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ABSTRACT

There is an urgent need for bioinformatic methods
that allow integrative analysis of multiple microarray
datasets.While previousstudieshavemainlyconcen-
trated on reproducibility of gene expression levels
within or between different platforms, we propose a
novel meta-analytic method that takes into account
the vast amount of available probe-level information
to combine the expression changes across different
studies. We first show that the comparability of
relative expression changes and the consistency of
differentially expressed genes between different
Affymetrix array generations can be considerably
improved by determining the expression changes
at the probe-level and by considering the latest
information on probe-level sequence matching
instead of the probe annotations provided by the
manufacturer. With the improved probe-level expres-
sion change estimates, data from different genera-
tions of Affymetrix arrays can be combined more
effectively. This will allow for the full exploitation
of existing results when designing and analyzing
new experiments.

INTRODUCTION

The enormous popularity of gene expression profiling with
microarrays in recent years has resulted in a rapid accumula-
tion of data in many laboratories and public databases. As
microarray experiments are expensive and often involve bio-
logical samples that are difficult to obtain, sample sizes in
typical microarray studies are relatively small, leading to
several false-positive and false-negative findings. Therefore,
methods that can effectively extract information from previous

studies are of practical interest for minimizing the number
of additional experiments needed without compromising the
reliability of the results. However, combining data across stud-
ies performed at different times and perhaps in different
laboratories is a challenging task where both biological and
technical sources of variability must be considered carefully.

A major problem in integrative analysis is that gene expres-
sion data generated with different microarray platforms are not
directly comparable, and even within the same technique dif-
ferent protocols for sample preparation, array hybridization
and data analysis can result in severe variations among data
sets. Accordingly, the early cross-platform comparisons often
showed poor correlation between their intensity measurements
(1,2). More recent studies have showed that implementation of
standardized protocols for all steps of the microarray study can
markedly increase reproducibility between platforms and even
across laboratories (3,4). However, some of the variation can
be beyond the capacity of standard normalization techniques
if the remaining discrepancies between data sets originate
from measuring different splice variants of the same gene (5).

As the compositions of microarrays are regularly updated to
incorporate new genes with improved target sequences, it is
difficult to combine data even from different generations of
the same microarray platform. In particular, Affymetrix high-
density oligonucleotide arrays utilize multiple (typically 8–16)
25mer probes, the so-called probe set, to measure the expres-
sion level of a transcript target. Although the use of several
probes for each target leads to more robust estimates of tran-
script activity, it is clear that probe qualities may significantly
affect the results of a study. It has been noticed that a con-
siderable number of probes on various high-density oligonu-
cleotide arrays do not uniquely match their intended targets
(6–9). By matching the probe sequences to the most up-to-date
genomic sequence data, it is possible to assess the quality of
the probes. Redefinition of probe sets according to the latest
probe sequence information can increase their accuracy and
cross-platform consistency with other array types (6,8,9).
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Previous works on different generations of Affymetrix
arrays have concentrated mainly on the reproducibility of
their expression results. In a comparison of two Affymetrix
arrays, HuGeneFL and HG-U95A, Nimgaonkar et al. (10)
concluded that the reproducibility is high only when the
corresponding probe sets share many exact probes. Hwang
et al. (7) advanced the comparison analysis by selecting
subsets of probes with overlapping sequence segments and
recalculating expression values using the selected probes
only. While such probe filtering could significantly improve
the reproducibility between Affymetrix HG-U95Av2 and
HG-U133A arrays, some useful information from the non-
overlapping probes measuring identical targets may be lost.
In fact, from the investigator’s point of view, the enhanced
comparability is of practical importance only when the probes
match identical targets.

In the present work, we continue the integrative analysis
across generations of Affymetrix arrays by considering explic-
itly the actual targets of probe sequences rather than their
similarities. As most current arrays with an enhanced probe
design protocol contain high quality probes that do not share
sequence similarity with the older probes, we do not filter
probes based on overlap but utilize all available probe-level
information across generations. We carry out a thorough
examination of two in-house data sets, containing expression
data from human HG-U133A and HG-U133Plus2.0 arrays and
murine MG-U74Av2 and mouse MOE430 2.0 arrays. Addi-
tionally, we consider two publicly available data sets, contain-
ing expression data from human HG-U95Av2 and HG-U133A
arrays. Each data set contains technical replicates hybridized
to two array types, allowing us to isolate the array-effects from
the underlying biological variation. Since the technical repli-
cates are assumed to produce the same results on both arrays,
the comparability of the arrays can be directly evaluated. We
also investigate several different probe set pairing approaches
in the comparison studies.

