muscle. The results showed that AACA could elevate the endurance and grip

strength in mice. The exhaustive swimming time of the AACA-50, AACA-100, and AACA-

200 groups was significantly (p < 0.05) increased compared with the vehicle. The swim-

ming time of the AACA-100 group was the longest among all groups studied. Mice in the

AACA-treated groups had decreased levels of lactate, ammonia, and creatine kinase after a

physical challenge compared with the vehicle group. The tissue glycogen, an important

energy source during exercise, significantly increased with AACA. The morphology of

transverse and longitudinal sections of skeletal muscle did not change in the vehicle group.

Overall, these findings suggest that AACA possesses antifatigue effects and increases ex-

ercise performance in mice. Therefore, A. arguta may be developed as an antifatigue di-

etary supplement in the category of functional foods.
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1. Introduction

Actinidia arguta (Siebold et Zucc.) Planch. ex. Miq., known as

kiwiberry or baby kiwifruit in English, is a perennial, fast

growing, and deciduous vine. It is one of the most recently

domesticated fruit species with increasing commercial pro-

duction worldwide [1,2]. A. arguta is a well-known traditional

Chinese medicine and was recorded in the work Compendium

of Materia Medica (Bencao Gangmu) by Li Shi-Zhen about

500 years ago [3]. Several studies have demonstrated the

extensive bioactivities of A. arguta extracts, including its

ability to reduce blood glucose [4], treat atopic dermatitis [5],

and its antioxidant [6], anticancer, and antiallergic [7e9]

properties.

Fatigue is defined as physical and/or mental weariness

resulting in negative effects on exercise intensity, work per-

formance, family life, and social relationships [10]. At least

two mechanisms can explain the occurrence of physical fa-

tigue: oxidative stress and energy exhaustion [11]. Exhaustive

or intensive exercise can lead to the accumulation of excess

reactive free radicals, resulting in tissue damage. Exhaustion

theory suggests that energy source depletion and excess

metabolite accumulation can lead to fatigue [12,13]. Because

the available therapies for fatigue in modern medicine are

very limited, potential alternatives from traditional medicine

and their respective mechanisms of action are worth inves-

tigating [14]. In the past few decades, numerous studies have

demonstrated that extracts from herbal medicines and foods

are important resources for postponing fatigue, accelerating

the elimination of fatigue-related metabolites, and improving

exercise performance [15,16].

Plants produce awide variety of secondarymetabolites and

>22,000 nitrogen-containing secondarymetabolites have been

described to date in plants [17]. Modern pharmacological

studies have reported that alkaloids are the major active in-

gredients in Chinese herbal medicine and its derived products

[18]. Alkaloids in herbal medicinal plants possess anti-

inflammatory [19] and antibacterial properties [20]. However,

little attention has been devoted to evaluate the function of

alkaloids extracted from A. arguta.

Thus, the objective of this research was to evaluate the

antifatigue activity of alkaloids extracted from A. arguta using

a forced swimming test in mice. However, more clinical

studies are needed to confirm the medicinal effects in light of

rational bioactivity function, and further in-depth studies are

needed to examine the possible mechanism. Our results

suggest the use of A. arguta as an antifatigue dietary supple-

ment, and we hope the results of this study will accelerate the

use of A. arguta as an important functional food.
2. Materials and methods

2.1. Materials and reagents

Fresh “Changjiang No. 1” A. arguta fruits were purchased from

the College of Food Science, Shenyang Agricultural University,

Shenyang. China. “Changjiang No. 1” is a superior variety,

which was bred at the Northeast wild A. arguta research base
of Shenyang Agricultural University and recorded by the Seed

Administration Bureau of Liaoning Province in 2011. Fruits

were harvested toward the end of August, at the mature

commercial harvest stage. The characteristics of the fruits at

harvestwere 14e16 N of firmness, and 7e8�Bx of soluble solids

content. A total of 64 male Kunming mice [specific-pathogen-

free (SPF) grade, weight 27 ± 2 g] were purchased from the

Liaoning Longevity Biotechnology Co., Ltd (Shenyang, China).

Mouse diet (SPF grade) was purchased from the Animal

Experiment Center at China Medical University (Shenyang,

China). All animals received humane care in compliance with

the Liaoning Province Guidance on Experimental Animal Care.

The animals were raised in the SPF barrier system in the An-

imal Experiment Center of Shenyang Agricultural University.

All experimental protocols involving animals were reviewed

and approved by the Institutional Animal Care and Use

Committee of Shenyang Agricultural University. The animals

were acclimated to the environment and diet for 1 week prior

to the experiments. During the experimental period, fourmice

were housed/cage with free access to diet and water. Lactic

acid, ammonia, glucose, and serum creatine kinase (CK) kits

were purchased from Jian Cheng Biotechnology Research

Institute (Nanjing, China).

