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Voice production occurs through vocal cord and vibration coupled to glottal airflow. Vocal cord lesions affect the vocal system and
lead to voice disorders. In this paper, a pathological voice source analysis system is designed. This study integrates nonlinear
dynamics with an optimized asymmetric two-mass model to explore nonlinear characteristics of vocal cord vibration, and
changes in acoustic parameters, such as fundamental frequency, caused by distinct subglottal pressure and varying degrees of
vocal cord paralysis are analyzed. Various samples of sustained vowel /a/ of normal and pathological voices were extracted from
MEEI (Massachusetts Eye and Ear Infirmary) database. A fitting procedure combining genetic particle swarm optimization and
a quasi-Newton method was developed to optimize the biomechanical model parameters and match the targeted voice source.
Experimental results validate the applicability of the proposed model to reproduce vocal cord vibration with high accuracy, and
show that paralyzed vocal cord increases the model coupling stiffness.

1. Introduction

Vocal cord vibration interrupts the straight airflow expelled
by the lungs into a series of pulses that act as the excitation
source for voice and sound. Denervation or organic diseases
of vocal cords, such as paralysis and polyps, can cause irreg-
ular vibration with consequential changes, manifested as
breathy or hoarse voice. These diseases generally affect one
side of vocal structure, causing significant imbalance in
bilateral vocal cord tension [1, 2]. Irregular vibration of the
vocal cords corresponding to a variety of voice disorders
can be observed with electronic laryngoscope to assist diag-
nosing vocal cord disease. However, laryngoscopy examina-
tion is invasive, and the outcomes are relatively subjective.
Acoustic analysis can complement and in some cases replace
the other invasive methods, which based on direct vocal fold
observation [3, 4].

Clinical diagnosis and pathological voice classification
using objective methods is an important issue in medical
evaluation. Previous studies have mainly combined acoustic

parameters with pattern recognition algorithms to assist
diagnosis of pathological voice [5, 6]. However, the selected
voice signal parameters are not directly linked with the actual
physical structure, and vocal structural changes that cause
vocal voice disorders require further study.

Nonlinear dynamics theory has provided a new avenue
for dynamical system related research, for example, methods
combining nonlinear theory with spectral analysis have been
successfully applied to EEG and ECG signal analysis. It has
also been extended to study voice signals [7, 8].

Nonlinearity inherent in the vocal system can cause irreg-
ular voice behavior, as indicated by harmonics, bifurcation,
and low-dimensional chaos in high-speed recording of vocal
cord vibration signals [9, 10]. The degree of pathological
vocal fold is closely related to the nonlinear vibration of the
vocal cords. [11]. Therefore, traditional analysis of acoustic
parameters may not be accurate, but nonlinear dynamics the-
ory has been shown to have good applicability in characteriz-
ing such signals [12]. Time frequency shape analysis based on
embedding phase space plots and nonlinear dynamics
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methods can be used to evaluate the vocal fold dynamics
during phonation [13]. Nonlinear models can also simulate
various vocal sound phenomena and have been used for
dynamic prediction of disordered speech associated with lar-
ynx pathology [14–16]. Many physical modeling methods for
glottal excitation have been proposed, and the corresponding
model parameters have been utilized to study various voice
disorders. The two-mass (IF) model is the most well-known
classical physical model of the vocal cords, first proposed
by Ishizaka and Flanagan and simplified by Steinecke
and Herzel (SH model), to study vibration characteristics
of the vocal cords. Xue combined the work of Steinecke
and Herzel with Navier-Stokes equations and analyzed
irregular vibrations caused by tension imbalance in bilateral
vocal cord, as well as sound effects [17]. Recently, Sommer
modified the asymmetric vocal contact force of the SH
model based on Newton’s third law [18]. However, a com-
prehensive nonlinear analysis for the modified SH model
remains incomplete.

Although physical modeling has enormous potential in
speech synthesis and voice analysis, the large number of
model parameters and the complexity of model optimization
to match observational data have prevented its practical
application [19]. Döllinger used the Nelder–Mead algorithm
to minimize the error between experimental curves obtained
from high-speed glottography sequences and curves gener-
ated with the two-mass model (2MM) [20]. However, this
is an invasive method because an endoscope is required to
record vocal cord vibrations during phonation. Gómez com-
puted biomechanical parameters based on the power spectral
density of the glottal source to improve detection of voice
pathology [21].