Toward combining results from multiple studies, we pro-
pose a novel meta-analytic framework, based on the selected
probe set pairing method and our probe-level estimate of
expression changes (referred to as PECA). The performance
of this procedure is demonstrated on a public data set, which
also contains several biological samples hybridized to both
HG-U95Av2 and HG-U133A arrays. The meta-analysis
method is evaluated in terms of its stability when the sample
size is reduced. As agreement between the pure expres-
sion measurements do not consider the platform-specific

probe-effects, which arise from inherent differences in the
hybridization efficiency of different probes, we also use
relative expression changes when evaluating the methods.
Besides removing the probe-effects, expression changes are
often more meaningful for the investigator, as the main interest
in most studies is in identifying a set of candidate genes that
are differentially expressed between groups of samples instead
of their plain expression levels.

MATERIALS AND METHODS

Human embryonic stem cell data (hESC)

Two human embryonic stem cell (hESC) lines, HS306 and
HS293, from Karolinska University Hospital (Huddinge,
Sweden) were derived and cultured in serum replacement
medium on human foreskin fibroblast feeder cells as described
previously (11). The total RNA was isolated from 5 to 10 hESC
colonies using the RNAeasy mini kit (Qiagen, Valencia, CA).
The sample preparation was performed according to the
Affymetrix two-cycle GeneChip� Eukaryotic small sample
target labeling assay version II (Affymetrix, Santa Clara, CA).
The samples were hybridized to human HG-U133A and
HG-U133Plus2.0 arrays (Table 1).

Mouse Chlamydia pneumonia infection data (mCPI)

Female inbred Balb/c mice obtained from Harlan Netherlands
(Horst, The Netherlands) were infected with Chlamydia
pneumoniae as described previously (12). The axillary
lymph nodes from 12 control mice and the mediastinal
lymph nodes from 12 infected and 12 re-infected mice were
pooled. The total RNA from CD4+ cells were isolated using
the Trizol method (Invitrogen Co., Carlsbad, CA) and further
purified with RNAeasy mini kit. The sample preparation was
performed according to the Affymetrix two-cycle GeneChip�

Eukaryotic small sample target labeling assay version II.
The samples were hybridized to murine MG-U74Av2 and
mouse MOE430 2.0 arrays (Table 1).

Human acute lymphoblastic leukemia data (ALL)

The public data sets from the microarray studies of Yeoh et al.
(13) and Ross et al. (14) contained expression data from
ALL patients with different leukemia subtypes. A total of
360 patient samples were hybridized to HG-U95Av2
arrays and 132 of the same samples were also hybridized to

Table 1. Hybridization scheme

Data set Condition Samples HG-U133Plus2.0 HG-U133A HG-U95Av2 MOE430 2.0 MG-U74Av2

hESC HS293 2 1 1 — — —
hESC HS306 2 1 1 — — —
mCPI Control 1 — — — 1 2
mCPI Infected 1 — — — 1 1
mCPI Re-infected 1 — — — 1 2
ALL T-ALL 14 — 1 1 — —
ALL E2A-PBX1 18 — 1 1 — —
IM Dermatomyositis 5 — 1 1 — —
IM Other myopathy 9 — 1 1 — —

The third column indicates the number of samples in each condition. The rest of the columns are the number of hybridizations per sample in each sample set on
different array types.
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HG-U133A arrays. We selected for our analyses 32 samples
that were hybridized to both array types and represented two
genetically distinct leukemia subtypes: 14 T-ALL samples and
18 E2A-PBX1 samples (Table 1). To obtain equal sample sizes
in both groups, we randomly excluded 4 E2A-PBX1 samples
from the analysis.

Human inflammatory myopathies data (IM)

The publicly available data set from the study of Hwang et al.
(7) contained muscle tissue samples from 14 patients with
inflammatory myopathies. The patients were divided into
two groups: five patients had dermatomyositis and nine
patients had other inflammatory myopathies. Each sample
was hybridized to HG-U95Av2 and HG-U133A arrays. To
make the present results directly comparable with the results
obtained by Hwang et al. we included all the samples into
our study.