2.2. Instruments and equipment

The following instruments were used in this study: TSE

measurement system (TSE Systems GmbH, Bad Homburg,

Germany); Synergy HT multifunctional enzyme mark instru-

ment (Biotek Instruments, Winooski, VT, USA); high-speed

refrigerated centrifuge 5805 (Eppendorf, Hamburg, Germany);

Hitachi automatic biochemical analyzer 7060 (Hitachi, Tokyo,

Japan); Hitachi automatic biochemical analyzer 7080 (Hitachi);

and Olympus BX51 (Olympus, Japan).

2.3. Experimental design

2.3.1. Preparation of ethanol extracts of A. arguta crude
alkaloids and mice feeding
Prior to the extraction of alkaloids from fruits, the peduncles

were removed and dried on a lyophilizer. The dehydrated

fruits were ground into powder. The dried powder was

extracted three times with 70% ethanol. After filtration, the

extracted ethanol was evaporated to dryness on a rotary

evaporator at 60�C under reduced pressure to produce ethanol

crude extract. The crude extract was dissolved in 20 mL of 2%

HCl and then filtered to remove solid residues. The extraction

was performed two times with the same volume of chloro-

form, and then the pH of the aqueous solution was adjusted to

10 by adding ammonium hydroxide. The aqueous layer was

extracted three times using the same volume of chloroform

during each extraction. The extracts were combined and

evaporated by rotary evaporation. Ethanol extracts ofA. arguta

crude alkaloids (AACA) were then purified on a macroporous

adsorption resin (D-101). The average purity of alkaloids was

77.6% [21].

The purity of alkaloids (%) is measured as follows: C � V/

m0 � 100%, where C ¼ concentration of alkaloid in the eluent

(mg/mL); m0 ¼ total quality of postdrying alkaloids (mg); and

V ¼ volume of eluent (mL).

http://dx.doi.org/10.1016/j.jfda.2016.03.001
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The animals were raised in an SPF barrier system in the

Animal Experiment Center of Shenyang Agricultural Uni-

versity. One week prior to the experiments, the animals

were allowed to acclimatize to the environment and diet.

All animals were provided with a standard laboratory diet

(No. 5001; PMI Nutrition International, Brentwood, MO, USA)

and distilled water. The temperature was controlled at

20e26�C with a humidity of 40e70% and a 12/12-hour

dayenight cycle. The animals were randomly assigned to

the following four groups (16 mice/group) based on the

constituents administered orally at 10 AM for 28 days

[0.1 mL/10 g body weight (BW)]: vehicle group, which

received only water; AACA-50 group, which received water

containing 50 mg/kg BW/d, AACA-100 group, which received

water containing 100 mg/kg BW/d; and AACA-200 group,

which received water containing 200 mg/kg BW/d. Both the

vehicle and AACA groups were administered by gavage

feeding [15].
2.3.2. Forelimb grip strength
To measure the forelimb grip strength, a low-force testing

system was used 1 hour after the last feeding. The amount of

tensile force was measured by a force transducer equipped

with a metal bar (2 mm in diameter and 7.5 cm in length) for

each mouse in the different groups. The mice were trained to

be familiar with this procedure for 3 days before the test. No

significant difference in forelimb grip strength was observed

among the four groups prior to AACA administration. The

maximal force recorded by the low-force system was used as

the grip strength [16].
2.3.3. Swimming exercise performance test
The forced swimming test was carried out 1 hour after the

last administration, as described previously but with some

modifications [22]. Eight mice were used from each group for

the swimming exercise, with loads of lead fish sinkers

attached to the tail, equal to 5% of their BW. The swimming

exercise was carried out in an acrylic plastic pool

(50 cm � 50 cm � 40 cm) that was 30 cm deep with water

maintained at 25 ± 1�C. Exhaustion was determined by

observing loss of coordinated movements and failure to

return to the surface within 7 seconds, and the swimming

time was recorded immediately [23]. Times floating, strug-

gling, and making necessary movements were considered in

the swimming duration until exhaustion and possible

drowning.
2.3.4. Determination of fatigue-associated biochemical
parameters
The effects of AACA on serum lactate, ammonia, and glucose

levels and on CK activity were evaluated after the exercise.

One hour after oral administration of AACA, a 15-minute

swimming exercise was performed without weight loading.

Blood samples were immediately collected after the exercise.

The samples were centrifuged at 1500g, 4�C for 10 minutes to

separate the serum. Serum lactate, ammonia, and glucose

levels and CK activity were determined using Hitachi auto-

matic biochemical analyzer 7060 (Hitachi).
2.3.5. Determination of clinical biochemical parameters
Clinical biochemical parameters, including aspartate amino-

transferase (AST), alanine aminotransferase (ALT), alkaline

phosphatase, lactate dehydrogenase (LDH), albumin, total

bilirubin (TBIL), total protein (TP), blood urea nitrogen (BUN),

creatinine, uric acid (UA), total cholesterol, and triacylglycerol,

were determined using the Hitachi automatic biochemical

analyzer 7080 (Hitachi).