Other researchers have used genetic algorithms to opti-
mize model parameters to match recorded glottal area, tra-
jectory, and glottal volume wave and have shown the
possibility of model inversion [22, 23]. Tao extracted the
physiologically relevant parameters of the vocal fold model
from high-speed video image series [24].

The complex optimization process and large number of
parameters mean the matching result can be unstable. Thus,
finding the important tuning parameters and selecting
appropriate optimization algorithms are still important
issues to be resolved for physical modeling applications,
and simulations for asymmetric vocal cords also require fur-
ther study.

This paper designed a pathological voice source analysis
system using an optimized model to study the dynamics of
asymmetric vocal cords. Incorporating spectral analysis,
and bifurcation and phase diagrams, this paper investigates
the impact of structural change of the vocal cord on its
vibration and fundamental frequency. Sound effects due to
lung pressure are also studied. An optimized SH model
combined with particle swarm and quasi-Newton methods
(GPSO-QN) is proposed to determine biomechanical model
parameters. Parameter adjustments and changing the oscilla-
tion mode of the model allow normal and paralyzed voice
sources to be simulated. Differences between optimized
model parameters are analyzed to assist in identifying the
source of vocal paralysis.

2. Method

2.1. Symmetric Vocal Model. Vocal cords are two symmetri-
cal membranous anatomical structures located in the throat.
Airflow out of the trachea and lungs continuously impacts
the vocal cords and causes vibration. The vibration behavior
modulates the airflow to generate glottal pulses [25]. Based
on the elastic and dynamic properties of the vocal cords, each
fold is represented by two coupled oscillators with two
masses, three springs, and two dampers, where the quality
of the mass and spring constants denote vocal quality and
tension, respectively. Figure 1 shows the simplified two-
mass (SH) model, which can be expressed as

x1α = υ1α,

υ1α = −
1

m1α
F1α + I1α − r1αυ1α − k1αx1α − kcα x1α − x2α ,

x2α = υ2α,

υ2α = −
1

m2α
I2α − r2αυ2α − k2αx2α − k2α x2α − x1α ,

1

where

F1α =
LdP1
m1α

,

Iiα = −Θ −ai
ciα
miα

ai
2L ,

Θ x =
1, x > 0
0, x < 0,

ai = a0i + L xil + xir ,
amin = min a1, a2 ,

2

index i = 1, 2 denotes the upper and lower mass, respectively;
α = l, r denotes the left and right parts, respectively; Ps is the
subglottal pressure; xiα and viα are the displacement and cor-
responding velocity of the masses, respectively; miα, kiα, kcα,
and riα represent the mass, spring constant, coupling
constant, and damping constant, respectively; L, d, and a0i
represent the vocal cord length, thickness of mass m1α, and
rest area, respectively; cia = 3kia is an additional spring
constant for handling collision; ai is the glottal area; F1a
and Iia are the Bernoulli force and restoring force due to
vocal cord collision, respectively; and P1 is the pressure on
the lower masses.

Using aerodynamic analysis, pressure drops at the glottal
entrance and viscous loss within the glottis is ignored.

In contrast to the IF model, Bernoulli flow exists below
the narrowest glottis gap only, with a jet region above the
contraction where pressure is considered to be constant
[26]. From Bernoulli’s equation,

Ps = P1 +
ρ

2
Ug

a1

2
= P0 +

ρ

2
Ug

amin

2
, 3
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where P0 is the supraglottal pressure, Ug is volume flow
velocity (glottal waveform), and ρ is air density. We ignore
channel coupling, that is, P0 = 0, and consider that Bernoulli
pressure exists only when the glottis is open. Therefore,

P1 = Ps 1 −Ω amin
amin
a1

2
Ω a1 , 4

Ug = 2Ps/ρaminΘ amin , 5

where

Ω x =
tanh 50 x/x0 , x > 0
0, x < 0,

6

with the units centimeters, grams, and milliseconds,
respectively.