Probe sequence data

Probe sequences and their ‘bestmatch’ tables were down-
loaded from the Affymetrix web pages (www.affymetrix.
com). Other array-wise information on probes and probe
sets, including GeneID annotations, were provided with
annotation data packages of the Bioconductor project (15).
Genomic mRNA sequences for alignments were downloaded
from Entrez nucleotide (16) for human (March 3, 2005) and
mouse (April 29, 2005), excluding EST, STS, GSS, ‘working
draft’ and ‘patents’ sequences, and sequences with a ‘XM_’
tag, as in (7). The Entrez mRNA sequences were assigned to
GeneID identifiers by using the gene2accession conversion file
obtained from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA)
for human (March 23, 2005) and mouse (April 28, 2005). This
resulted in a total of 209 650 and 183 461 mRNA sequences
for human and mouse, respectively. The probes in the AFFX-
control sets were omitted from the analysis.

Probe verification

To guarantee the quality and comparability of the 25mer
probes, we verified them using the Entrez mRNA sequence
database (16). Perfect matches of the probes to mRNA
sequences were searched with BLAT v. 26 (17). A given probe
often matches several mRNA targets. In such cases, it is com-
mon that the mRNA sequences are merely separate sequence
submissions of the same gene. To distinguish between probes
with unique and multiple gene targets, we assigned the Entrez
mRNA sequences to GeneID identifiers (18).

The probes were classified according to their manufacturer
annotations and our Entrez verifications. Verified probes
are detected to match Entrez mRNA sequences with a unique
GeneID. Probes with no matching GeneID targets are
mistargeted, and those assigned to several GeneIDs are
non-specific. A probe is conflicting if its verified target is
different from the one in the array-wise annotations. A verified
probe set is a subset of the corresponding original probe set,
obtained by masking the mistargeted, non-specific and con-
flicting probes from the original set. An alternative probe set
is a collection of probes on a given array that are verified to
uniquely measure a given GeneID. An alternative probe set
contains verified probes only, but these may include probes
from various original probe sets.

Probe set pairing

A common approach to compare different generations of
Affymetrix arrays is to use the so-called ‘bestmatch’
tables provided by the array manufacturer. The best match
pairs are based on the similarity between the target sequences
of the probe sets. Since the HG-U133Plus2.0 array contains all
the probe sets from the HG-U133A and HG-U133B arrays,
plus 9921 additional probe sets, the HG-U133A and HG-
U133Plus2.0 arrays can be compared by selecting the same
probe sets from the two arrays. We consider these pairs as best
match pairs as well, although this is a much stricter pairing
criterion than the one usually characterizing the best match
pairs.

An alternative approach for probe set pairing is to use
GeneID identifiers. Original and verified probe sets on both
arrays can be assigned to GeneIDs by using the array-wise
annotations. As these are not available for alternative
probe sets, we used the verified GeneIDs from our Entrez
studies. We only considered those GeneIDs for which corre-
sponding probes existed on original, verified and alternative
probe sets.

Probe-level expression change averaging (PECA)

We based the selection of genes differentially expressed
between two particular groups of samples on probe-level
microarray data instead of probe set-level summary intensities
obtained with, for instance, robust multi-array average (RMA)
(19) or Affymetrix microarray suite (MAS) (www.affymetrix.
com). More specifically, we first calculated the selected test
statistic separately for each probe in the data and then averaged
over the probes within each probe set. In the calculations, we
used perfect match (PM) intensities, which were quantile-
normalized (20) and log-transformed before the analysis.
We refer to this procedure as PECA.

We considered two types of PECA-measures within a
microarray study: the signal log-ratio and the Hedges’ g,
which is a commonly used effect size estimate in meta-
analysis (21). Let the normalized logarithmic PM intensities
of the probe j in the probe set i under the two conditions within
a study be xij ¼ (xij1, . . . , xijn1

) and yij ¼ (yij1, . . . , yijn2
) where

the total number of samples within the study is n ¼ n1 + n2.
The signal log-ratio is then defined as dij ¼ �xxij��yyij, and the
Hedges’ g as gij ¼ að�xxij��yyijÞ=sij, where �xxij and �yyij are
the means of the two groups, sij is the pooled standard
deviation, and a ¼ 1�3/(4n � 9) is a correction term that
makes the Hedges’ g-estimate unbiased. After calculating
the probe-level estimates, the probe set-level estimates were
formed by averaging over the probes within each probe set.
In the present study, the probe sets were defined using the
various probe verification criteria and the PECA-estimates
were calculated separately within each study on each array
generation.