2.3.6. Determination of tissue glycogen and visceral organ
weight
Liver and muscle tissues were excised and weighed for

glycogen content analysis. The weights of related visceral

organs were recorded.

2.3.7. Histology staining of tissues
The animals from both vehicle and AACA treatment groups

were killed and their skeletal muscle tissues were collected

and fixed in 10% buffered formalin, and then embedded in

paraffin. They were cut transversely and longitudinally to

obtain skeletal muscle cross sections. Paraffin-embedded

samples were cut into 4-mm thick slices for morphological

and pathological evaluations. Tissue sections were stained

with hematoxylin and eosin.

2.4. Statistical analysis

The data were processed using SPSS 17.0 (IBM, Armonk, NY,

USA) and expressed as mean ± standard error of the mean.

Means between the groups were compared using a single-

factor analysis of variance (one-way analysis of variance).

The difference was considered significant for all p

values < 0.05.
3. Results and discussion

3.1. Effect of BW, skeletal muscle mass, and weights of
some metabolism-related organs

BW and metabolism-related organs have a certain relation-

ship with athletic ability. In general, animals with lighter BW

have low basal metabolism and small sports load. The vehicle

and AACA supplementation groups did not differ in behavior

during treatment. The morphological data before and after

28 days of administration of various amounts of AACA are

summarized in Table 1. There was no significant difference in

initial BWs among groups. The food and water intakes of mice

in the AACA-treated groups were slightly greater compared

with the vehicle group. In addition, the weight of the liver,

muscle, kidney, and lung dose-dependently increased with

AACA administrations. The relative tissue weight (%) is a

measure of different tissue weights adjusted for individual

BW. Therewere no significant differences in the relative tissue

weights of the liver, skeletal muscle, kidney, and lung among

the AACA groups compared with the vehicle group, although

there were a few exceptions (Table 1). These data indicate that

the AACA administrations did not affect the BW and

metabolism-related organ weight in mice after 28 days of

feeding.

http://dx.doi.org/10.1016/j.jfda.2016.03.001
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Table 1 e General characteristics of the experimental mice.

Variable Vehicle AACA-50 AACA-100 AACA-200

Initial body weight (BW; g) 27.31 ± 0.40 a 27.62 ± 0.61 a 27.91 ± 0.50 a 27.54 ± 0.52 a

Final BW (g) 34.60 ± 0.12 b 35.12 ± 0.19 a,b 36.61 ± 0.91 a 35.91 ± 0.50 a

Food intake (g/d) 6.22 ± 0.46 b 6.49 ± 0.29 a,b 6.87 ± 0.24 a 6.31 ± 0.38 a,b

Water intake (g/d) 7.80 ± 0.18 c 8.03 ± 0.21 b,c 8.48 ± 0.39 a,b 8.64 ± 0.18 a

Liver (g) 1.92 ± 0.01 c 1.94 ± 0.02 b,c 1.95 ± 0.02 a,b 1.97 ± 0.02 a

Muscle (g) 0.31 ± 0.01 b 0.33 ± 0.01 b 0.36 ± 0.01 a 0.35 ± 0.01 a

Kidney (g) 0.42 ± 0.01 a 0.44 ± 0.01 a 0.45 ± 0.01 a 0.46 ± 0.01 a

Lung (g) 0.31 ± 0.01 b 0.32 ± 0.01 b 0.34 ± 0.01 a 0.36 ± 0.01 b

Relative liver weight (%) 5.55 ± 0.02 a 5.53 ± 0.09 a 5.33 ± 0.02 b 5.47 ± 0.04 a

Relative muscle weight (%) 0.90 ± 0.03 c 0.92 ± 0.06 b,c 0.98 ± 0.01 a 0.97 ± 0.02 a,b

Relative kidney weight (%) 1.22 ± 0.03 a 1.24 ± 0.09 a 1.22 ± 0.01 a 1.27 ± 0.03 a

Relative lung weight (%) 0.92 ± 0.03 b 0.93 ± 0.05 b 0.91 ± 0.01 a 1.01 ± 0.03 a

Values are presented as mean ± standard error of the mean.

Values in the same row with different superscript letters (a, b, c) differ significantly (p < 0.05) by one-way analysis of variance.

AACA ¼ Actinidia arguta crude alkaloids.
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3.2. Effect of forelimb grip strength

As shown in Figure 1, the grip strength of the vehicle, AACA-

50, AACA-100, and AACA-200 groups was 112.3 g, 130.5 g,

146.4 g, and 143.2 g, respectively. Compared with the vehicle,

these increased by 16.21%, 30.37%, and 27.52%, respectively.