The standard parameters of this model are m1α = 0 125,
m2α = 0 025, k1α = 0 08, k2α = 0 008, kcα = 0 025, r1α = r2α =
0 02, Ps = 0 008, d = 0 25, a01 = a02 = 0 05, and L = 1 4. These
parameters are used by the symmetric model to simulate
vocal cord vibration, solving the differential equations
using the standard fourth order Runge-Kutta method with
initial conditions x1α 0 = 0 01, x2α 0 = 0 01, v1α 0 = 0,
and v2α 0 = 0, as shown in Figure 2. Displacement of

upper and lower masses and glottal airflow waveforms
are cyclical, and a fixed phase difference exists for the dis-
placement waveform (see Figure 2(a)).

2.2. Asymmetric Vocal Cord Model. Vocal polyps and paraly-
sis often occur in one side of the vocal cords. Asymmetric
vocal cords cause tension imbalance, and overcritical imbal-
ance may cause irregular vibration. Without loss of general-
ity, we assume the left vocal cord is normal, that is,
unchanged parameters, and lesions occur only on the right
vocal cord. This imbalance is represented by an asymmetry
parameter β 0 4 < β ≤ 1 , and right vocal parameters can be
expressed as

mir =
mir

β
,

kir = βkir ,

kcr = βkcr ,
cir = βcir

7

Small β means a high degree of asymmetry and leads
to more complex vocal cord vibration. Consequently, sub-
harmonic performance is enhanced and chaos occurs.
Bifurcation diagrams and phase portraits can be used to
describe the impact of β changes on the vocal system.
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Figure 1: Schematic of the Herzel and Steinecke model.
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When the vocal cords are asymmetric, contact forces are
modified as

Iir = −Θ −ai
cir
mir

ai
L

1
β + 1 ,

Iil = −Θ −ai
cil
mil

ai
L

β

β + 1

8

2.3. Analysis of Vocal Vibration. Vibration characteristics of
the asymmetric two-mass model were analyzed with respect
to time, frequency, and phase. The vocal mechanism of
clinical pathological voice was also investigated with respect
to physical simulation. As discussed above, we assumed the
left vocal cord was normal, and lesions occurred only in the
right vocal cord. Clinical observation of vocal cord physio-
logical characteristics suggested 0 4 < β ≤ 1 was an appropri-
ate range and subglottal pressure was fixed at 0.8 kPa.

Figure 3 shows displacement of the lower bilateral mass
for β = 0 45, 0.53, 0.6, 0.8, and 1. Vocal cords on both sides
were structurally symmetrical for normal voice, and the
vibrational waveforms on both sides coincided completely.
Duration of the vocal opening and closing once is defined
as one pitch period, and there exists one maximum value of
xir in such a period.

Asymmetric vocal cord vibrations are significantly more
complex. When the degree of asymmetry was relatively
small β = 0 8 , right vocal amplitude was slightly larger
than the left side, and the phase was relatively advanced.

As the degree of asymmetry increases, right vocal amplitude
also increases with left amplitude remaining essentially
unchanged. Consequently, phase difference increases, and
the extrema ratio of both sides is no longer 1 : 1.
Figure 3(d) shows the extrema ratio changes to 1 : 3, and
quasiperiodic or irregular oscillations appear, leading to
irregular airflow velocity.

Before and after bifurcation, evolution of the dynamical
systems in phase space can be described with phase diagrams
of the displacement of bilateral vocal cord vibration in the
x1l − x1r plane. Figure 4 shows that when β = 0 8, no bifurca-
tion occurs, and the phase trajectory is a limit cycle. As β
reduces to 0.53, asymmetry increases, bifurcation appears,
and the phase trajectory becomes a complicated period dou-
bling limit cycle. However, when β = 0 45, the phase trajec-
tory geometry simplifies, which is consistent with the
results in the time domain.

Considering the cases with fixed subglottal pressure
(0.8 kPa) and β=0.45, 0.53, 0.6, 0.8, and 1, we compared
Fourier spectra corresponding to x1l, x1r, Ug, and the nat-
ural frequencies obtained from an eigenvalue analysis of
the system. Figures 5(a)–(e) show two vertical dashed lines
that represent the two natural frequencies of the left vocal
cord, and dash-dotted lines represent those of the right
vocal cord.