Meta-analysis of effect sizes

Suppose that m studies produce effect size estimates ek

and measures of variability s2
k , k ¼ 1, . . . , m. Assume that

all studies estimate the same parameter m and any differences
between the estimates are due to sampling error ek � Nð0‚s2

kÞ.
Then the meta-analysis estimate for m is the weighted average
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over the effect size estimates

m̂m ¼
Pm

k¼1 wkekPm
k¼1 wk

‚

where the weight wk is defined as wk ¼ s�2
k . The variance of

m̂m is sm̂m ¼ 1/
P

wk, and hence the hypothesis H0:m ¼ 0 can be
considered by using the test statistic Z ¼ m̂m/sm̂m , which is dis-
tributed as N(0,1) under the null hypothesis H0. For a detailed
description of this technique, see (21). Such meta-analytic
method was applied in the present study to combine the
expression changes across the array types.

TESTING PROCEDURE

We first evaluated the effect of the different probe set pairing
and probe verification criteria on the reproducibility of
RMA- and MAS-normalized signal intensities between
each array pair on which the same sample was hybridized
(between-study comparison). We then investigated the com-
parability of relative expression changes and the agreement of
differentially expressed genes between these array pairs using
the GeneID matched alternative probe sets (between-study
comparison). At this stage, the expression changes were cal-
culated within each array generation (within-study analysis)
using the PECA-procedure (probe-level estimation) and the
summary intensities from RMA and MAS 5.0 (probe set-level
estimation). Finally, we used the meta-analysis approach
to combine the expression changes from the different array
generations (between-study analysis). The meta-analysis was
carried out using PECA-estimated Hedges’ g-values (probe-
level between-study analysis) as well as Hedges’g-values cal-
culated from the RMA-derived intensities (probe set-level
between-study analysis).

Reproducibility of signal intensities

To assess the level of reproducibility of signal intensities
between technical replicates across array generations, we
calculated the Pearson correlation coefficient between each
array pair from the same sample. The intensity values were
obtained with RMA and MAS 5.0. We compared the inten-
sities between the best match pairs of original probe sets and
verified probe sets as well as GeneID pairs with three different
collections of probes: (i) original Affymetrix probe sets,
(ii) verified probe sets and (iii) alternative probe sets. If
multiple probe sets corresponded to the same GeneID, their
values were averaged (22). On each array, the variability in the
intensity values among the probe sets corresponding to the
same GeneID was investigated for the 10 GeneIDs with the
largest number of probe sets.

Comparability of relative expression changes

The comparability of relative expression changes between
alternative probe sets on two array generations was investi-
gated by considering signal log-ratios and Hedges’g-values
between two particular groups of samples in the hESC,
mCPI, ALL and IM data. In addition, we randomly generated
100 subsamples of sizes 2–5 from the ALL data set to study
more carefully the performance of the Hedges’g with
small sample sizes. In each array comparison, two replicate

estimates corresponding to the same samples on the different
arrays were obtained. We used the Pearson correlation
coefficient between these estimates as a measure of com-
parability between the arrays. The expression changes were
calculated using the PECA-approach and the RMA- and
MAS-normalized intensities.

Agreement of differentially expressed genes

The agreement of the most differentially expressed genes
between the array generations was investigated by ranking
the genes according to signal log-ratios and Hedges’
g-estimates and calculating the proportion of common
genes among the top N genes in both array types. If two
array generations are comparable, the corresponding lists
of differentially expressed genes should contain many over-
lapping genes (3). Again, we used PECA-estimates and
the corresponding estimates obtained using the RMA- and
MAS-intensity values in the context of alternative probe sets.

Performance of the meta-analysis

The meta-analysis of PECA-based Hedges’g-values was com-
pared with the meta-analysis calculated from the RMA-based
summary intensities (23). We also compared the performance
of both meta-analyses with the corresponding analyses on
the individual data sets. The performance of the methods
was evaluated by considering the stability of their results
when the number of biological samples was reduced (24).
We randomly generated 100 subsamples of sizes 2–5 from
the ALL data set and applied each method to them. The results
of each subset were then compared with the results obtained
from the whole data set by determining the proportion of
common genes among the top 100 genes.