The results indicated that AACA can improve the forelimb grip

strength of mice. Among all the study groups, the forelimb

grip strength of the AACA-100 group was the highest. How-

ever, the differences between the AACA-100 and AACA-200

groups were not statistically significant (p < 0.05).
3.3. Effect of exercise performance on weight-loaded
swimming exercise

Energy metabolism during muscular activity determines the

level of physiological fatigue. The main performances of fa-

tigue are reductions on the maximum output power of the
Figure 1 e Effect of administrations of A.arguta crude

alkaloids (AACA) extracts on forelimb grip strength. The

forelimb grip strength was measured after the mice were

fed with water (vehicle group) and 50e200 mg/kg/d A.

arguta crude alkaloids (AACA-treated groups) for 28 days.

Data are presented as mean ± standard error of the mean

of eight mice. Values of histogram labeled with different

letters (a, b, c) are significantly different (p < 0.05).
motion energy system and muscle strength [24,25]. Exercise

endurance is an important variable in evaluating delayed fa-

tigue treatment. Exercise endurance of the mice after 28 days

of AACA administrations was determined using a swimming

test. As shown in Figure 2, the swimming test times were

6.2 minutes, 11.4 minutes, 17.5 minutes, and 15.2 minutes in

the vehicle, AACA-50, AACA-100, and AACA-200 groups,

respectively. The swimming times of the AACA-50, AACA-

100, and AACA-200 groups increased by 83.87%, 182.25%, and

145.16% compared with the vehicle. The swimming time of

the AACA-100 group was the longest among all the groups

studied. However, no obvious difference was found in

swimming time between the AACA-50 and AACA-200 groups.

These results indicated that AACA administrations can

enhance the swimming time of mice and the best dose was

100 mg/kg/d, providing evidence that AACA possesses anti-

fatigue activity.
Figure 2 e Effect of administrations of A.arguta crude

alkaloids (AACA) extracts on swimming exercise

performance. The endurance of mice was measured after

28 days of AACA administrations by an exhaustive

swimming exercise with a load equivalent to 5% of the

mouse's body weight attached to its tail. Data are

presented as mean ± standard error of the mean of eight

mice. Values of histogram labeled with different letters (a,

b) are significantly different (p < 0.05).

http://dx.doi.org/10.1016/j.jfda.2016.03.001
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3.4. Effect of serum lactate, ammonia, glucose, and CK
levels after acute exercise challenge

The serum lactate level is an important parameter in the fa-

tigue system, and the normal value of lactate is approximately

2mmol/L. As shown in Figure 3A, after a 15-minute swimming

session, the lactate level of mice in all groups was above the

normal value. The muscle produces a high quantity of lactate

when it obtains enough energy from anaerobic glycolysis

during high-intensity exercise. The serum lactate levels

decreased significantly with the increasing dose of AACA

compared with the vehicle by 8.1% (AACA-50), 12.9% (AACA-

100), and 13.8% (AACA-200). Ammonia, a metabolite of pro-

teins and amino acids, is released after a short period of severe

exercise or maximal training. A higher level of ammonia leads

to fatigue, and therefore, the serum ammonia level is closely

related to fatigue and exercise performance. As shown in

Figure 3B, the ammonia levels decreased significantly with

AACA administrations. They were 97 mmol/L (AACA-50),

74 mmol/L (AACA-100), and 76 mmol/L (AACA-200)

respectively, the AACA treated groups showed a reduction of

28.1e45.2% compared with 135 mmol/L for the vehicle. The

energy supply for exercise initially came from the breakdown

of glycogen and from circulating glucose released by the liver

after intense exercise. Therefore, blood glucose levels are an

important index for performance maintenance during exer-

cise [26]. As shown in Figure 3C, the serum glucose levels were
Figure 3 e Effect of administrations of A.arguta crude alkaloids

glucose, and (D) creatine kinase (CK) levels after an acute exercis

minute forced swimming test without weight loading after 28 d

mean ± standard error of the mean of eight mice. Values of his

significantly different (p < 0.05). CK ¼ creatine kinase.
higher in the groups that received AACA administrations than

in the vehicle. The glucose level of the AACA-100 group

(197 mmol/L) was the highest among all studied groups, and it

increased significantly compared with that of the vehicle

(187 mmol/L). CK mainly exists in the cytoplasm and mito-

chondria of cells, and catalyzes the chemical reaction be-

tween phosphoinositide and high-energy phosphate bonds.