When β = 1 (Figure 5(a)), the healthy phonation case
and the bilateral folds have the same natural frequency.
This phonation frequency is approximately 145Hz, located
between the two eigenfrequencies of the left (or right) side.
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Figure 2: Simulation of the standard symmetric model showing oscillation of (a) left lower and upper masses (x1l and x2l, resp.), and (b)
glottal volume flow velocity Ug.
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represent the two left vocal cord natural frequencies, and the dash-dot lines represent those of the right vocal cord.
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As β reduces, the eigenfrequencies do not coincide again
and more complex vibratory behaviors are observed.
Figure 5(b) shows that for less asymmetry, β = 0 8,
although the intrinsic frequency changes, there is relatively
little effect on the frequency spectrum. Figure 5(c) shows
that when β = 0 6, a frequency approximately 190Hz with
relatively small amplitude appears between the two eigen-
frequencies of the left normal folds. Figure 5(d) shows that
when β = 0 53, the overlapped frequencies of the preexist-
ing overtone separate and a small overtone frequency
appears between them at 110Hz. Figure 5(e) shows that
when β = 0 45, the overtone between the second eigenfre-
quency of the right fold and the first left fold disappears.
However, the amplitude of the overtone frequency between
the eigenfrequencies of the left normal folds becomes nearly
as large as the pitch frequency.

Thus, the fundamental frequency is mainly dependent on
the pathological vocal cords, while the normal folds mainly
influence the overtone.

3. Model Parameter Optimization

We propose an optimization process to find appropriate
parameters for the biomechanical model that can accu-
rately simulate normal and paralyzed voice sources. First,
inverse filtering is implemented to reduce the channel
effect on the speech signal, and glottal flow is extracted.
Glottal flow is separately parameterized in time and fre-
quency domains to reduce computational complexity.
Then, an optimization algorithm is employed to optimize
SH model parameters to obtain a simulated glottal flow.
Finally, minimizing error between the parameters of the
simulated and extracted glottal flows allows the model to
accurately reproduce the particular voice source, and cor-
responding vocal parameters can also be obtained.

3.1. Estimation of the Glottal Source. Reconstruction of the
glottal source is based on the adaptive version of iterative
inverse filtering developed by Alku [27]. The voice trace, s,
may be considered as the output of a generation model, f g,
excited by a train pulse, δ, whose output is modeled by the
vocal tract transfer function, f v to, yield voice at the lips, sl,
which is radiated as s, where r is the radiation model, that
is, ∗ means convolution of signals,

s = δ ∗ f g ∗ f v ∗ r = f g ∗ f v ∗r = sl ∗ r 9

Figure 6 shows the inverse filtering procedure. The radi-
ation effect is first removed by H z , and the resulting radia-
tion compensated voice, sl n , is filtered by Hg z to
reconstruct the deglottalized voice, sv n , from which the
estimate of Fv z may be derived. The vocal tract inverse
model fed with the Fv z filter parameters was used to
remove the influence of the vocal tract from sl n , producing
a first estimate of the glottal pulse, sg n . Another iteration
was started with the new estimated Hg z loaded by Fg z ,
and the cycle repeated 2 or 3 times to obtain a good estima-
tion of the glottal source.

The glottal flow will be defined as

ug n = sg n ‐sg n 10

An example of the glottal flow estimation from inverse
filtering is shown in Figure 7.

3.2. Objective Function Vocal Cord. Since the asymmetric
SH model influences oscillations in both time and fre-
quency domains, the glottal flow, ug, and simulated wave-
forms, Ug, were also parameterized within those domains
for comparison frequency, F0, and time quotients based
on the Lijiencrants-Frant model were calculated, including
speed quotient (SQ), the ratio of the glottal opening to
closing time open quotient (OQ), the ratio of the open
time to the fundamental period; closing quotient (CIQ),
the closing time divided by the fundamental period; and
normalized amplitude quotients (NAQ), the ratio of ampli-
tude quotients (maximum amplitude divided by corre-
sponding maximum negative peak of its first derivative)
to the fundamental period.