RESULTS

While most of the probes on the arrays studied could be con-
firmed to uniquely match a GeneID, a considerable number
of probes were rejected since they were either mistargeted,
non-specific or conflicting (Table 2). The number of mistar-
geted probes was especially high on the HG-U133Plus2.0 and
MOE430 2.0 arrays, whereas non-specific and conflicting
probes were less common. The high number of mistargeted
probes on the two arrays is mainly due to the large number of
EST-targeted probe sets on these arrays. Our probe verification
did not check probes for matches against EST sequences
that often lack GeneID assignment but have been used for

Table 2. Probe verification summary

Array type Probes Verified
(%)

Mistargeted
(%)

Non-specific
(%)

Conflicting
(%)

HG-U133Plus2.0 604 258 58.2 40.2 1.6 2.6
HG-U133A 247 965 82.5 14.4 3.0 3.1
HG-U95Av2 199 084 82.6 14.4 3.0 2.8
MOE430 2.0 496 468 68.2 30.8 1.1 4.9
MG-U74Av2 197 993 73.1 24.2 2.7 1.3

Probes matched to mRNAs with a unique GeneID in Entrez database are
considered verified. Mistargeted probes could not be assigned to a GeneID,
whereas non-specific probes have several GeneID targets. If the verified target
of a probe is different from the annotations provided by the Bioconductor array
packages, the probe is considered conflicting.
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the design of several probe sets on these arrays. By simply
ignoring the mistargeted and non-specific probes, we were still
left with a large number of good-quality probes with a unique
GeneID assignment. The typical sizes of the alternative probe
sets were approximately the size of the original Affymetrix
probe set or its multiplier (see Supplementary Figure 1).
The proportion of alternative sets with <5 probes was rela-
tively small, varying between 0.4% (MOE430 2.0) and 2.1%
(MG-U74Av2). The numbers of probe sets included into
each comparison are listed in Table 3, along with the propor-
tions of GeneIDs with multiple original Affymetrix probe sets.

Effect of probe matching methods on
the array reproducibility

Figure 1 illustrates for each array comparison the RMA-based
intensity correlations between the pairs of arrays to which
the same sample was hybridized. Similar results were
obtained with MAS intensities (data not shown). In each
array comparison, GeneID pairs of the manufacturer-defined

original probe sets performed worst. Probe verification of
these sets improved the correlations. Moreover, it was
observed that probe verification improved the consistency
of the measurements within an array (see Supplementary
Figure 2). In the mCPI array comparison, the alternative
probe sets produced higher correlations than the verified
probe sets, whereas in the ALL, IM and hESC array compar-
isons the verified sets and the alternative sets performed
equally well. In the ALL comparison, also the best match
pairs performed similarly, whereas in the mCPI, IM and
hESC comparisons, the best match pairs could still improve
the correlations. As expected, the improvement was largest in
the hESC data, where the best match pairs contained only
probes that were the same on both arrays. Interestingly, the
verification of the original Affymetrix probe sets used in the
best match pairs did not considerably affect the reproducibility
of the signal intensities in any of the array comparisons.

Effect of probe-level effect size estimates
on the array comparability

The correlations of signal log-ratios and Hedges’ g-estimates
between each replicate study with different array types are
shown in Figure 2. In all comparisons, the PECA-estimates
showed consistently the best comparability between the array
types. The estimates calculated using MAS summary intensi-
ties performed generally poorest. With signal log-ratios, the
RMA-based estimates usually reduced only slightly the com-
parability as compared with the PECA-estimates (Figure 2A).
With Hedges’ g-values, however, the benefit from using PECA
was considerably higher, especially with small sample sizes
(Figure 2B and C). In the hESC data, the correlation increased
from below 0.1 with RMA to �0.7 with PECA (Figure 2B).
Similar results were obtained with the ALL data when only
two samples from both patient groups were included into the
analysis (Figure 2C). As the number of samples increased,
the differences between the methods became smaller.