High-energy phosphate bonds are the direct source of en-

ergy duringmuscle contraction. The CK activity in the vehicle,

AACA-50, AACA-100, and AACA-200 groups was 402 U/L,

297 U/L, 243 U/L, and 247 U/L, respectively (Figure 3D). In

comparison with the vehicle, the CK activity showed a sig-

nificant decrease in the AACA-treated groups (CK activity

reduced by 26.1%, 38.56%, and 39.6% in the AACA-50, AACA-

100, and AACA-200 groups, respectively). Thus, AACA may

ameliorate skeletal muscle injury induced by acute exercise

challenge. The aforementioned results about four fatigue-

associated biochemical indexes indicated that administra-

tions of AACA can alleviate physical fatigue and improve

exercise performance in mice.
3.5. Effect of biochemical parameters

In the normal state, physiological and biochemical indexes of

the internal body parts (e.g., the organs) change before the

occurrence of sensory fatigue in athletes, suggesting that

when these indexes accumulate to a certain degree, the body
(AACA) extracts on serum (A) lactate, (B) ammonia, (C)

e challenge. The measurements were taken following a 15-

ays of AACA administrations. Data are presented as

togram labeled with different letters (a, b, c, d) are

http://dx.doi.org/10.1016/j.jfda.2016.03.001
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could experience sensory fatigue [27]. Adaptogens are sub-

stances that enable the normalization of physiologic re-

sponses to various stressors, enhance work performance, and

increase the stress tolerance of the body [28]. To reveal the

benefits following AACA feeding, we measured a number of

biochemical parameters separately. As shown in Table 2, the

levels of LDH, TBIL, and UA decreased in the AACA-100 and

AACA-200 groups compared with the vehicle. This result was

in agreement with theories that LDH, TBIL, and UA levels

would be increased when the body is at the fatigue state. In

general, carbohydrates and lipids are important biochemical

components that provide energy within 30 minutes of per-

forming an exercise. By contrast, protein hardly provides en-

ergy and the levels of BUN show only a small change. When

exercising for longer times, however, while the body energy is

improved by carbohydrates and lipids, the proteins are

decomposed. Simultaneously, the value of BUN would in-

crease significantly and the tolerance ability would become

worse. Eventually, the body feels tired. Compared with the

vehicle, the levels of albumin and TP had a small increase in

the AACA-100 and AACA-200 groups, and the level of BUN

significantly decreased in the AACA-100 and AACA-200

groups. Based on these findings, the results showed that

AACA can delay physical fatigue in mice.
Figure 4 e Effect of administrations of A.arguta crude

alkaloids (AACA) extracts on (A) hepatic and (B) muscular

glycogen levels at the end of the experiments. The

measurements were taken after 28 days of AACA

administrations. Data are presented as mean ± standard

error of the mean of eight mice. Values of histogram

labeled with different letters (a, b) are significantly different

(p < 0.05).
3.6. Effect of hepatic and muscular glycogen levels

Being the main source of adenosine triphosphate, glycogen is

the main energy source of the body. The body's movement,

endurance, and levels of glycogen are directly related; in most

cases, depletion of glycogen is usually accompanied by sheer

exhaustion. Muscle glycogen is the main energy source of the

body when performing strenuous exercises for a long time.

While performing exhaustive exercise, excessive consump-

tion of muscle glycogen can trigger a lower glucose concen-

tration in the blood, which can promote lactate accumulation

in large amounts, as a result of which athletes experience

fatigue. When the body energy consumption is large to such a

degree that the glucose concentration begins to get low, liver

glycogen, the important energy storage material, will be

decomposed by glucagon to glucose. Hence, it drives the
Table 2 e Results of biochemical analysis of the AACA groups at the end of the experiment.

Parameter Vehicle AACA-50 AACA-100 AACA-200

Aspartate aminotransferase (U/L) 78.21 ± 2.06 a 68.09 ± 3.24 a 52.50 ± 2.03 a 57.41 ± 1.85 a

Alanine aminotransferase (U/L) 52.22 ± 1.95 a 47.71 ± 1.75 a,b 43.81 ± 1.57 b 42.20 ± 2.63 b

Alkaline phosphatase (U/L) 118 ± 13 a 126 ± 14 a 135 ± 13 a 130 ± 15 a

Lactate dehydrogenase (U/L) 443 ± 32 b 450 ± 25 b 364 ± 22 a 379 ± 29 a

Albumin (g/dL) 2.71 ± 0.12 a 2.71 ± 0.06 a 2.80 ± 0.06 a 2.81 ± 0.12 a

Total bilirubin (mg/dL) 56.00 ± 5.67 a 58.81 ± 3.36 a 53.89 ± 2.71 a 54.93 ± 3.21 a

Total protein (g/dL) 4.90 ± 0.12 a 4.90 ± 0.06 a 5.01 ± 0.14 a 5.00 ± 0.15 a

Blood urea nitrogen (mg/dL) 25.31 ± 1.22 a 24.61 ± 0.85 a 21.62 ± 1.13 b 22.71 ± 1.01 b