To describe the error between normal target glottal flow
and simulated waveforms, the objective function, FY, was
defined as

FY = ω1
∣OQ −OQ ∣

OQ
+ ∣SQ − SQ ∣

SQ
+ ∣CIQ − CIQ ∣

CIQ

+ ∣NAQ −NAQ ∣
NAQ

+ ω2
∣F0 − F0 ∣

F0
,

11

where “′”means the parameters are derived from the simula-
tion waveform.

Vocal tract
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Glottal pulse
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Input voice
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Inverse
radiation
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Glottal pulse
inverse model

Hg(z)

Vocal tract
inverse model

Hv (z)

sl (n) sv (n)

sg(n)

Figure 6: Estimation of the glottal pulse sg n by iterative filtering.
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Traditional perturbation analyses have shown instability
of pathological vocal sound. The resultant objective function
is defined as:

FYp = ω3FY + ω4
∣JOQ − JOQ ∣

JOQ
+ ∣JSQ − JSQ ∣

JSQ

+ ∣JCIQ − JCIQ ∣
JCIQ

+ ∣JNAQ − JNAQ ∣
JNAQ

+
∣J

F 0
− J F0 ∣
J
F 0

,

12

where variables with superscript denote parameters of the
simulated glottal flow.

If the time-based quotients are equally weighted, the
effect of frequency and time parameters on F are the
same, and their differential impact on Fp is equivalent
to the original parameters, that is, ω1 = 0 125 and ω2 =
ω3 = ω4 = 0 5. When F or Fp reaches a global minimum,
the corresponding model can accurately reproduce the
target glottal waveform.

3.3. Optimization Algorithm. Gradient techniques have
proven to be inadequate, since the objective function is non-
convex and contains many local minima. The evolutionary
algorithm has high robustness, and broad applicability for
global optimization can deal with complex problems that
traditional optimization algorithms cannot solve. Particle
swarm optimization (PSO) and genetic algorithm (GA) are

similar but have various strengths in dealing with different
problems [28].

Therefore, we combined their advantages. PSO is an
evolutionary computation technique based on swarm intel-
ligence and is a community-based optimization tool. The
PSO algorithm first initializes a group of random particles
with random solutions and then all individuals and the
best individuals of groups breed. The optimal solution is
found through an iterative process. We added selection
and crossover processes similar to GA into PSO, generat-
ing a GPSO algorithm.

In contrast, the quasi-Newton method is commonly used
for solving nonlinear optimization problems, where the gra-
dient of the objective function at each iteration step is
obtained. An objective function can be constructed from
the measured gradient to produce superlinear convergence.
However, this method is somewhat sensitive to the initial
point, and results are mostly local optima. Therefore, we
combined the GPSO and quasi-Newton algorithm (GPSO-
QN) to optimize the biomechanical model parameters to
match the target voice sources.

The masses, spring constants, coupling coefficients,
damping constants, and subglottal pressure all need optimi-
zation, which can be expressed as a vector Φ = miα, kiα, kcα,
riα, Ps . With optimized Φ the model should simulate Ug in
good agreement with ug.

Previous analysis has shown that asymmetric pathologi-
cal vocal cords are the leading cause of irregular vibration.
Consequently, we tookΦ and β as matching parameters with
the search interval miα, kiα, kcα, riα ∈ 0 001, 0 5 , β ∈ 0 4, 1 ,
and Ps ∈ 0 001, 0 05 . Then suitable matching parameters
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Figure 7: Example from vovel /a/ for a normal speaker.
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can be obtained using the proposed GPSO-QN algorithm
to ensure the optimized model accurately reproduces the
glottal waveform.

To avoid obtaining local minima in a nonconvex
search space by direct application of the gradient method,
the GPSO algorithm is first applied to provide a rough
approximation, and then the QN method is applied to
locally optimize the approximate solution, providing the
globally optimal result.

Figure 8 shows the parameter optimization process.
Selection and crossover process utilizes the Monte Carlo
selection rule to choose M individuals. The termination
condition is that the obtained maximum fitness value
exceeds a preset threshold or the preset number of iterations
is reached.