Effect of probe-level effect size estimates
on the array agreement

Figure 3 shows the agreement of the most differentially
expressed genes between the array types when two groups
of samples in the ALL, IM and hESC data were compared.
The best agreement was consistently achieved with the
PECA-estimates, whereas with MAS-based estimates the
correspondence of the top genes between the arrays was poor-
est. Especially in the hESC array comparison, the superiority
of the PECA-method was drastic as compared to the probe
set-level methods. For example, with signal log-ratios, the
percentage of common genes among top 30 genes was �25%

Table 3. Numbers of probe sets included into the comparisons

Data set Array comparison Best match pairs GeneID pairs Multiple original sets (%) Multiple verified sets (%)

hESC HG-U133A vs. HG-U133Plus2.0 — 12661 36.7 32.2
mCPI MG-U74Av2 vs. MOE430 2.0 8595 7735 26.4 14.9
ALL, IM HG-U95Av2 vs. HG-U133A 8429 8240 25.2 18.9

The best match pairs provided by Affymetrix are based on the similarity of the target sequences of the probe sets. The GeneID pairs were obtained by assigning the
probe sets to GeneID identifiers. Only GeneIDs for which probes existed on original, verified and alternative probe sets were considered. If multiple probe sets
corresponded to the same GeneID, their values were averaged. The last two columns show the proportion of GeneIDs with multiple probe sets when GeneID pairs of
original and verified probe sets were formed.
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Figure 1. The RMA intensity correlations between technical replicates on
two array generations. The Pearson correlation was calculated between each
array pair from the same sample. The gray lines show which correlations were
obtained from the same array pair with the different probe matching criteria. In
the hESC array comparison, the best match probe sets contained exactly the
same probes on both array generations, which resulted in very high correlations.
The advantages of probe verification and alternative mappings were largest
when arrays with different probe collections were compared, as in the mCPI,
ALL and IM array comparisons.
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with MAS, 60% with RMA and 70% with PECA (Figure 3C).
With Hedges’g-estimates, there were no common genes
among the top 30 genes with either MAS or RMA, whereas
the PECA-estimates resulted in �50% overlap of the genes
(Figure 3F). Within the array generations, the proportion of
common genes among the top 100 genes between RMA and
PECA was typically �80%, while it was 50% or less between
MAS and PECA and between MAS and RMA.

Effect of sample sizes on the meta-analysis performance

Figure 4 illustrates the consistency of the 100 most differen-
tially expressed genes identified using 2–5 biological samples
from the ALL data as compared with the genes identified from
the whole ALL data. As expected, the agreement among the
top genes increased when the number of samples increased.
The overall agreement of the results obtained with RMA-
intensity values was again substantially lower than the agree-
ment of the PECA-based results. The meta-analysis based on
the PECA-estimated Hedges’ g-values was most stable. With
two samples, there were on average over 55% of common
genes when the PECA-based meta-analysis was applied but
only 35% with the RMA-based meta-analysis. When an indi-
vidual data set of size 2 was considered, the stability of both
approaches was reduced as compared with the meta-analysis.
In particular, with the RMA-based analysis, the agreement
decreased from 35% with the meta-analysis to �15% with
an individual data set. However, even the meta-analysis
could not raise the stability of the RMA-based estimates to
the same level as the PECA-estimates. To obtain an agreement
of over 50% of genes, the RMA-based meta-analysis typically
required four samples, whereas only two samples were needed
with the PECA-estimates, even when an individual data set
was analyzed.

DISCUSSION

We have introduced a meta-analytic approach, which consid-
ers the latest probe-level information when combining the
results of multiple Affymetrix microarray studies. We first
showed that alternative probe sets provide a good option as
compared with the manufacturer-defined probe sets when
arrays with different probe collections are compared. Using
these alternative sets, we then demonstrated that the compa-
rability of expression changes across different array genera-
tions can be considerably improved with PECA-estimation
as compared with the estimation based on RMA- or MAS-
based summary intensities, especially when the sample sizes
are small. The key finding was that by using the PECA-
estimates one can more effectively combine the results of
individual Affymetrix studies in the context of meta-
analysis. In particular, we showed that the consistency of
the differentially expressed genes can be improved by inte-
grating PECA-based expression changes across studies. Taken
together, these results suggest that available Affymetrix
microarray studies of the particular condition can be
effectively exploited when analyzing new experiments.