Creatinine (mg/dL) 0.34 ± 0.01 a 0.31 ± 0.01 b 0.33 ± 0.01 a 0.33 ± 0.02 a

Uric acid (mg/dL) 1.70 ± 0.12 a 1.41 ± 0.10 b 1.52 ± 0.12 a,b 1.41 ± 0.12 b

Total cholesterol (mg/dL) 114 ± 4 a 120 ± 6 a,b 126 ± 6 b 118 ± 5 a,b

Triacylglycerol (mg/dL) 83.21 ± 5.89 a 78.39 ± 5.37 a,b 73.60 ± 3.64 a,b 75.59 ± 5.98 b

Values are mean ± standard error of the mean of eight mice.

Values in the same row with different superscripts letters (a, b) differ significantly (p < 0.05) by one-way analysis of variance.

AACA ¼ Actinidia arguta crude alkaloids.

http://dx.doi.org/10.1016/j.jfda.2016.03.001
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Figure 5 e Effect of A.arguta crude alkaloids (AACA) treatments on the morphology of (A) transverse and (B) longitudinal

sections of skeletal muscle. Mice were pretreated with vehicle, 50 mg/kg, 100 mg/kg, and 200mg/kg of AACA for 28 days. All

mice were killed and the morphology of skeletal muscle was examined at the end of the experiments. Specimens were

photographed using a light microscope (hematoxylin and eosin stain; magnification: 100£; scale bar: 40 mm).
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body's glucose concentration to rise in order to balance the

glucose concentration. As shown in Figure 4A, hepatic

glycogen levels in the vehicle, AACA-50, AACA-100, and

AACA-200 groups were 19.91 mg/g, 15.01 mg/g, 21.08 mg/g,

and 23.28 mg/g, respectively. Glycogen content was signifi-

cantly enhanced in the liver tissues of the AACA-100 and

AACA-200 groups compared with the vehicle. Muscular

glycogen levels in the vehicle, AACA-50, AACA-100, and

AACA-200 groups were 1.44 mg/g, 1.42 mg/g, 1.93 mg/g, and

1.87 mg/g, respectively (Figure 4B). A significant increase in

muscle glycogen content was observed in the AACA-100 and

AACA-200 groups compared with the vehicle. The experi-

mental results showed that there were significant differences

in glycogen content between the AACA-100 or AACA-200 and

vehicle groups, but not between the AACA-50 and vehicle

groups. This suggests that feeding with AACA (100 mg/kg/d or

200mg/kg/d)may increase the hepatic andmuscular glycogen

content, and prevent fatigue further.

3.7. Effect of AACA on muscular tissues

We also examined whether AACA treatments could cause any

negative effect on skeletal muscle tissues of healthy mice. We

examined plasma aminotransferase levels (AST and ALT), CK

activities (Table 2 and Figure 3D), andmuscularmorphology in

AACA-treated mice (Figures 5A and 5B), and found no indi-

cation of a deleterious effect associated with AACA treatment.
4. Conclusion

Our study results showed that AACA could significantly in-

crease the swimming time in the weight-loaded swimming

test (11.3 minutes) and forelimb grip strength (34.1 g) in mice

in the AACA-100 group compared with the vehicle. Further,
AACA elevates exercise performance by increasing levels of

glucose, albumin, and TP and decreasing levels of lactate,

ammonia, CK, UA, and BUN. The reserves of hepatic (3.37 mg/

g) and muscular (0.49 mg/g) glycogen increased after exercise,

which could provide energy for body movement and improve

exercise performance. Our study results suggest that alkaloids

extracted from A. arguta could be used as a novel antifatigue

and exercise performance agent with physiological benefits

when taken at optimized and reasonable doses. Because A.

arguta alkaloids have antifatigue effects, A. arguta will be an

important index in future breeding experiments and can be

used as an important functional food in the future.
Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

The research was supported by the Ministry of Agriculture of

the National Public Welfare Industry Project of China (Project

No. 200903013).
r e f e r e n c e s

[1] Wang YH, Xu FX, Feng XQ, MacArthur RL. Modulation of
Actinidia arguta fruit ripening by three ethylene biosynthesis
inhibitors. Food Chem 2015;173:405e13.

[2] Latocha P, Krupa T, Jankowski P, Radzanowska J. Changes in
postharvest physicochemical and sensory characteristics of
hardy kiwifruits (Actinidia arguta and its hybrid) after cold

http://refhub.elsevier.com/S1021-9498(16)30017-5/sref1
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref1
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref1
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref1
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref2
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref2
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref2
http://dx.doi.org/10.1016/j.jfda.2016.03.001
http://dx.doi.org/10.1016/j.jfda.2016.03.001


j o u r n a l o f f o o d and d ru g an a l y s i s 2 4 ( 2 0 1 6 ) 7 3 8e7 4 5 745
storage under normal versus controlled atmosphere.
Postharvest Biol Technol 2014;88:21e33.