4. Result and Discussion

4.1. Experimental Parameters. This paper selected sustained
vowel /a/ from the MEEI database [29], numbering the
samples 1–8 (4 normal and 4 paralysis voices). Sampling
frequency was 25 kHz, and the proposed GPSO-QN algo-
rithm was used to optimize the model parameters with

the number of particles for the initial population set as
30 and the number of generations limited to 400. Learning
factors c1 and c2 were set = 2, and the range of weight
coefficient ω was set = [0.5, 0.9].

4.2. Normal Voice Source Matching. Figure 9 shows the
excitation sources (red dashed lines) extracted from the four
normal voice samples using the optimized model were
accurately simulated. Using sample 3 as an example,
Figure 10 shows that the simulated and actual spectra also
have good consistency.

4.3. Paralysis Voice Source Matching. Figure 11 shows that
the model simulated waveforms for paralyzed voice sam-
ples (red dashed lines) have significant errors to actual
samples, particularly for samples 7 and 8. However, the
spectra show good consistency with only magnitude bias,
as shown in Figure 12.

4.4. Difference Analysis of Matching Results. To investigate
the differences between normal and paralysis voice sources,
we matched 9 consecutive frames of samples 1–8, and
Figure 13 shows the statistical distribution of the optimized

Initialize particle swarm
particle velocity, and the

number of iterations k = 0

Particle velocity location 
update, fitness calculation 

Optimal solution

Yes

No

Select M individuals 
crossover and mutation, 

M new obtained

Mutation of M + N
individuals, select N of
them with high fitness

into the next generation

Quasi-Newton algorithm

Optimal solution

Termination condition 

satisfied

Figure 8: Proposed GPSO-QN algorithm structure.
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parameters. There were no significant differences between
stiffness, quality, and damping of normal and paralysis
models. However, the coupling stiffness of paralyzed vocal
voice sources is greater than that of normal sources, and sig-
nificant asymmetry in the paralyzed vocal cords was
observed, as shown in the last two rows of Figure 13(b).

Therefore, coupling stiffness and the asymmetry
parameter, β, could be used as a basis for classifying normal
and paralyzed vocal sources. Figure 14 shows the pathological

voice source analysis system. It is designed and programmed
by MATLAB.

5. Conclusion

This study analyzed nonlinear characteristics of asymmet-
ric vocal cord motion using an optimized biomechanical
model to design a pathological voice source analysis system.
A proposed algorithm was employed to optimize the
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masses, spring constants, coupling coefficient, damping con-
stants, asymmetry parameter, and subglottal pressure of the
mass model.

The proposed biomechanical model accurately simulated
irregular vibration caused by unbalanced vocal tension.

Period doubling bifurcation and frequency entrainment
were observed in the bifurcation and phase diagrams,
and spectrograms.

Vibration system complexity and asymmetry do not have
a simple proportional relationship. This study shows that
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Figure 11: Matching result of paralysis voice source in the time domain.

4

A
m

pl
itu

de
/D

B

0 500 1000 1500 2000

0 500 1000 1500 2000

−2

0

2

Simulated frequency spectrum
Frequency spectrum

−2

0

2

4

(F/Hz)

Figure 12: Matching results of samples 7 and 8 in the frequency domain.

10 Applied Bionics and Biomechanics



pitch frequency is mainly affected by the asymmetric struc-
ture of the vocal cord, whereas the impact of subglottal pres-
sure is relatively small.

The optimal biomechanical model can accurately repro-
duce the voice source streammodulated by asymmetric vocal
cords. Although the physiological parameters of voice
sources were different, the asymmetry and coupling stiffness
parameters helped determine paralysis voice sources.

Optimized model simulations will be of great value for
understanding clinical hoarse voices corresponding to asym-
metric vocal structure and predicting the effect on unilateral
vocal disease treatment.

Future work will establish rational sound models for
vocal cord polyps and other organic diseases to match
real voice sources, assisting in classification of vocal
cord diseases.
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Figure 14: Pathological voice source analysis system.
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