Conventionally, the probe-level expression data are sum-
marized into simple numerical estimates of probe set-level
gene expression. A major drawback of this approach is that
a substantial amount of probe-level information is discarded.
This issue has only lately become a focus of interest. It has
been shown that by using probe-level expression data when
identifying differentially expressed genes the quality of the
resulting gene lists can be improved: Lemon et al. (25) and
Master et al. (26) based their methods on probe-level t-tests;
Barrera et al. (27) applied two-way ANOVA methods to
probe-level data; and Chen et al. (28) measured probe-level
differences in percentiles of ranks. The MAS software also
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Figure 2. Observed correlations between the expression changes across different arrays as assessed with (A) signal log-ratios and (B and C) Hedges’ g-estimates.
In the ALL array comparison between HG-U95Av2 and HG-U133A arrays, expression changes between two distinct leukemia subtypes (14 samples per group)
were calculated. In addition to the whole ALL data set, Hedges’g-estimates were calculated for 100 randomly sampled subsets of sizes 2–5 (ALL2–ALL5). Graph C
shows the average correlations calculated over these subsets along with their standard deviations. In the IM array comparison between HG-U95Av2 and HG-U133A
arrays, expression changes were calculated between patients with dermatomyositis (five samples) and patients with other inflammatory myopathies (nine samples).
In the hESC array comparison between HG-U133A and HG-U133Plus2.0 arrays, expression changes between two hESC cell lines (two samples per group)
were estimated. In the mCPI array comparison between MG-U74Av2 and MOE430 2.0 arrays, signal log-ratio between an infected and a control sample (mCPI1),
between a re-infected and a control sample (mCPI2), and between an infected and a re-infected sample (mCPI3) were calculated. In each two-group comparison, the
PECA-estimates of expression changes were compared with the corresponding expression change estimates obtained with RMA- and MAS-based intensity values,
which are widely used in microarray data analysis.
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uses probe-level information in determining differential
expression but the algorithm is restricted to comparisons
between two arrays only. Our proposed PECA-method can
be considered as a generalization of the MAS algorithm
and the approaches of (25,26). The method can be used with
any number of arrays, and in addition to t-statistic, it can

improve other measures as well, especially when there are
only few samples in the data (see Figure 2). Moreover, the
computational burden of PECA is approximately the same
as that of RMA- or MAS-normalizations.

We have also carried out an additional study in the
Affymetrix spike-in data, where we showed that the
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Figure 3. Agreement of differentially expressed genes between technical replicates. The proportion of overlapping genes in the two top N lists is plotted as a function
of the list size. The genes were ranked with signal log-ratios in (A) ALL data (14 samples per group), (B) IM data (5 and 9 samples in the groups) and (C) hESC data
(2 samples per group), and with Hedges’g-estimates in (D) ALL data, (E) IM data and (F) hESC data. The observed peaks at the beginning of the curves arise
from a single shared top one gene in the two lists.
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PECA-estimated signal log-ratios and Hedges’ g-values out-
performed the corresponding values calculated from the
RMA-normalized intensity values, especially when the sample
size was small (see Supplementary Figure 3). In the context of
microarray analysis, a common approach to overcome the
problem of small sample sizes is to use a modified version
of the ordinary t-statistic (29). Therefore, we evaluated its
performance as well. In general, the PECA-estimated Hedges’
g performed at least as well as the RMA-based modified
t-statistic. In particular, with sample sizes 2 and 3, it yielded
clearly better AUC-values and the PECA-estimated modified
t-statistic could not improve its performance further. Although
in this study we concentrated on the simple two-group com-
parisons only, it is possible to generalize the PECA-type
analysis to situations, where there are more than two groups
to be compared.

In a previous study, Hwang et al. (7) suggested that probe
filtering could markedly improve the reproducibility of the
top ranked genes as assessed with the two-sample t-test
with unequal variances. After filtering the probe sets according
to sequence similarity, they identified 30–40% common genes
among the top 20 genes and �25% common genes among the
top 100 genes in the IM data. In our analysis with the PECA-
estimated Hedges’ g, the percentage of commonly identified
genes was 40–60% among the top 20 genes and �45% among
the top 100 genes in the same data (see Figure 3E). In general,
the percentage of common genes with PECA-estimates was
over 40% even when there were only two samples in both
groups. With the largest ALL data set, the percentage of

common genes increased to 60–80%. These enhanced results
clearly demonstrate the importance of the probe-level
information in increasing the comparability between array
generations. Similar approach could also be used to improve
the agreement across different platforms (30).

Similar to (7), we aligned the probes to mRNA sequences
with BLAT, which uses heuristics to speed up the search.
To evaluate the accuracy of the BLAT search, we aligned
the probes of the HG-U133A array also with the Bioconductor
matchprobes package, which is based on exact string matching
methods. The results obtained with BLAT and matchprobes
were virtually the same (BLAT missed 52 of the 241 898
unique probes). The most essential difference between the
two methods was in computation time. With an ordinary desk-
top PC, it took several days to align the HG-U133A probes
against human mRNA sequences in Entrez using matchprobes,
whereas BLAT made it in hours.