[3] Xuan L. Preliminary structure identification, antioxidant
activity and immunity activity of the polysaccharides from
Actinidia arguta. Doctor thesis. Shenyang, China: Shenyang
Agricultural University; 2013.

[4] Liu YJ, Liu JF, Tian XY, Wang XD, Wang LX, Ren DM.
Polysaccharide of Actinidia arguta and activity of blood
glucose and lipid of decline. Shi Pin Yu Sheng Wu Ji Shu Xue
Bao 2012;31:86e9 [In Chinese, English abstract].

[5] Kim JY, Lee IK, Son MW, Kim KH. Effects of orally
administered Actinidia arguta (hardy Kiwi) fruit extract on 2-
chloro-1,3,5-trinitrobenzene-induced atopic dermatitis-like
skin lesions in NC/Nga mice. J Med Food 2009;12:1004e15.

[6] Lee J, Sowndhararajan K, Kim M, Kim J, Kim D, Kim S,
Kim GY, Kim S, Jhoo JW. Antioxidant, inhibition of a-
glucosidase and suppression of nitric oxide production in
LPS-induced murine macrophages by different fractions of
Actinidia arguta stem. Saudi J Biol Sci 2014;21:532e8.

[7] Webby RF. A flavonol triglycoside from Actinidia arguta var.
giraldii. Phytochemistry 1991;30:2443e4.

[8] Matich AJ, Young H, Allen JM, Wang MY, Fielder S,
McNeilage MA, MacRae EA. Actinidia arguta: volatile
compounds in fruit and flowers. Phytochemistry
2003;63:285e301.

[9] Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N,
Bartlett J, Smith PT, Shanmugam K, Münch G, Wu MJ,
Satyanarayanan M, Vysetti B. Antioxidant and anti-
inflammatory activities of selected Chinese medicinal plants
and their relation with antioxidant content. BMC
Complement Altern Med 2012;12:173e87.

[10] Mehta RK, Agnew MJ. Influence of mental workload on
muscle endurance, fatigue, and recovery during intermittent
static work. Eur J Appl Physiol 2012;112:2891e902.

[11] Coombes JS, Rowell B, Dodd SL, Demirel HA, Naito H,
Shanely RA, Powers SK. Effects of vitamin E deficiency on
fatigue and muscle contractile properties. Eur J Appl Physiol
2002;87:272e7.

[12] Nybo L. CNS fatigue and prolonged exercise: effect of glucose
supplementation. Med Sci Sports Exerc 2003;35:589e94.

[13] You LJ, Zhao MM, Regenstein JM, Ren JY. In vitro antioxidant
activity and in vivo anti-fatigue effect of loach (Misgurnus
anguillicaudatus) peptides prepared by papain digestion. Food
Chem 2011;124:188e94.

[14] Tharakan B, Dhanasekaran M, Manyam BV. Antioxidant and
DNA protecting properties of anti-fatigue herb Trichopus
zeylanicus. Phytother Res 2005;19:669e73.

[15] Yeh TS, Chuang HL, Huang WC, Chen YM, Huang CC,
Hsu MC. Astragalus membranaceus improves exercise
performance and ameliorates exercise-induced fatigue in
trained mice. Molecules 2014;19:2793e807.

[16] Lee BR, Lee JH, An HJ. Effects of Taraxacum officinale on fatigue
and immunological parameters in mice. Molecules
2012;17:13253e65.

[17] Wink M. Alkaloids: properties and determination. In:
Caballero B, Finglas PM, Toldr�a F, editors. Encyclopedia of
food and health. Amsterdam, The Netherlands: Elsevier;
2016. p. 97e105.

[18] Liu YN, Song X, Yan RQ, Li TX, Chai X, Qi AD, Wang YF,
Jiang ZZ. Development and validation of a UPLC-DAD-MS
method for characterization and quantification of alkaloids
in Menispermi Rhizoma and its preparations. J Food Drug
Anal 2013;21:206e18.

[19] Gao C, Huang XX, Bai M, Wu J, Li JY, Liu QB, Li LZ, Song SJ.
Anti-inflammatory sesquiterpene pyridine alkaloids from
Tripterygium wilfordii. Fitoterapia 2015;105:49e54.

[20] Liu L, Chen YY, Qin XJ, Wang B, Jin Q, Liu YP, Luo XD.
Antibacterial monoterpenoid indole alkaloids from Alstonia
scholaris cultivated in temperate zone. Fitoterapia
2015;105:160e4.

[21] LiuYY, LiuCJ. Extractionprocess optimization of total alkaloid
from Actinidia arguta. International Conference on Materials.
Environment and Biological Engineering (MEBE 2015).
Amsterdam, The Netherlands: Atlantis Press; 2015. p. 131e4.

[22] Jung K, Kim IH, Han D. Effect of medicinal plant extracts on
forced swimming capacity in mice. J Ethnopharmacol
2004;93:75e81.

[23] Kim KM, Kawada T, Ishihara K, Inoue K, Fushiki T. Increase
in swimming endurance capacity of mice by capsaicin-
induced adrenal catecholamine secretion. Biosci Biotechnol
Biochem 1997;61:1718e23.

[24] Tang KJ, Nie RX, Jing LJ, Chen QS. Anti-athletic fatigue
activity of saponins (Ginsenosides) from American ginseng
(Panax quinquefolium L.). Afr J Pharm Pharmacol 2009;3:301e6.

[25] Zhang HL, Li J, Li G, Wang DM, Zhu LP, Yang DP. Structural
characterization and anti-fatigue activity of polysaccharides
from the roots of Morinda officinalis. Int J Biol Macromol
2009;44:257e61.

[26] Suh SH, Paik IY, Jacobs K. Regulation of blood glucose
homeostasis during prolonged exercise. Mol Cells
2007;23:272e9.

[27] Grace MH, Yousef GG, Kurmukov AG, Raskin I, Lila MA.
Phytochemical characterization of an adaptogenic
preparation from Rhodiola heterodonta. Nat Prod Commun
2009;4:1053e8.

[28] Chiang HM, Chen HC, Wu CS, Wu PY, Wen KC. Rhodiola
plants: chemistry and biological activity. J Food Drug Anal
2015;23:359e69.

http://refhub.elsevier.com/S1021-9498(16)30017-5/sref2
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref2
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref2
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref3
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref3
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref3
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref3
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref4
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref4
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref4
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref4
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref4
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref5
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref5
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref5
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref5
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref5
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref6
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref6
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref6
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref6
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref6
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref6
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref7
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref7
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref7
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref8
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref8
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref8
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref8
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref8
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref9
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref9
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref9
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref9
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref9
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref9
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref9
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref10
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref10
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref10
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref10
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref11
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref11
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref11
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref11
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref11
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref12
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref12
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref12
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref13
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref13
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref13
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref13
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref13
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref14
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref14
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref14
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref14
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref15
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref15
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref15
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref15
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref15
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref16
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref16
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref16
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref16
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref17
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref17
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref17
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref17
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref17
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref17
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref18
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref18
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref18
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref18
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref18
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref18
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref19
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref19
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref19
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref19
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref20
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref20
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref20
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref20
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref20
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref21
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref21
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref21
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref21
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref21
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref22
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref22
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref22
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref22
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref23
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref23
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref23
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref23
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref23
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref24
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref24
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref24
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref24
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref25
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref25
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref25
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref25
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref25
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref26
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref26
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref26
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref26
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref27
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref27
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref27
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref27
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref27
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref28
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref28
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref28
http://refhub.elsevier.com/S1021-9498(16)30017-5/sref28
http://dx.doi.org/10.1016/j.jfda.2016.03.001
http://dx.doi.org/10.1016/j.jfda.2016.03.001

	Antifatigue and increasing exercise performance of Actinidia arguta crude alkaloids in mice
	1. Introduction
	2. Materials and methods
	2.1. Materials and reagents
	2.2. Instruments and equipment
	2.3. Experimental design
	2.3.1. Preparation of ethanol extracts of A. arguta crude alkaloids and mice feeding
	2.3.2. Forelimb grip strength
	2.3.3. Swimming exercise performance test
	2.3.4. Determination of fatigue-associated biochemical parameters
	2.3.5. Determination of clinical biochemical parameters
	2.3.6. Determination of tissue glycogen and visceral organ weight
	2.3.7. Histology staining of tissues

	2.4. Statistical analysis

	3. Results and discussion
	3.1. Effect of BW, skeletal muscle mass, and weights of some metabolism-related organs
	3.2. Effect of forelimb grip strength
	3.3. Effect of exercise performance on weight-loaded swimming exercise
	3.4. Effect of serum lactate, ammonia, glucose, and CK levels after acute exercise challenge
	3.5. Effect of biochemical parameters
	3.6. Effect of hepatic and muscular glycogen levels
	3.7. Effect of AACA on muscular tissues

	4. Conclusion
	Conflicts of interest
	Acknowledgments
	References