According to our results, the benefits gained from probe
verification and alternative mappings are largest when arrays
with different probe collections are compared, as in the mCPI,
ALL and IM array comparisons (see Figure 1). Although the
best match pairs of the original and verified probe sets
performed similarly, they rely extensively on manufacturer
annotations, including potentially erroneous probes. The
alternative probe sets, on the contrary, are expected to refine
as the public transcript databases grow in size and improve
in accuracy. In the hESC array comparison, correlations
between alternative probe sets were somewhat lower than
correlations between best match probe sets. This was due to
the fact that the original probe sets contained exactly the same
probe sequences on both arrays, whereas the alternative probe
sets on the HG-U133Plus2.0 array contained also probes that
were not included in the HG-U133A array. Also in this case,
however, the biological relevance of the alternative probe sets
may be higher, since the original probe sets with identical
probes would correlate highly even if they were erroneous
in biological sense.

Meta-analysis has traditionally been used in medical and
social sciences to combine results of different studies (21).
Only recently, meta-analysis has also been applied to micro-
array experiments. Rhodes et al. (31) computed gene-specific
P-values separately for each study and combined them using
the Fisher statistic. Choi et al. (23) and Stevens and Doerge
(32), on the other hand, combined the actual expression data
by employing fixed effects and random effects models. In
general, a random effects model is more reasonable than a
fixed effects model because microarray studies are typically
heterogeneous due to, for example, biological variation
and differences between experimental methods. However,
with only two studies to be combined, which is a typical
case with microarrays, we based our integration method on
a fixed effects model (33). An analogous approach can be used
in the context of a random effects model when there are more
studies to be combined.

We showed that the meta-analysis based on the PECA-
estimated Hedges’ g-values was more stable than the Choi
et al. (23) meta-analysis based on the RMA-estimated sum-
mary intensities (see Figure 4). The stability of the methods
was evaluated in terms of overlapping top genes obtained
when using the whole ALL data set or random subsamples
from it. It was assumed that the whole data set provides a
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Figure 4. Agreement of differentially expressed genes using Hedges’g in the
ALL data as the number of samples was varied. The performance was measured
by calculating the proportion of common genes among the top 100 genes
obtained with the whole data and with randomly selected smaller subsets of
sizes 2–5. The results are presented as median percentage over 100 subsets
(points) along with the interquartile ranges (error bars). RMA-based (dotted
lines) and PECA-based (solid lines) estimation was used with the individual
HG-U95Av2 (green) and HG-U133A (black) data sets and with the meta-
analysis approaches (red). The RMA-based meta-analysis (RMA combined)
represents the meta-analytic approach that has previously been proposed for
microarray data (23).
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plausible approximation for the true ranking of the genes (24).
The spike-in results supported this assumption (see Supple-
mentary Figure 3). Because the reference ranking in the ALL
data set was constructed from the same set as the subsamples,
the overlap of the top genes might be overestimated with large
subsample sizes. As we were interested in the performance of
the methods with the smallest sample sizes 2–5, however, such
procedure gives valuable information on the stability of the
methods. While in this study it was beneficial to have the same
samples hybridized to both arrays, the real benefits of the
proposed meta-analytic procedure come from combining
studies with diverse biological samples.

Previous meta-analysis studies on microarray data have not
paid much attention to the quality of the effect size estimates
(23,32). With small sample sizes, especially the Hedges’
g-estimates are prone to unpredictable changes, since gene-
specific variability can easily be underestimated resulting
in large statistics’ values due to chance alone. As only few
replications are performed in most microarray experiments, it
is critical to improve the effect size estimation with small
sample sizes. The general idea of improving the reliability
of the microarray results by pooling together results from
existing studies is feasible only if the data are properly pre-
processed. As probe verification is increasingly used in pre-
processing of microarray data or for confirming the final
results of a microarray study, it is natural to combine it
with other probe-level analysis methods. We demonstrated
that summarizing the expression changes over the verified
probes only consistently helps in integrating data across stud-
ies made with different Affymetrix generations in the same
laboratory. The biological findings from the hESC and mCPI
data sets are published elsewhere [(34), (Kyläniemi, M.,
Haveri, A., Vuola, J., Puelakkainen, M. and Lahesman, R.,
unpublished data)].

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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